UNIT - I

VECTOR CALCULUS

Definition:

The operator ∇ is denoted by $\nabla=\overrightarrow{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}+\overrightarrow{\mathrm{\jmath}} \frac{\partial}{\partial y}+\overrightarrow{\mathrm{k}} \frac{\partial}{\partial \mathrm{z}}$.
Also $\quad \nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}$ is called Laplacian operator.

Definition: Gradient of a scalar function

Let $\phi(x, y, z)$ be a scalar point function and is continuously differentiable then the vector

$$
\begin{aligned}
& \nabla \phi=\left(\overrightarrow{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}+\overrightarrow{\mathrm{\jmath}} \frac{\partial}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial}{\partial \mathrm{z}}\right) \phi \\
& \nabla \phi=\overrightarrow{\mathrm{\imath}} \frac{\partial \phi}{\partial \mathrm{x}}+\overrightarrow{\mathrm{\jmath}} \frac{\partial \phi}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial \phi}{\partial \mathrm{z}}
\end{aligned}
$$

is called gradient of the function \emptyset and is denoted as $\operatorname{grad} \emptyset=\nabla \varnothing$.

Example:

If $\phi=4 x^{2} y-y^{3} z^{2}$, find $\operatorname{grad} \phi$ at $(1,-1,2)$.

Answer:

$$
\begin{aligned}
& \text { Given } \phi=4 x^{2} y-y^{3} z^{2} \\
& \frac{\partial \phi}{\partial \mathrm{x}}=8 x y, \quad \frac{\partial \phi}{\partial \mathrm{y}}=4 \mathrm{x}^{2}-3 \mathrm{y}^{2} \mathrm{z}^{2}, \quad \frac{\partial \phi}{\partial \mathrm{z}}=-2 \mathrm{y}^{3} z \\
& \nabla \phi=\overrightarrow{\mathrm{\imath}}(8 x y)+\overrightarrow{\mathrm{\jmath}}\left(4 \mathrm{x}^{2}-3 \mathrm{y}^{2} \mathrm{z}^{2}\right)+\overrightarrow{\mathrm{k}}\left(-2 \mathrm{y}^{3} z\right) \\
& \nabla \phi_{(1,-1,2)}=-8 \overrightarrow{\mathrm{\imath}}+\overrightarrow{\mathrm{\jmath}}(4-12)+\overrightarrow{\mathrm{k}}(-2 *-1 * 2) \\
& \nabla \phi_{(1,-1,2)}=-8 \overrightarrow{\mathrm{\imath}}-8 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}}
\end{aligned}
$$

Example:

If $\phi=x y z$, find $\nabla \phi$.
Answer:

Given $\phi=x y z$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial \mathrm{x}}=y z, \quad \frac{\partial \phi}{\partial \mathrm{y}}=x z, \quad \frac{\partial \phi}{\partial \mathrm{z}}=x y \\
& \nabla \phi=y z \vec{\imath}+x z \vec{\jmath}+x y \vec{k}
\end{aligned}
$$

Example:

If $\phi=2 x z^{4}-x^{3} y$. Find $|\nabla \phi|$ at $(2,-2,-1)$.

Answer:

$$
\begin{aligned}
& \text { Given } \phi=2 x z^{4}-x^{3} y \\
& \frac{\partial \phi}{\partial \mathrm{x}}=2 z^{4}-3 x^{2} y, \quad \frac{\partial \phi}{\partial y}=-x^{3}, \quad \frac{\partial \phi}{\partial z}=8 x^{3} \\
& \nabla \phi=\overrightarrow{\mathrm{\imath}}\left(2 z^{4}-3 x^{2} y\right)+\overrightarrow{\mathrm{\jmath}}\left(-\mathrm{x}^{3}\right)+\overrightarrow{\mathrm{k}}\left(8 \mathrm{xz}^{3}\right) \\
& \nabla \phi_{(2,-2,-1)}=26 \overrightarrow{\mathrm{\imath}}-8 \overrightarrow{\mathrm{j}}-16 \overrightarrow{\mathrm{k}} \\
& |\nabla \phi|=\sqrt{26^{2}+8^{2}+16^{2}}=\sqrt{996}
\end{aligned}
$$

Example:

Find the gradient of the function $\log \left(x^{2}+y^{2}+z^{2}\right)$ or $\log r^{2}$.
Answer:

$$
\begin{aligned}
& \text { Given } \phi=\log \left(x^{2}+y^{2}+z^{2}\right) \\
& \frac{\partial \phi}{\partial \mathrm{x}}=\frac{1}{x^{2}+y^{2}+z^{2}} * 2 x=\frac{2 x}{x^{2}+y^{2}+z^{2}} \\
& \frac{\partial \phi}{\partial \mathrm{y}}=\frac{2 y}{x^{2}+y^{2}+z^{2}} \\
& \frac{\partial \phi}{\partial \mathrm{z}}=\frac{2 z}{x^{2}+y^{2}+z^{2}} \\
& \nabla \phi=\frac{2}{x^{2}+y^{2}+z^{2}}[\vec{\imath}(x)+\vec{\jmath}(y)+\vec{k}(z)] \\
& \nabla \phi=\frac{2 \vec{r}}{r^{2}}
\end{aligned}
$$

Example:

Find ∇r^{n} where $\vec{r}=x \overrightarrow{\mathrm{\imath}}+\mathrm{y} \overrightarrow{\mathrm{\jmath}}+\mathrm{z} \overrightarrow{\mathrm{k}}$.
Answer:

$$
\mathrm{r}^{2}=x^{2}+y^{2}+z^{2}
$$

Differentiating partially with respect to x, y and z respectively

$$
\begin{gathered}
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}, 2 r \frac{\partial r}{\partial y}=2 y \Rightarrow \frac{\partial r}{\partial y}=\frac{y}{r}, 2 r \frac{\partial r}{\partial z}=2 z \Rightarrow \frac{\partial r}{\partial z}=\frac{z}{r} \\
\nabla r^{n}=\overrightarrow{\mathrm{\imath}} \frac{\partial r^{n}}{\partial \mathrm{x}}+\overrightarrow{\mathrm{\jmath}} \frac{\partial r^{n}}{\partial \mathrm{y}}+\overrightarrow{\mathrm{k}} \frac{\partial r^{n}}{\partial \mathrm{z}} \\
\nabla r^{n}=n r^{n-1} \frac{\partial r}{\partial x} \overrightarrow{\mathrm{\imath}}+n r^{n-1} \frac{\partial r}{\partial y} \overrightarrow{\mathrm{\jmath}}+n r^{n-1} \frac{\partial r}{\partial z} \overrightarrow{\mathrm{k}} \\
=n r^{n-1} \frac{x}{r} \overrightarrow{\mathrm{\imath}}+n r^{n-1} \frac{y}{r} \overrightarrow{\mathrm{\jmath}}+n r^{n-1} \frac{z}{r} \overrightarrow{\mathrm{k}} \\
=n r^{n-2}[x \overrightarrow{\mathrm{\imath}}+y \overrightarrow{\mathrm{\jmath}}+z \overrightarrow{\mathrm{k}}]=n r^{n-2} \vec{r}
\end{gathered}
$$

Example:

Find ∇r where $r=x \overrightarrow{\mathrm{\imath}}+\mathrm{y} \overrightarrow{\mathrm{\jmath}}+\mathrm{z} \overrightarrow{\mathrm{k}}$.
Answer:

$$
\begin{aligned}
& \mathrm{r}=|\overrightarrow{\mathrm{r}}|=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \frac{\partial \phi}{\partial \mathrm{x}}=\frac{1}{2 \sqrt{x^{2}+y^{2}+z^{2}}} * 2 x=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \frac{\partial \phi}{\partial \mathrm{y}}=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \frac{\partial \phi}{\partial \mathrm{z}}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \nabla \phi=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}[\overrightarrow{\mathrm{i}}(x)+\overrightarrow{\mathrm{J}}(\mathrm{y})+\overrightarrow{\mathrm{k}}(\mathrm{z})] \\
& \nabla \phi=\frac{\vec{r}}{\sqrt{r^{2}}}=\frac{\vec{r}}{r}
\end{aligned}
$$

Definition: Unit normal to the surface

Unit normal to the surface ϕ is given by $\hat{\mathrm{n}}=\frac{\nabla \phi}{|\nabla \phi|}$.

Example:

Find the unit vector normal to the surface $x^{2}+y^{2}+z^{2}=1$ at $(1,1,1)$.

Answer:

$$
\begin{aligned}
& \phi=x^{2}+y^{2}+z^{2}-1 \\
& \nabla \phi=2 x \overrightarrow{\mathrm{\imath}}+2 y \overrightarrow{\mathrm{\jmath}}+2 \mathrm{z} \overrightarrow{\mathrm{k}} \\
& \nabla \phi_{(1,1,1)}=2 \overrightarrow{\mathrm{\imath}}+2 \overrightarrow{\mathrm{\jmath}}+2 \overrightarrow{\mathrm{k}} \\
& |\nabla \phi|=\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3}
\end{aligned}
$$

Unit normal to the surface ϕ is given by $\hat{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{2 \vec{\imath}+2 \vec{\jmath}+2 \vec{k}}{2 \sqrt{3}}=\frac{\vec{\imath}+\vec{\jmath}+\vec{k}}{\sqrt{3}}$

Example:

Find the unit vector normal to the surface $x y+2 x z^{2}=8$ at $(1,0,2)$.

Answer:

$$
\begin{aligned}
& \phi=x y+2 x z^{2}-8 \\
& \nabla \phi=\left(y+2 z^{2}\right) \overrightarrow{\mathrm{\imath}}+(\mathrm{x}) \overrightarrow{\mathrm{\jmath}}+(4 \mathrm{xz}) \overrightarrow{\mathrm{k}} \\
& \nabla \phi_{(1,0,2)}=8 \overrightarrow{\mathrm{\imath}}+\overrightarrow{\mathrm{\jmath}}+8 \overrightarrow{\mathrm{k}} \\
& |\nabla \phi|=\sqrt{64+1+64}=\sqrt{129}
\end{aligned}
$$

Unit normal to the surface ϕ is given by $\hat{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{8 \overrightarrow{\mathrm{\imath}}+\overrightarrow{\mathrm{\jmath}}+8 \overrightarrow{\mathrm{k}}}{\sqrt{129}}$.

Definition: Angle between the surfaces

The angle between the surfaces ϕ_{1} and ϕ_{2} is given by

$$
\cos \theta=\frac{\nabla \phi_{1} \cdot \nabla \phi_{2}}{\left|\nabla \phi_{1}\right|\left|\nabla \phi_{2}\right|}
$$

Example:

Find the angle between the surfaces $x^{2}+y^{2}-z=3$ and $x^{2}+y^{2}+z^{2}=9$ at $(2,-1,2)$.
Answer:

$$
\begin{gathered}
\phi_{1}=x^{2}+y^{2}-z-3 \\
\nabla \phi_{1}=2 x \overrightarrow{\mathrm{\imath}}+2 \mathrm{y} \overrightarrow{\mathrm{\jmath}}-\overrightarrow{\mathrm{k}} \\
\nabla \phi_{1_{(2,-1,2)}}=4 \overrightarrow{\mathrm{\imath}}-2 \overrightarrow{\mathrm{\jmath}}-\overrightarrow{\mathrm{k}} \\
\left|\nabla \phi_{1}\right|=\sqrt{16+4+1}=\sqrt{21} \\
\phi_{2}=x^{2}+y^{2}+z^{2}-9 \\
\nabla \phi_{2}=2 x \overrightarrow{\mathrm{\imath}}+2 \mathrm{y} \overrightarrow{\mathrm{\jmath}}+2 \mathrm{z} \overrightarrow{\mathrm{k}} \\
\nabla \phi_{2_{(2,-1,2)}}=4 \overrightarrow{\mathrm{\imath}}-2 \overrightarrow{\mathrm{\jmath}}+4 \overrightarrow{\mathrm{k}} \\
\left|\nabla \phi_{2}\right|=\sqrt{16+4+16}=\sqrt{36} \\
\cos \theta=\frac{\nabla \phi_{1} \cdot \nabla \phi_{2}}{\left|\nabla \phi_{1}\right|\left|\nabla \phi_{2}\right|}=\frac{(4 \overrightarrow{\mathrm{\imath}}-2 \overrightarrow{\mathrm{\jmath}}-\overrightarrow{\mathrm{k}}) \cdot(4 \overrightarrow{\mathrm{\imath}}-2 \overrightarrow{\mathrm{\jmath}}+4 \overrightarrow{\mathrm{k}})}{\sqrt{21} \sqrt{36}} \\
\cos \theta=\frac{16+4-4}{6 \sqrt{21}}=\frac{16}{6 \sqrt{36}}
\end{gathered}
$$

Example:

Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=25$ and $x^{2}+y^{2}-5$ at $(3,0,4)$.
Answer:

$$
\begin{aligned}
& \phi_{1}=x^{2}+y^{2}+z^{2}-25 \\
& \nabla \phi_{1}=2 x \overrightarrow{\mathrm{\imath}}+2 y \vec{\jmath}+2 \mathrm{z} \overrightarrow{\mathrm{k}} \\
& \nabla \phi_{1(3,0,4)}=6 \overrightarrow{\mathrm{\imath}}+0 \overrightarrow{\mathrm{\jmath}}+8 \overrightarrow{\mathrm{k}} \\
& \left|\nabla \phi_{1}\right|=\sqrt{36+64}=\sqrt{100}=10 \\
& \phi_{2}=x^{2}+y^{2}-5 \\
& \nabla \phi_{2}=2 x \overrightarrow{\mathrm{i}}+2 y \vec{\jmath}+0 \overrightarrow{\mathrm{k}} \\
& \nabla \phi_{2(3,0,4)}=6 \overrightarrow{\mathrm{\imath}}+0 \overrightarrow{\mathrm{\jmath}} \\
& \left|\nabla \phi_{2}\right|=\sqrt{36}=6
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\nabla \phi_{1} \cdot \nabla \phi_{2}}{\left|\nabla \phi_{1}\right|\left|\nabla \phi_{2}\right|}=\frac{(6 \overrightarrow{\mathrm{i}}+0 \overrightarrow{\mathrm{j}}+8 \overrightarrow{\mathrm{k}}) \cdot(6 \overrightarrow{\mathrm{r}})}{10 * 6} \\
& \cos \theta=\frac{36}{60}
\end{aligned}
$$

Definition: Divergence of a scalar point function

If $\vec{F}(x, y, z)$ is a continuously differentiable vector point function in a region of space then the divergence \vec{F} is defined by

$$
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\vec{\imath} \frac{\partial \vec{F}}{\partial x}+\vec{\jmath} \frac{\partial \vec{F}}{\partial y}+\vec{k} \frac{\partial \vec{F}}{\partial z}
$$

If $\vec{F}=F_{1} \vec{\imath}+F_{2} \vec{\jmath}+F_{3} \vec{k}$, then

$$
\begin{aligned}
& \operatorname{div} \vec{F}=\nabla \cdot\left(F_{1} \vec{\imath}+F_{2} \vec{\jmath}+F_{3} \vec{k}\right)=\left(\vec{\imath} \frac{\partial}{\partial x}+\vec{\jmath} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \cdot\left(F_{1} \vec{\imath}+F_{2} \vec{\jmath}+F_{3} \vec{k}\right) \\
& \operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
\end{aligned}
$$

Definition: Curl of a vector function

If $\vec{F}(x, y, z)$ is a continuously differentiable vector point function defined in each point (x, y, z) then the curl of \vec{F} is defined by

$$
\begin{aligned}
& \operatorname{curl} \vec{F}=\nabla \times \vec{F}=\vec{\imath} \times \frac{\partial \vec{F}}{\partial x}+\vec{\jmath} \times \frac{\partial \vec{F}}{\partial y}+\vec{k} \times \frac{\partial \vec{F}}{\partial z} \\
& \text { If } \vec{F}=F_{1} \vec{\imath}+F_{2} \vec{\jmath}+F_{3} \vec{k} \text {, then } \\
& \operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\vec{\imath}\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right)-\vec{\jmath}\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right)+\vec{k}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)
\end{aligned}
$$

Example:

$$
\text { If } \vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \vec{k} \text {, then find } \nabla . \vec{F} \text { and } \nabla \times \vec{F} \text {. }
$$

Answer:

$$
\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \vec{k}
$$

$$
\begin{aligned}
\operatorname{div} \vec{F}= & \frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& =(2 x)+(2 y)+(2 z) \\
\operatorname{div} \vec{F} & =2(x+y+z)
\end{aligned}
$$

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{x}^{2} & \mathrm{y}^{2} & \mathrm{z}^{2}
\end{array}\right|
$$

$$
=\vec{\imath}\left(\frac{\partial}{\partial y} z^{2}-\frac{\partial}{\partial z} y^{2}\right)-\vec{\jmath}\left(\frac{\partial}{\partial x} z^{2}-\frac{\partial}{\partial z} x^{2}\right)+\vec{k}\left(\frac{\partial}{\partial x} y^{2}-\frac{\partial}{\partial y} x^{2}\right)
$$

$$
\operatorname{curl} \vec{F}=0 \vec{\imath}+0 \vec{\jmath}+0 \vec{k}
$$

Example:

$$
\text { If } \vec{F}=x y z \vec{\imath}+3 x^{2} y \vec{\jmath}+\left(x z^{2}-y^{2} z\right) \vec{k} \text {, then find } \nabla . \vec{F} \text { and } \nabla \times \vec{F} \text { at }(1,2,-1) .
$$

Answer:

$$
\begin{gathered}
\vec{F}=x y z \vec{\imath}+3 x^{2} y \vec{\jmath}+\left(x z^{2}-y^{2} z\right) \\
\operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
=(y z)+\left(3 x^{2}\right)+\left(2 x z-y^{2}\right) \\
{[\operatorname{div} \vec{F}]_{(1,2,-1)}=-2+3+(-2-4)=-5} \\
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{xyz} & 3 \mathrm{x}^{2} \mathrm{y} & \mathrm{xz}^{2}-\mathrm{y}^{2} \mathrm{z}
\end{array}\right| \\
=\vec{\imath}\left(\frac{\partial}{\partial y}\left(\mathrm{xz}^{2}-\mathrm{y}^{2} \mathrm{z}\right)-\frac{\partial}{\partial z} 3 x^{2} y\right)-\vec{\jmath}\left(\frac{\partial}{\partial x}\left(\mathrm{xz}^{2}-\mathrm{y}^{2} \mathrm{z}\right)-\frac{\partial}{\partial z} x y z\right)+\vec{k}\left(\frac{\partial}{\partial x} 3 x^{2} y-\frac{\partial}{\partial y} x y z\right) \\
=\vec{\imath}(-2 y z)-\vec{\jmath}\left(z^{2}-x y\right)+\vec{k}(6 x y-x z)
\end{gathered}
$$

$[\operatorname{curl} \vec{F}]_{(1,2,-1)}=4 \vec{\imath}+\vec{\jmath}+13 \vec{k}$

Definition: Laplace Equation

If ϕ is a scalar point function then $\Delta^{2} \phi=\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{z}^{2}}=0$ is called the Laplace equation.

Example:

Find the value of $\nabla^{2}\left(\frac{1}{x+y+z}\right)$.

Answer:

$$
\begin{gathered}
\nabla^{2} \vec{F}=\frac{\partial^{2} \vec{F}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \vec{F}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \vec{F}}{\partial \mathrm{z}^{2}}=\sum \frac{\partial^{2} \vec{F}}{\partial \mathrm{x}^{2}} \\
=\sum \frac{\partial}{\partial \mathrm{x}}\left(-\frac{1}{(x+y+z)^{2}}\right) \\
=\sum \frac{2}{(x+y+z)^{3}} \\
\quad=\frac{2}{(x+y+z)^{3}}+\frac{2}{(x+y+z)^{3}}+\frac{2}{(x+y+z)^{3}} \\
\nabla^{2} \vec{F}=\frac{6}{(x+y+z)^{3}}
\end{gathered}
$$

Definition: Solenoidal vector

A vector $\overrightarrow{\mathrm{F}}$ is said to be solenoidal if $\boldsymbol{\operatorname { d i v }} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \cdot \overrightarrow{\mathbf{F}}=\mathbf{0}$.

Definition: Irrotational vector

A vector $\overrightarrow{\mathrm{F}}$ is said to be Irrotational if $\operatorname{curl} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \times \overrightarrow{\mathbf{F}}=\mathbf{0}$.

Definition: Scalar Potential

If $\overrightarrow{\mathrm{F}}$ is irrotational vector, then there exists a scalar function ϕ such that $\overrightarrow{\mathbf{F}}=\boldsymbol{\nabla} \boldsymbol{\phi}$. Such a scalar function is called scalar potential of \vec{F}.

Example:

Prove that $\vec{F}=y \vec{\imath}+z \vec{\jmath}+x \vec{k}$ is Solenoidal.
Answer:
A vector $\overrightarrow{\mathrm{F}}$ is said to be solenoidal if $\operatorname{div} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \cdot \overrightarrow{\mathbf{F}}=\mathbf{0}$.
Given $\vec{F}=y \vec{i}+z \vec{\jmath}+x \vec{k}$

$$
\nabla . \overrightarrow{\mathrm{F}}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=\frac{\partial}{\partial x} y+\frac{\partial}{\partial y} z+\frac{\partial}{\partial z} x=0
$$

Hence \vec{F} is Solenoidal.

Example:

Prove that $\vec{F}=3 y^{4} z^{2} \vec{\imath}+4 x^{3} z^{2} \vec{\jmath}-3 x^{2} y^{2} \vec{k}$ is Solenoidal.
Answer:
A vector $\overrightarrow{\mathrm{F}}$ is said to be solenoidal if $\operatorname{div} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} . \overrightarrow{\mathbf{F}}=\mathbf{0}$.
Given $\overrightarrow{\mathrm{F}}=3 y^{4} z^{2} \vec{\imath}+4 x^{3} z^{2} \vec{\jmath}-3 x^{2} y^{2} \vec{k}$

$$
\begin{aligned}
\nabla \cdot \overrightarrow{\mathrm{F}}= & \frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& =\frac{\partial}{\partial x}\left(3 y^{4} z^{2}\right)+\frac{\partial}{\partial y}\left(4 x^{3} z^{2}\right)+\frac{\partial}{\partial z}\left(-3 x^{2} y^{2}\right)=0 \\
& =0+0+0=0
\end{aligned}
$$

Hence \vec{F} is Solenoidal.

Example:

If $\vec{F}=(x+3 y) \vec{\imath}+(y-2 z) \vec{\jmath}+(x+\lambda z) \vec{k}$ is Solenoidal find the value of λ.

Answer:
A vector \vec{F} is said to be solenoidal if $\operatorname{div} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} . \overrightarrow{\mathbf{F}}=\mathbf{0}$.

$$
\begin{aligned}
& \text { Given } \overrightarrow{\mathrm{F}}=(x+3 y) \vec{\imath}+(y-2 z) \vec{\jmath}+(x+\lambda z) \vec{k} \\
& \nabla . \overrightarrow{\mathrm{F}}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& \frac{\partial}{\partial x}(x+3 y)+\frac{\partial}{\partial y}(y-2 z)+\frac{\partial}{\partial z}(x+\lambda z)=0 \\
& 1+1+\lambda=0 \Rightarrow \lambda=-2
\end{aligned}
$$

Example:

Prove that $\vec{F}=y z \vec{\imath}+z x \vec{\jmath}+x y \vec{k}$ is Irrotational.

Answer:

A vector $\overrightarrow{\mathrm{F}}$ is said to be Irrotational if $\operatorname{curl} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \times \overrightarrow{\mathbf{F}}=\mathbf{0}$.
Given $\overrightarrow{\mathrm{F}}=y z \vec{\imath}+z x \vec{\jmath}+x y \vec{k}$

$$
\begin{aligned}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{yz} & \mathrm{zx} & \mathrm{xy}
\end{array}\right| \\
& =\vec{\imath}\left(\frac{\partial}{\partial y} x y-\frac{\partial}{\partial z} z x\right)-\vec{\jmath}\left(\frac{\partial}{\partial x} x y-\frac{\partial}{\partial z} y z\right)+\vec{k}\left(\frac{\partial}{\partial x} z x-\frac{\partial}{\partial y} y z\right) \\
& =\vec{\imath}(x-x)-\vec{\jmath}(y-y)+\vec{k}(z-z) \\
\nabla \times \vec{F} & =0
\end{aligned}
$$

Hence \vec{F} is Irrotational.

Example:

Find the constants a, b, c so that $\vec{F}=(x+2 y+a z) \vec{\imath}+(b x-3 y-z) \vec{\jmath}+(4 x+c y+2 z) \vec{k}$ is Irrotational.

Answer:

A vector \vec{F} is said to be Irrotational if $\operatorname{curl} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \times \overrightarrow{\mathbf{F}}=\mathbf{0}$.

$$
\begin{aligned}
& \text { Given } \overrightarrow{\mathrm{F}}=(x+2 y+a z) \vec{\imath}+(b x-3 y-z) \vec{\jmath}+(4 x+c y+2 z) \vec{k} \\
& \begin{aligned}
& \nabla \times \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+2 y+a z & b x-3 y-z & 4 x+c y+2 z
\end{array}\right|=0 \\
& \vec{\imath}\left[\frac{\partial}{\partial y}(4 x+c y+2 z)-\frac{\partial}{\partial z}(b x-3 y-z)\right]=0 \\
&-\vec{\jmath}\left[\frac{\partial}{\partial x}(4 x+c y+2 z)-\frac{\partial}{\partial z}(x+2 y+a z)\right] \\
&+\vec{k}\left[\frac{\partial}{\partial x}(b x-3 y-z)-\frac{\partial}{\partial y}(x+2 y+a z)\right] \\
& \vec{\imath}(c+1)-\vec{\jmath}(4-a)+\vec{k}(b-2)=0 \vec{\imath}+0 \vec{\jmath}+0 \vec{k} \\
& \therefore \quad c+1=0 \Rightarrow c=-1,4-a=0 \quad \Rightarrow a=4 \text { and } b=2
\end{aligned}
\end{aligned}
$$

Example:

Prove that $\vec{F}=(2 x+y z) \vec{\imath}+(4 y+z x) \vec{\jmath}-(6 z-x y) \vec{k}$ is Solenoidal as well as Irrotational. Also find the scalar potential of \vec{F}.

Answer:

A vector \vec{F} is said to be solenoidal if $\operatorname{div} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} . \overrightarrow{\mathbf{F}}=\mathbf{0}$.
Given $\overrightarrow{\mathrm{F}}=(2 x+y z) \vec{\imath}+(4 y+z x) \vec{\jmath}-(6 z-x y) \vec{k}$

$$
\begin{aligned}
& \nabla . \overrightarrow{\mathrm{F}}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& \frac{\partial}{\partial x}(2 x+y z)+\frac{\partial}{\partial y}(4 y+z x)-\frac{\partial}{\partial z}(6 z-x y)=0 \\
& 2+4-6=0
\end{aligned}
$$

Hence \vec{F} is Solenoidal.

A vector $\overrightarrow{\mathrm{F}}$ is said to be Irrotational if $\operatorname{curl} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \times \overrightarrow{\mathbf{F}}=\mathbf{0}$.
Given $\overrightarrow{\mathrm{F}}=(2 x+y z) \vec{\imath}+(4 y+z x) \vec{\jmath}-(6 z-x y) \vec{k}$

$$
\begin{aligned}
& \nabla \times \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x+y z & 4 y+z x & -6 z+x y
\end{array}\right| \\
&=\vec{\imath}\left(\frac{\partial}{\partial y}(-6 z+x y)-\frac{\partial}{\partial z}(4 y+z x)\right) \\
&-\vec{\jmath}\left(\frac{\partial}{\partial x}(-6 z+x y)-\frac{\partial}{\partial z}(2 x+y z)\right) \\
&+\vec{k}\left(\frac{\partial}{\partial x}(4 y+z x)-\frac{\partial}{\partial y}(2 x+y z)\right) \\
&= \vec{\imath}(x-x)-\vec{\jmath}(y-y)+\vec{k}(z-z) \\
& \nabla \times \vec{F}= 0
\end{aligned}
$$

Hence \vec{F} is Irrotational.
To find scalar potential:
To find ϕ such that $\vec{F}=\nabla \phi$.

$$
\begin{aligned}
& (2 x+y z) \vec{\imath}+(4 y+z x) \vec{\jmath}-(6 z-x y) \vec{k}=\frac{\partial \phi}{\partial x} \vec{\imath}+\frac{\partial \phi}{\partial y} \vec{\jmath}+\frac{\partial \phi}{\partial z} \vec{k} \\
& \frac{\partial \phi}{\partial x}=2 x+y z \\
& \frac{\partial \phi}{\partial y}=4 y+z x \\
& \frac{\partial \phi}{\partial x}=-6 z+x y
\end{aligned}
$$

Integrating with respect to x, y, z respectively, we get

$$
\begin{aligned}
& \phi(x, y, z)=x^{2}+x y z+f(y, z) \\
& \phi(x, y, z)=2 y^{2}+x y z+f(x, z) \\
& \phi(x, y, z)=-3 z^{2}+x y z+f(x, y)
\end{aligned}
$$

Combining, we get $\phi(x, y, z)=x^{2}+x y z+2 y^{2}+x y z-3 z^{2}+x y z+k$ where k is a constant.

Therefore ϕ is a scalar potential.

Example:

Prove that $\vec{F}=\left(6 x y+z^{3}\right) \vec{\imath}+\left(3 x^{2}-z\right) \vec{\jmath}+\left(3 x z^{2}-y\right) \vec{k}$ is Irrotational. Also find the scalar potential of \vec{F}.

Answer:

A vector $\overrightarrow{\mathrm{F}}$ is said to be Irrotational if $\operatorname{curl} \overrightarrow{\mathbf{F}}=\mathbf{0}$. That is if $\boldsymbol{\nabla} \times \overrightarrow{\mathbf{F}}=\mathbf{0}$.

$$
\begin{aligned}
& \text { Given } \overrightarrow{\mathrm{F}}=\left(6 x y+z^{3}\right) \vec{\imath}+\left(3 x^{2}-z\right) \vec{\jmath}+\left(3 x z^{2}-y\right) \vec{k} \\
& \begin{aligned}
& \nabla \times \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
6 x y+z^{3} & 3 x^{2}-z & 3 x z^{2}-y
\end{array}\right| \\
&=\vec{\imath}\left(\frac{\partial}{\partial y}\left(3 x z^{2}-y\right)-\frac{\partial}{\partial z}\left(3 x^{2}-z\right)\right) \\
&-\vec{\jmath}\left(\frac{\partial}{\partial x}\left(3 x z^{2}-y\right)-\frac{\partial}{\partial z}\left(6 x y+z^{3}\right)\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& +\vec{k}\left(\frac{\partial}{\partial x}\left(3 x^{2}-z\right)-\frac{\partial}{\partial y}\left(6 x y+z^{3}\right)\right) \\
= & \vec{\imath}(-1+1)-\vec{\jmath}\left(3 z^{2}-3 z^{2}\right)+\vec{k}(6 x-6 x)
\end{aligned}
$$

$$
\nabla \times \vec{F}=0
$$

Hence \vec{F} is Irrotational.

To find scalar potential:

To find ϕ such that $\vec{F}=\nabla \phi$.

$$
\begin{aligned}
& \left(6 x y+z^{3}\right) \vec{\imath}+\left(3 x^{2}-z\right) \vec{\jmath}+\left(3 x z^{2}-y\right) \vec{k}=\frac{\partial \phi}{\partial x} \vec{\imath}+\frac{\partial \phi}{\partial y} \vec{\jmath}+\frac{\partial \phi}{\partial z} \vec{k} \\
& \frac{\partial \phi}{\partial x}=6 x y+z^{3} \\
& \frac{\partial \phi}{\partial y}=3 x^{2}-z \\
& \frac{\partial \phi}{\partial x}=3 x z^{2}-y
\end{aligned}
$$

Integrating with respect to x, y, z respectively, we get

$$
\begin{aligned}
& \phi(x, y, z)=3 x^{2} y+x z^{3}+f(y, z) \\
& \phi(x, y, z)=3 x^{2} y-y z+f(x, z) \\
& \phi(x, y, z)=x z^{3}-y z+f(x, y)
\end{aligned}
$$

Combining, we get $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=3 \mathrm{x}^{2} \mathrm{y}+\mathrm{xz}^{3}+3 x^{2} y-y z+x z^{3}-y z+\mathrm{k}$ where k is a constant. Therefore ϕ is a scalar potential.

Vector integration

Line integral

Let \vec{F} be a vector field in space and let $A B$ be a curve described in the sense A to B.

$$
\lim _{\mathrm{n} \rightarrow \infty} \sum_{A}^{B} \overrightarrow{\mathrm{~F}_{\mathrm{n}}} \cdot d \overrightarrow{r_{n}}=\int_{A}^{B} \overrightarrow{\mathrm{~F}} . d \overrightarrow{\mathrm{r}} \quad \text { is called line integral. }
$$

If the line integral along the curve C then it is denoted by

$$
\int_{C} \overrightarrow{\mathrm{~F}} . \mathrm{d} \overrightarrow{\mathrm{r}} \quad \text { or } \quad \oint_{\mathrm{C}} \overrightarrow{\mathrm{~F}} . \mathrm{d} \overrightarrow{\mathrm{r}} \quad \text { if } \mathrm{C} \text { is closed curve. }
$$

Example:

If $\vec{F}=\left(3 x^{2}+6 y\right) \vec{\imath}-14 y z \vec{\jmath}+20 x z^{2} \vec{k}$. Evaluate $\oint_{\mathrm{C}} \overrightarrow{\mathrm{F}}$. $\mathrm{d} \overrightarrow{\mathrm{r}}$ from $(0,0,0)$ to $(1,1,1)$ along the curve.

Solution:

The end points are ($0,0,0$) and (1,1,1)
These points correspond to $t=0$ and $t=1$

$$
\begin{aligned}
& d x=d t, \quad d y=2 t d t, d z=3 t^{2} d t \\
& \begin{aligned}
\oint_{C} \overrightarrow{\mathrm{~F}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}} & =\int_{0}^{1}\left[\left(3 x^{2}+6 y\right) d x-14 y z d y+20 x z^{2} d z\right] \\
& =\int_{0}^{1}\left[\left(3 t^{2}+6 t\right) d t-14 t t 2 t d t+20 t t^{2} 3 t^{2} d t\right] \\
& =\int_{0}^{1}\left[3 t^{2}-28 t^{6}+60 t^{9}\right] \mathrm{dt}=\left[\frac{3 \mathrm{t}^{3}}{3}-28 \frac{\mathrm{t}^{7}}{7}+60 \frac{\mathrm{t}^{10}}{10}\right]_{0}^{1} \\
& =1-\frac{28}{7}+\frac{60}{10}=5
\end{aligned}
\end{aligned}
$$

Example:

Find the work done by the moving particle in the force field $\vec{F}=3 x^{2} \vec{\imath}+(2 x z-y) \vec{\jmath}-z \vec{k}$ from $t=0$ to $t=1$ along the curve $x=2 t^{2}, y=t$ and $z=4 t^{3}$.

Solution:

$$
\begin{aligned}
\text { Work done } & =\oint_{C} \overrightarrow{\mathrm{~F}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}=\int_{0}^{1}\left[3 x^{2} d x+(2 x z-y) d y-z d z\right] \\
& =\int_{0}^{1}\left[3 \times 4 t^{4} 4 t d t+\left[2 \times 2 t^{2} \times 4 t^{3}-t\right] d t-4 t^{3} * 12 t^{2} d t\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left[48 t^{5}+16 t^{5}-t-48 t^{5}\right] \mathrm{dt}=\left[16 \frac{\mathrm{t}^{6}}{6}-\frac{\mathrm{t}^{2}}{2}\right]_{0}^{1} \\
& =\frac{16}{6}-\frac{1}{2}=\frac{13}{6}
\end{aligned}
$$

Greens theorem in plane

If $M(x, y)$ and $N(x, y)$ are continuous functions with continuous, partial derivatives in a region R of the $x y$ plane bounded by a simple closed curve C then

$$
\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

where C is the curve described in the positive direction.

Example:

Evaluate using Green's theorem in the plane for $\int\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

Answer:

By Green's theorem $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Given $M=x y+y^{2} ; \quad N=x^{2}$

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=x+2 y ; \quad \frac{\partial N}{\partial x}=2 x
$$

$$
\therefore \int_{C}\left(x y+y^{2}\right) d x+x^{2} d y=\iint_{R}(2 x-x-2 y) d x d y
$$

$$
I=\iint_{R}(x-2 y) d x d y
$$

$$
I=\int_{0}^{1} \int_{y}^{\sqrt{y}}(x-2 y) d x d y
$$

$$
=\int_{0}^{1}\left[\frac{x^{2}}{2}-2 x y\right]_{y}^{\sqrt{y}} d y
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left[\left(\frac{y}{2}-2 \sqrt{y} y\right)-\left(\frac{y^{2}}{2}-2 y^{2}\right)\right] d y \\
& =\int_{0}^{1}\left[\left(\frac{y}{2}-2 y^{\frac{3}{2}}+\frac{3}{2} y^{2}\right)\right] d y \\
& =\left(\frac{y^{2}}{2 * 2}-\frac{2 y^{\frac{5}{2}}}{\frac{5}{2}}+\frac{\frac{3}{2} y^{3}}{3}\right)_{0}^{1}=\left(\frac{1}{4}-\frac{4}{5}+\frac{3}{6}\right)=-\frac{1}{20}
\end{aligned}
$$

Example:

Verify Green's theorem in the plane for $\int_{C}\left(x^{2} d x+x y d y\right)$ where C is the curve in the plane given by $x=0, y=0, x=a, y=a(a>0)$.

Answer:

By Green's theorem
$\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Given $M=x^{2} ; \quad N=x y$
$\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=0 ; \quad \frac{\partial N}{\partial x}=y$
$\therefore \int_{C} x^{2} d x+x y d y=\int_{O A}+\int_{A B}+\int_{B C}+\int_{C O}$
Along $O A, y=0 \Rightarrow d y=0$
$\int_{C} x^{2} d x+x y d y=\int_{0}^{a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{3}$
Along $A B, x=a \Rightarrow d x=0$
$\int_{C} x^{2} d x+x y d y=\int_{0}^{a} a y d y=a\left[\frac{y^{2}}{2}\right]_{0}^{a}=\frac{a^{3}}{2}$
Along $B C, y=a \Rightarrow d y=0$
$\int_{C} x^{2} d x+x y d y=\int_{a}^{0} x^{2} d x=\left[\frac{y^{3}}{3}\right]_{a}^{0}=-\frac{a^{3}}{3}$
Along $C O, x=0 \Rightarrow d x=0$

$$
\begin{aligned}
& \int_{C} x^{2} d x+x y d y=\int_{a}^{0} 0=0 \\
& \quad \therefore \int_{C} x^{2} d x+x y d y=\frac{a^{3}}{3}+\frac{a^{3}}{2}-\frac{a^{3}}{3}+0=\frac{a^{3}}{2}
\end{aligned}
$$

Also $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\int_{0}^{a} \int_{0}^{a} y d x d y$

$$
=\int_{0}^{a} y[x]_{0}^{a} d y=a\left[\frac{y^{2}}{2}\right]_{0}^{a}=\frac{a^{3}}{2}
$$

Hence $\quad \int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$

Example:

Verify Green's theorem in the plane for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region bounded by $x=0, y=0, x+y=1$.

Answer:

$$
\text { By Green's theorem } \int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

$=\int_{0}^{1} \int_{0}^{1-y} 10 y d x d y=10 \int_{0}^{1} y[x]_{0}^{1-y} d y$
$=10 \int_{0}^{1} y(1-y) d y=10 \int_{0}^{1}\left[y-y^{2}\right] d y$
$=10\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)_{0}^{1}=10\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{5}{3}$

Given $M=3 x^{2}-8 y^{2} ; \quad N=4 y-6 x y$

$$
\begin{aligned}
& \frac{\partial \mathrm{M}}{\partial \mathrm{y}}=-16 y ; \quad \frac{\partial N}{\partial x}=-6 y \\
& \therefore \int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y=\int_{O A}+\int_{A B}+\int_{B O}
\end{aligned}
$$

Along $O A, y=0 \Rightarrow d y=0$

$$
\begin{aligned}
& \int_{C}\left(3 x^{2}\right) d x=\int_{0}^{1}\left(3 x^{2}\right) d x \\
& =\left[\frac{3 x^{3}}{3}\right]_{0}^{1}=1
\end{aligned}
$$

Along $A B, y=1-x \Rightarrow d y=-d x$

$$
\begin{aligned}
& \int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
& =\int_{1}^{0}\left(3 x^{2}-8(1-x)^{2}\right) d x+(4(1-x)-6 x(1-x))(-d x) \\
& =\int_{1}^{0}\left(-11 x^{2}+26 x-12\right) d x \\
& =\left[-11 \frac{x^{3}}{3}+\frac{26 x^{2}}{2}-12 x\right]_{1}^{0}=\frac{8}{3}
\end{aligned}
$$

Along $B O, x=0 \Rightarrow d x=0$

$$
\begin{aligned}
& \int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
& =\int_{1}^{0} y d y=\int_{1}^{0} \frac{y^{2}}{2}=-2
\end{aligned}
$$

$$
\therefore \int_{C} M d x+N d y=1+\frac{8}{3}-2=\frac{5}{3}
$$

Hence $\quad \int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$

Example:

Verify Green's theorem in the plane for $\int_{C} x^{2}(1+y) d x+\left(y^{3}+x^{3}\right) d y$ where C is the square bounded by $x= \pm a, y= \pm a$.

Answer:

By Green's theorem $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$

$$
\therefore \int_{C} x^{2}(1+y) d x+\left(y^{3}+x^{3}\right) d y=\int_{A B}+\int_{B C}+\int_{C D}+\int_{D O}
$$

Along $A B, y=-a \Rightarrow d y=0$

$$
\begin{aligned}
& \int_{-a}^{a} x^{2}(1-a) d x=(1-a)\left[\frac{x^{3}}{3}\right]_{-a}^{a} \\
& =(1-a) 2 \frac{a^{3}}{3}=2 \frac{a^{3}}{3}-2 \frac{a^{4}}{3}
\end{aligned}
$$

Along $B C, x=a \Rightarrow d x=0$

$$
\begin{aligned}
& \int_{-a}^{a}\left(y^{3}+a^{3}\right) d y=\left[\frac{y^{4}}{4}+a^{3} y\right]_{-a}^{a} \\
& =\frac{a^{4}}{4}+a^{4}-\frac{a^{4}}{4}+a^{4}=2 a^{4}
\end{aligned}
$$

Along $\mathrm{CD}, y=a \Rightarrow d y=0$
$\int_{a}^{-a} x^{2}(1+a) d x=(1+a)\left[\frac{x^{3}}{3}\right]_{a}^{-a}$

$=(1+a)\left(-\frac{a^{3}}{3}-\frac{a^{3}}{3}\right)=-\frac{2 a^{3}}{3}-\frac{2 a^{4}}{3}$

Along DA , $x=-a \Rightarrow d x=0$

$$
\begin{aligned}
& \int_{a}^{-a}\left(-a^{3}+y^{3}\right) d y=\left[\frac{y^{4}}{4}-a^{3} y\right]_{a}^{-a}=2 a^{4} \\
& \therefore \int_{C} x^{2} d x+x y d y=2 \frac{a^{3}}{3}-2 \frac{a^{4}}{3}+2 a^{4}-\frac{2 a^{3}}{3}-\frac{2 a^{4}}{3}+2 a^{4}=\frac{8}{3} a^{4} \\
& \text { Given } M=x^{2}(1+y) ; \quad N=y^{3}+x^{3} \\
& \frac{\partial \mathrm{M}}{\partial \mathrm{y}}=x^{2} ; \quad \frac{\partial N}{\partial x}=3 x^{2} \\
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\int_{-a}^{a} \int_{-a}^{a}\left(3 x^{2}-x^{2}\right) d x d y \\
& =2 \int_{0}^{a}\left[\frac{x^{3}}{3}\right]_{-a}^{a} d y=2 \int_{-a}^{a} \frac{2 a^{3}}{3} d y \\
& =4 \frac{a^{3}}{3}[y]_{a}^{a}=\frac{4 a^{3}}{3}(2 a)=\frac{8 a^{4}}{3} \\
& \text { Hence } \int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
\end{aligned}
$$

Example:

Find the area bounded between the curves $y^{2}=4 x$ and $x^{2}=4 y$ using Green's theorem.

Answer:

By Green's theorem $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
The point of intersection of $x^{2}=4 y$ and $y^{2}=4 x$ are $(0,0)$ and $(4,4)$.
The area enclosed by a single curve C is $\frac{1}{2} \int_{C}(x d y-y d x)$.

$$
\text { Hence the area }=\frac{1}{2} \int_{C_{1}}(x d y-y d x)+\frac{1}{2} \int_{C_{2}}(x d y-y d x)
$$

Along $C_{1}\left(x^{2}=4 y\right)$

$$
4 d y=2 x d x
$$

$$
\begin{aligned}
\int_{C}(x d y-y d x) & =\int_{0}^{4}\left(\frac{x^{2}}{2} d x-\frac{x^{2}}{4} d x\right) \\
& =\int_{0}^{4} \frac{x^{2}}{4} d x=\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4}=\frac{16}{3}
\end{aligned}
$$

Along $C_{2}\left(y^{2}=4 x\right)$

$$
\begin{gathered}
2 y d y=4 d x \\
\int_{C}(x d y-y d x)=\int_{4}^{0}\left(\frac{y^{2}}{4} d y-\frac{y^{2}}{2} d y\right) \\
=-\int_{4}^{0} \frac{y^{2}}{4} d y=-\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{4}^{0}=\frac{16}{3} \\
\therefore \text { Area }=\frac{1}{2}\left(\frac{16}{3}+\frac{16}{3}\right)=\frac{16}{3} .
\end{gathered}
$$

Stoke's theorem

If S is a open surface bounded by a simple closed curve C and if a vector function \vec{F} is continuous and has continuous partial derivatives in S and so on C, then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d s
$$

where \hat{n} is the unit vector normal to the surface. That is, the surface integral of the normal component of $\operatorname{curl} \vec{F}$ is equal to the line integral of the tangential component of \vec{F} taken around C.

Example:

Verify Stoke's theorem for a vector field defined by $\vec{F}=\left(x^{2}-y^{2}\right) \vec{\imath}+2 x y \vec{\jmath}$ in the rectangular region in the $X O Y$ plane bounded by the lines $x=0, x=a, y=0, y=b$.

Answer:

By Stoke'stheorem $\int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s$
Given $\vec{F}=\left(x^{2}-y^{2}\right) \vec{\imath}+2 x y \vec{\jmath}+0 \vec{k}$

$$
\begin{aligned}
& d \vec{r}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k} \\
& \vec{F} . d \vec{r}=\left(x^{2}-y^{2}\right) d x+2 x y d y \\
& \nabla \times \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}-y^{2} & 2 \mathrm{xy} & 0
\end{array}\right| \\
&= \vec{\imath}\left(\frac{\partial}{\partial y}(0)-\frac{\partial}{\partial z}(2 x y)\right)-\vec{\jmath}\left(\frac{\partial}{\partial x}(0)-\frac{\partial}{\partial z}\left(x^{2}-y^{2}\right)\right)+\vec{k}\left(\frac{\partial}{\partial x}(2 x y)-\frac{\partial}{\partial y}\left(x^{2}-y^{2}\right)\right) \\
&= \vec{\imath}(0)-\vec{\jmath}(0)+\vec{k}(2 y+2 y) \\
& \nabla \times \vec{F}= 4 y \vec{k}
\end{aligned}
$$

Here the surface S denotes the rectangle $O A B C$ and the unit outward normal to the vector is \vec{k}.

$$
\text { That is } \vec{n}=\vec{k}
$$

$$
\text { Now } \begin{aligned}
\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s & =\iint_{S} 4 y \vec{k} \cdot \vec{n} d s=\iint_{S} 4 y \vec{k} \cdot \vec{k} d s \\
& =\iint_{S} 4 y d x d y=\int_{0}^{b} \int_{0}^{a} 4 y d x d y \\
& =4 \int_{0}^{b} y[x]_{0}^{a} d y=4 a\left[\frac{y^{2}}{2}\right]_{0}^{b}=2 a b^{2}
\end{aligned}
$$

Now $\int_{S} \vec{F} \cdot d \vec{r}=\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y=\int_{O A}+\int_{A B}+\int_{B C}+\int_{C O}$
Along $O A, y=0 \Rightarrow d y=0$

$$
\int_{0}^{a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{3}
$$

Along $A B, x=a \Rightarrow d x=0$

$$
\int_{0}^{b} 2 a y d y=2 a\left[\frac{y^{2}}{2}\right]_{0}^{b}=a b^{2}
$$

Along $B C, y=a \Rightarrow d y=0$

$$
\begin{aligned}
& \int_{a}^{0}\left(x^{2}-b^{2}\right) d x=\left[\frac{x^{3}}{3}-b^{2} x\right]_{a}^{0} \\
& \quad=-\frac{a^{3}}{3}+a b^{2}
\end{aligned}
$$

Along $C O, x=0 \Rightarrow d x=0$

$$
\int_{C O}\left(x^{2}-y^{2}\right) d x+2 x y d y=0
$$

$$
\therefore \int_{S} \vec{F} \cdot d \vec{r}=\frac{a^{3}}{3}+a b^{2}-\frac{a^{3}}{3}+a b^{2}=2 a b^{2}
$$

$$
\text { Hence } \int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s
$$

Example:

Verify Stoke's theorem when $\vec{F}=\left(2 x y-x^{2}\right) \vec{\imath}-\left(x^{2}-y^{2}\right) \vec{\jmath}$ and C is the boundary of the region enclosed by the parabolas $y^{2}=x$ and $x^{2}=y$.

Answer:

By Stoke'stheorem $\int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s$
Given $\vec{F}=\left(2 x y-x^{2}\right) \vec{\imath}-\left(-x^{2}-y^{2}\right) \vec{\jmath}+0 \vec{k}$

$$
d \vec{r}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k}
$$

$\vec{F} \cdot d \vec{r}=\left(2 x y-x^{2}\right) d x-\left(-x^{2}-y^{2}\right) d y$
$\nabla \times \vec{F}=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}\end{array}\right|=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x y-x^{2} & -x^{2}-y^{2} & 0\end{array}\right|$

$$
\begin{gathered}
=\vec{\imath}\left(\frac{\partial}{\partial y}(0)-\frac{\partial}{\partial z}\left(-x^{2}-y^{2}\right)\right)-\vec{\jmath}\left(\frac{\partial}{\partial x}(0)-\frac{\partial}{\partial z}\left(2 x y-x^{2}\right)\right) \\
+\vec{k}\left(\frac{\partial}{\partial x}\left(-x^{2}-y^{2}\right)-\frac{\partial}{\partial y}\left(2 x y-x^{2}\right)\right) \\
=\vec{\imath}(0)-\vec{\jmath}(0)+\vec{k}(-2 x-2 x)
\end{gathered}
$$

$\nabla \times \vec{F}=-4 x \vec{k}$
Here the surface S denotes the surface of the XOY plane. The unit outward normal to the vector is \vec{k}.

$$
\text { That is } \vec{n}=\vec{k}
$$

$$
\text { Now } \begin{aligned}
\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s & =\iint_{S}-4 x \vec{k} \cdot \vec{n} d s=\iint_{S}-4 x \vec{k} \cdot \vec{k} d s \\
& =-\iint_{S} 4 x d x d y=-4 \int_{0}^{1} \int_{\sqrt{y}}^{y^{2}} x d x d y \\
& =-4 \int_{0}^{1}\left[\frac{x^{2}}{2}\right]_{\sqrt{y}}^{y^{2}} d y=-2 \int_{0}^{1}\left(y^{4}-y\right) d y \\
& =-2\left[\frac{y^{5}}{5}-\frac{y^{2}}{2}\right]_{0}^{1}=-2\left(\frac{1}{5}-\frac{1}{2}\right)=2 * \frac{-3}{10}=-\frac{6}{10}=-\frac{3}{5}
\end{aligned}
$$

Now $\int_{S} \vec{F} . d \vec{r}$ can be taken OA and AO.
i. e., $\quad \int_{S} \vec{F} . d \vec{r}=\int_{S}\left(2 x y-x^{2}\right) d x-\left(x^{2}-y^{2}\right) d y=\int_{O A}+\int_{A O}$

Along $O A, y=x^{2} \Rightarrow d y=2 x d x$
$\int_{0}^{1}\left(2 x x^{2}-x^{2}\right) d x-\left(x^{2}-x^{4}\right) 2 x d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left(2 x^{3}-x^{2}-2 x^{3}+2 x^{5}\right) d x \\
& =\int_{0}^{1}\left(2 x^{5}-x^{2}\right) d x=\left[2 \frac{x^{6}}{6}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\left(\frac{1}{3}-\frac{1}{3}\right)=0
\end{aligned}
$$

Along $A O, x=y^{2} \Rightarrow d x=2 y d y$

$$
\begin{aligned}
& \int_{S}\left(2 y^{2} y-y^{4}\right) 2 y d y-\left(y^{4}-y^{2}\right) d y \\
& =\int_{1}^{0}\left(4 y^{4}-2 y^{5}-y^{4}+y^{2}\right) d y
\end{aligned}
$$

$$
=\int_{1}^{0}\left(3 y^{4}-2 y^{5}+y^{2}\right) d y=\left[3 \frac{y^{5}}{5}-2 \frac{y^{6}}{6}+\frac{y^{3}}{3}\right]_{1}^{0}
$$

$$
=-\left(\frac{3}{5}-\frac{2}{6}+\frac{1}{3}\right)=-\frac{3}{5}
$$

$$
\therefore \int_{S} \vec{F} \cdot d \vec{r}=-\frac{3}{5}
$$

$$
\text { Hence } \int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s
$$

Example:

Verify Stoke's theorem for $\vec{F}=y^{2} \vec{\imath}+y \vec{\jmath}-x z \vec{k}$ over the upper half of the sphere $x^{2}+y^{2}+z^{2}=$ $a^{2}, z \geq 0$.

Answer:

By Stoke'stheorem $\int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s$

$$
\begin{aligned}
& \text { Given } \vec{F}=y^{2} \vec{\imath}+y \vec{\jmath}-x z \vec{k} \\
& d \vec{r}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k} \\
& \vec{F} . d \vec{r}=y^{2} d x+y d y-x z d z \\
& \vec{F} . d \vec{r}=y^{2} d x+y d y \quad[\because z=0] \\
& \nabla \times \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} & \mathrm{y} & -\mathrm{xz}
\end{array}\right| \\
&=\vec{\imath}\left(\frac{\partial}{\partial y}(-x z)-\frac{\partial}{\partial z}(y)\right)-\vec{\jmath}\left(\frac{\partial}{\partial x}(-x z)-\frac{\partial}{\partial z}\left(y^{2}\right)\right)+\vec{k}\left(\frac{\partial}{\partial x}(y)-\frac{\partial}{\partial y}\left(y^{2}\right)\right) \\
&=\vec{\imath}(0)-\vec{\jmath}(-z)-\vec{k}(2 y)
\end{aligned}
$$

$\nabla \times \vec{F}=z \vec{\jmath}-2 y \vec{k}$
Let $\phi=x^{2}+y^{2}+z^{2}-a^{2}$
$\nabla \phi=2 x \vec{\imath}+2 y \vec{\jmath}+2 z \vec{k}$
$|\nabla \phi|=2 \sqrt{x^{2}+y^{2}+z^{2}}=2 a$
$\vec{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{2 x \vec{\imath}+2 y \vec{\jmath}+2 z \vec{k}}{2 a}=\frac{x \vec{\imath}+y \vec{\jmath}+z \vec{k}}{a}$
Here the surface S denotes the rectangle $O A B C$ and the unit outward normal to the vector is \vec{k}.
Thus curl $\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}}=(z \vec{\jmath}-2 y \vec{k}) \cdot\left(\frac{x \vec{\imath}+y \vec{\jmath}+z \vec{k}}{a}\right)$

$$
=\frac{1}{\mathrm{a}}(\mathrm{zy}-2 \mathrm{yz})=-\frac{\mathrm{yz}}{\mathrm{a}}
$$

$$
\text { Now } \begin{aligned}
\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s & =\iint_{R}-\frac{\mathrm{yz}}{\mathrm{a}} \frac{d x d y}{|\vec{n} \cdot \vec{k}|} \\
& =\iint_{R}\left(-\frac{y z}{a}\right) \frac{d x d y}{z / a}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}}(-y) d y d x \\
& =\int_{-a}^{a}\left[-\frac{y^{2}}{2}\right]_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} d x=-\frac{1}{2} \int_{-a}^{a}\left[a^{2}-x^{2}-a^{2}+x^{2}\right] d x
\end{aligned}
$$

$$
\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s=0
$$

Now $\int_{S} \vec{F} . d \vec{r}=\int_{C} y^{2} d x+y d y=\int_{O A}+\int_{A B}+\int_{B C}+\int_{C O}$
Since $x^{2}+y^{2}=a^{2}$, is a circle.
Put $x=a \cos \theta$ and $y=a \sin \theta$

$$
d x=-a \sin \theta \text { and } d y=a \cos \theta
$$

θ varies from 0 to 2π

$$
\begin{aligned}
& \int_{S} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi}\left[a^{2} \sin ^{2} \theta(-a \sin \theta)+a \sin \theta(a \cos \theta)\right] d \theta \\
& =\int_{0}^{2 \pi}-a^{3} \sin ^{3} \theta d \theta+\frac{a^{2}}{2} \int_{0}^{2 \pi} \sin 2 \theta d \theta \\
& =\frac{a^{3}}{4} \int_{0}^{2 \pi}(\sin 3 \theta-3 \sin \theta) d \theta+\frac{a^{2}}{2}\left[-\frac{\cos 2 \theta}{2}\right]_{0}^{2 \pi} \\
& =\frac{a^{3}}{4}\left[-\frac{\cos 3 \theta}{3}+3 \cos \theta\right]_{0}^{2 \pi}+\frac{a^{2}}{2}\left[-\frac{1}{2}+\frac{1}{2}\right] \\
& =\frac{a^{3}}{4}\left[-\frac{1}{3}+3+\frac{1}{3}-3\right]+\frac{a^{2}}{2}\left[-\frac{1}{2}+\frac{1}{2}\right] \\
& =0
\end{aligned}
$$

Hence $\int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s$

Example:

Verify Stoke's theorem for the function $\vec{F}=x^{2} \vec{\imath}+x y \vec{\jmath}$ integrated round the square in the $z=0$ plane whose sides are along the line $x=0, y=0, x=a, y=a$.

Answer:

By Stoke'stheorem $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s$
Given $\vec{F}=x^{2} \vec{\imath}+x y \vec{\jmath}+0 \vec{k}$
$\nabla \times \vec{F}=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}\end{array}\right|=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} & \mathrm{xy} & 0\end{array}\right|$

$$
\begin{aligned}
& =\vec{\imath}\left(\frac{\partial}{\partial y}(0)-\frac{\partial}{\partial z}(x y)\right)-\vec{\jmath}\left(\frac{\partial}{\partial x}(0)-\frac{\partial}{\partial z}\left(x^{2}\right)\right)+\vec{k}\left(\frac{\partial}{\partial x}(x y)-\frac{\partial}{\partial y}\left(x^{2}\right)\right) \\
& =\vec{\imath}(0)-\vec{\jmath}(0)+\vec{k}(y)
\end{aligned}
$$

$\nabla \times \vec{F}=y \vec{k}$
Here the surface S denotes the rectangle $O A B C$ and the unit outward normal to vector is \vec{k}.
That is $\vec{n}=\vec{k}$

$$
\text { Now } \begin{aligned}
\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s & =\iint_{S} y \vec{k} \cdot \vec{n} d s=\iint_{S} y \vec{k} \cdot \vec{k} d s \\
& =\iint_{S} y d x d y=\iint_{0}^{a} \int_{0}^{a} y d x d y \\
& =\frac{a^{3}}{2}
\end{aligned}
$$

Given $\vec{F}=x^{2} \vec{\imath}+x y \vec{\jmath}+0 \vec{k}$
$d \vec{r}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k}$
$\vec{F} \cdot d \vec{r}=x^{2} d x+x y d y$

Now $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} x^{2} d x+x y d y=\int_{O A}+\int_{A B}+\int_{B C}+\int_{C O}$

Along $O A, y=0 \Rightarrow d y=0$

$$
\begin{aligned}
& \int_{C} x^{2} d x+x y d y=\int_{0}^{a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{3} \\
& \text { Along } A B, x=a \Rightarrow d x=0
\end{aligned}
$$

$$
\int_{C} x^{2} d x+x y d y=\int_{0}^{a} a y d y=a\left[\frac{y^{2}}{2}\right]_{0}^{a}=\frac{a^{3}}{2}
$$

$$
\text { Along } B C, y=a \Rightarrow d y=0
$$

$$
\int_{C} x^{2} d x+x y d y=\int_{a}^{0} x^{2} d x=\left[\frac{y^{3}}{3}\right]_{a}^{0}=-\frac{a^{3}}{3}
$$

$$
\text { Along } C O, x=0 \Rightarrow d x=0
$$

$$
\int_{C} x^{2} d x+x y d y=\int_{a}^{0} 0=0
$$

$$
\therefore \int_{C} x^{2} d x+x y d y=\frac{a^{3}}{3}+\frac{a^{3}}{2}-\frac{a^{3}}{3}+0=\frac{a^{3}}{2}
$$

$$
\therefore \int_{S} \vec{F} \cdot d \vec{r}=\frac{a^{3}}{3}+\frac{a^{3}}{2}-\frac{a^{3}}{3}+0=\frac{a^{3}}{2}
$$

Hence $\int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s$

Example:

Verify Stoke's theorem for the function $\vec{F}=y^{2} z \vec{\imath}+z^{2} x \vec{\jmath}+x^{2} y \vec{k}$ where S is the open surface of the cube formed by the planes $x= \pm a, y= \pm a$ and $z= \pm a$ in which the plane $z=-a$ is cut.

Answer:

By Stoke'stheorem $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d s$
Given $\vec{F}=y^{2} z \vec{\imath}+z^{2} x \vec{\jmath}+x^{2} y \vec{k}$

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} z & \mathrm{z}^{2} \mathrm{x} & \mathrm{x}^{2} \mathrm{y}
\end{array}\right|
$$

$$
\begin{gathered}
=\vec{\imath}\left(\frac{\partial}{\partial y}\left(x^{2} y\right)-\frac{\partial}{\partial z}\left(z^{2} x\right)\right) \\
-\vec{\jmath}\left(\frac{\partial}{\partial x}\left(x^{2} y\right)-\frac{\partial}{\partial z}\left(y^{2} z\right)\right) \\
+\vec{k}\left(\frac{\partial}{\partial x}\left(z^{2} x\right)-\frac{\partial}{\partial y}\left(y^{2} z\right)\right) \\
\begin{array}{r}
\nabla \times \vec{F}=\vec{\imath}\left(x^{2}-2 z x\right)-\vec{\jmath}\left(y^{2}-2 x y\right) \\
+\vec{k}\left(z^{2}-2 y z\right)
\end{array}
\end{gathered}
$$

Since the surface $z=-a$ is cut.

$$
\text { Now } \iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d s=\iint_{S_{1}}+\iint_{S_{2}}+\iint_{S_{3}}+\iint_{S_{4}}+\iint_{S_{5}}
$$

Surface	Equation	$\overrightarrow{\boldsymbol{n}}$	$(\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{F}}) \cdot \overrightarrow{\boldsymbol{n}}$	$\boldsymbol{d s}$
$\operatorname{ABGH}\left(S_{1}\right)$	$x=a$	$\vec{\imath}$	$a^{2}-2 z a$	$d y d z$
$\operatorname{DCFE}\left(S_{2}\right)$	$x=-a$	\vec{l}	$-\left(a^{2}+2 z a\right)$	$d y d z$
$\operatorname{BCFG}\left(S_{3}\right)$	$y=a$	$\vec{\jmath}$	$a^{2}-2 a x$	$d x d z$
$\operatorname{ADEH}\left(S_{4}\right)$	$y=-a$	$\overrightarrow{-j}$	$-\left(a^{2}+2 a x\right)$	$d x d z$
$\operatorname{EFGGH}\left(S_{5}\right)$	$z=a$	\vec{k}	$a^{2}-2 a y$	$d x d y$

$$
\begin{aligned}
& \therefore \iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s=\iint\left(a^{2}-4 z a\right) d y d z-\iint\left(a^{2}-4 z a\right) d y d z+ \\
& \iint\left(a^{2}-4 a x\right) d x d z-\iint\left(a^{2}-4 a x\right) d x d z+\iint\left(a^{2}-2 a y\right) d x d y \\
& =\iint-4 z a d y d z+\iint-4 a x d x d z+\iint\left(a^{2}-2 a y\right) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =-4 a \int_{-a}^{a} \int_{-a}^{a} z d x d y-4 a \int_{-a}^{a} \int_{-a}^{a} x d x d z+\int_{-a}^{a} \int_{-a}^{a}\left(a^{2}-2 a y\right) d x d y \\
& =0+0+\int_{-a}^{a}\left[a^{2} x-2 a y x\right]_{-a}^{a} d y=\int_{-a}^{a}\left[a^{3}-2 a^{2} y+a^{3}-2 a^{2} y\right] d y \\
& =\int_{-a}^{a}\left[2 a^{3}-4 a^{2} y\right] d y=\left[2 a^{3} y-\frac{4 a^{2} y^{2}}{2}\right]_{-a}^{a}=2 a^{4}-2 a^{4}+2 a^{4}+2 a^{4}
\end{aligned}
$$

$$
\therefore \quad \iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s=4 a^{4}
$$

$$
\text { Now } \int_{C} \vec{F} \cdot d \vec{r}=\int_{A B}+\int_{B C}+\int_{C D}+\int_{D A}
$$

The boundary bounded by the square $A B C D$ that lies in the plane $z=-a$.

$$
\therefore d z=0
$$

Now $\vec{F} . d \vec{r}=-a y^{2} d x+a^{2} x d y$
Along $\mathrm{AB}, x=a \Rightarrow d x=0$

$$
\int_{-a}^{a} a^{3} d y=a^{3}[y]_{-a}^{a}=2 a^{4}
$$

Along $B C, y=a \Rightarrow d y=0$

$$
\int_{a}^{-a}-a^{3} d x=-0 a^{3}[x]_{a}^{-a}=2 a^{4}
$$

$$
\text { Along } C D, x=-a \Rightarrow d x=0
$$

$$
\int_{a}^{-a}-a^{3} d y=2 a^{4}
$$

Along $D A, y=-a \Rightarrow d y=0$

$$
\begin{aligned}
& \int_{-a}^{a}-a^{3} d x=-2 a^{4} \\
& \therefore \int_{S} \vec{F} \cdot d \vec{r}=4 a^{4} \\
& \quad \text { Hence } \int_{S} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot \vec{n} d s
\end{aligned}
$$

Gauss Divergence theorem

Statement:

The surface integral of the normal component of a vector function F over a closed surface S enclosing the volume V is equal to the volume of integral of the divergence of F taken throughout the volume V.

$$
\iint_{S} \vec{F} \cdot \hat{n} \mathrm{ds}=\iiint_{V} \nabla \times \vec{F} \mathrm{dv}
$$

Example:

Verify Gauss divergence theorem for $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ over the cube bounded by $x=0$, $x=1, y=0, y=1, z=0, z=1$.

Answer:

$$
\text { By Gauss stheorem } \iint_{S} \vec{F} \cdot \hat{n} \mathrm{ds}=\iiint_{V} \nabla \times \vec{F} \mathrm{dv}
$$

Given $\nabla . \vec{F}=4 z-2 y+y=4 z-y$

$$
\text { Now } \begin{aligned}
\iiint_{V} \nabla \times \vec{F} \mathrm{~d} v & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(4 \mathrm{z}-\mathrm{y}) \mathrm{dx} \mathrm{dy} \mathrm{dz}=\int_{0}^{1} \int_{0}^{1}[4 \mathrm{zx}-\mathrm{yx}]_{0}^{1} d y d x \\
& =\int_{0}^{1} \int_{0}^{1}[4 \mathrm{z}-\mathrm{y}] d y d x=\int_{0}^{1}\left[4 \mathrm{zy}-\frac{\mathrm{y}^{2}}{2}\right]_{0}^{1} d x=\int_{0}^{1}\left(4 \mathrm{z}-\frac{1}{2}\right) d x \\
& =\left(\frac{4 \mathrm{z}^{2}}{2}-\frac{1}{2} \mathrm{z}\right)_{0}^{1}=\frac{4}{2}-\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

Now $\iint_{S} \vec{F} . \hat{n} d s=\iint_{S_{1}}+\iint_{S_{2}}+\iint_{S_{3}}+\iint_{S_{4}}+\iint_{S_{5}}+\iint_{S_{6}}$

Surface	Equation	$\widehat{\boldsymbol{n}}$	$\overrightarrow{\boldsymbol{F}} . \widehat{\boldsymbol{n}}$	$\boldsymbol{d s}$
$A E G D\left(S_{1}\right)$	$x=1$	$\vec{\imath}$	$4 x z \Rightarrow 4 z$	$d y d z$
$O B F C\left(S_{2}\right)$	$x=0$	$\overrightarrow{-}$	$-4 x z \Rightarrow 0$	$d y d z$
$E B F G\left(S_{3}\right)$	$y=1$	$\vec{\jmath}$	$-y^{2} \Rightarrow-1$	$d x d z$
$O A D C\left(S_{4}\right)$	$y=0$	$\vec{\jmath}$	$y^{2} \Rightarrow 0$	$d x d z$
$D G F C\left(S_{5}\right)$	$z=1$	\vec{k}	$y z \Rightarrow y$	$d x d y$
$O A E B\left(S_{6}\right)$	$z=0$	$-\vec{k}$	$-y z \Rightarrow 0$	$d x d y$

$$
\begin{aligned}
\therefore \quad \iint_{S} \vec{F} \cdot \hat{n} d s & =4 \int_{0}^{1} \int_{0}^{1} z d y d z-\int_{0}^{1} \int_{0}^{1} d x d z+\int_{0}^{1} \int_{0}^{1} y d x d y \\
& =2-1+\frac{1}{2} \\
\therefore \quad \iint_{S} \vec{F} \cdot \hat{n} d s & =\frac{3}{2}
\end{aligned}
$$

Gauss divergence theorem is verified.

Example:

Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{\imath}+\left(y^{2}-z x\right) \vec{\jmath}+\left(z^{2}-x y\right) \vec{k}$ over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b$, $0 \leq z \leq c$.

Answer:

By Gauss stheorem $\iint_{S} \vec{F} . \hat{n} \mathrm{ds}$

$$
=\iiint_{\mathrm{V}} \nabla \times \vec{F} \mathrm{~d} v
$$

Given $\nabla \cdot \vec{F}=2 x+2 y+2 z=2(x+y+z)$

$$
\text { Now } \iiint_{\mathrm{V}} \nabla \times \vec{F} \mathrm{~d} v
$$

$$
\begin{aligned}
&=\int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}} \int_{0}^{\mathrm{c}} 2(\mathrm{x}+\mathrm{y}+\mathrm{z}) \mathrm{dx} d y \mathrm{dz}=2 \int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}\left[\frac{\mathrm{x}^{2}}{2}+\mathrm{yx}+\mathrm{zx}\right]_{0}^{\mathrm{c}} d y d z \\
&=2 \int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}\left[\frac{\mathrm{c}^{2}}{2}+\mathrm{yc}+\mathrm{zc}\right] d y d z \\
&=2 \int_{0}^{\mathrm{b}}\left[\frac{\mathrm{c}^{2}}{2} \mathrm{y}+\frac{\mathrm{y}^{2}}{2} \mathrm{c}+\mathrm{zyc}\right]_{0}^{\mathrm{b}} d z \\
&=2 \int_{0}^{\mathrm{a}}\left(\frac{\mathrm{c}^{2}}{2} \mathrm{~b}+\frac{\mathrm{b}^{2}}{2} \mathrm{c}+\mathrm{zbc}\right) d z=2\left[\frac{c^{2}}{2} b z+\frac{b^{2}}{2} c z+\frac{z^{2}}{2} b c\right]_{0}^{a} \\
&=2 \frac{a b c^{2}+b^{2} c a+a^{2} b c}{2}
\end{aligned}
$$

$$
\iiint_{V} \nabla \times \vec{F} \mathrm{dv}=a b c(a+b+c)
$$

$$
\text { Now } \iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{S_{1}}+\iint_{S_{2}}+\iint_{S_{3}}+\iint_{S_{4}}+\iint_{S_{5}}+\iint_{S_{6}}
$$

Surface	Equation	$\widehat{\boldsymbol{n}}$	$\overrightarrow{\boldsymbol{F}} . \widehat{\boldsymbol{n}}$	$\boldsymbol{d s}$
$\operatorname{AEGD}\left(S_{1}\right)$	$x=a$	$\vec{\imath}$	$x^{2}-y z$	$d y d z$
$\operatorname{OBFC}\left(S_{2}\right)$	$x=0$	$\overrightarrow{-}$	$-\left(x^{2}-y z\right)$	$d y d z$
$\operatorname{EBFG}\left(S_{3}\right)$	$y=b$	$\vec{\jmath}$	$y^{2}-z x$	$d x d z$
$\operatorname{OADC}\left(S_{4}\right)$	$y=0$	$\vec{\jmath}$	$-\left(y^{2}-z x\right)$	$d x d z$
$\operatorname{DGFC}\left(S_{5}\right)$	$z=c$	\vec{k}	$z^{2}-x y$	$d x d y$
$\operatorname{OAEB}\left(S_{6}\right)$	$z=0$	$-\vec{k}$	$-\left(z^{2}-x y\right)$	$d x d y$

$$
\begin{aligned}
\iint_{S_{1}} \vec{F} \cdot \hat{n} d s & =\int_{0}^{c} \int_{0}^{b}\left(a^{2}-y z\right) d y d z=\int_{0}^{c}\left(a^{2} y-\frac{y^{2}}{2} z\right)_{0}^{b} d z=\int_{0}^{c}\left(a^{2} b-\frac{b^{2}}{2} z\right) d z \\
& =\left(a^{2} b z-\frac{b^{2}}{2} \frac{z^{2}}{2}\right)_{0}^{c}=a^{2} b c-\frac{b^{2} c^{2}}{4} \\
\iint_{S_{2}} \vec{F} \cdot \hat{n} d s & =\int_{0}^{c} \int_{0}^{b}-(0-y z) d y d z=\int_{0}^{c}\left(\frac{y^{2}}{2} z\right)_{0}^{b} d z=\int_{0}^{c}\left(\frac{b^{2}}{2} z\right) d z
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{b^{2}}{2} \frac{z^{2}}{2}\right)_{0}^{c}=\frac{b^{2} c^{2}}{4} \\
& \iint_{S_{3}} \vec{F} . \hat{n} d s=\int_{0}^{c} \int_{0}^{a}\left(b^{2}-z x\right) d x d z=\int_{0}^{c}\left(b^{2} x-\frac{x^{2}}{2} z\right)_{0}^{a} d z=\int_{0}^{c}\left(b^{2} a-\frac{a^{2}}{2} z\right) d z \\
& =\left(b^{2} a z-\frac{a^{2} z^{2}}{2} \frac{z^{c}}{2}\right)_{0}^{2}=b^{2} a c-\frac{a^{2} c^{2}}{4} \\
& \iint_{S_{4}} \vec{F} \cdot \hat{n} d s=\int_{0}^{c} \int_{0}^{a}-(0-z x) d x d z=\int_{0}^{c}\left(\frac{x^{2}}{2} z\right)_{0}^{a} d z=\int_{0}^{c}\left(\frac{a^{2}}{2} z\right) d z \\
& =\left(\frac{a^{2}}{2} \frac{z^{2}}{2}\right)_{0}^{c}=\frac{a^{2} c^{2}}{4} \\
& \iint_{S_{5}} \vec{F} \cdot \hat{n} d s=\int_{0}^{b} \int_{0}^{a}\left(c^{2}-x y\right) d x d y=\int_{0}^{b}\left(c^{2} x-\frac{x^{2}}{2} y\right)_{0}^{a} d y=\int_{0}^{b}\left(c^{2} a-\frac{a^{2}}{2} y\right) d y \\
& =\left(c^{2} a y-\frac{a^{2}}{2} \frac{y^{2}}{2}\right)_{0}^{b}=c^{2} a b-\frac{a^{2} b^{2}}{4} \\
& \iint_{S_{6}} \vec{F} \cdot \hat{n} d s=\int_{0}^{b} \int_{0}^{a}-(0-x y) d x d y=\int_{0}^{b}\left(\frac{x^{2}}{2} y\right)_{0}^{a} d y=\int_{0}^{b}\left(\frac{a^{2}}{2} y\right) d y \\
& =\left(\frac{a^{2}}{2} \frac{y^{2}}{2}\right)_{0}^{b}=\frac{a^{2} b^{2}}{4} \\
& \therefore \iint_{S} \vec{F} . \hat{n} d s=a^{2} b c-\frac{b^{2} c^{2}}{4}+\frac{b^{2} c^{2}}{4}+b^{2} a c-\frac{a^{2} c^{2}}{4}+\frac{a^{2} c^{2}}{4}+c^{2} a b-\frac{a^{2} b^{2}}{4}+\frac{a^{2} b^{2}}{4} \\
& =a^{2} b c+b^{2} a c+c^{2} a b \\
& =a b c(a+b+c)
\end{aligned}
$$

Gauss divergence theorem is verified.

