SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE-10
 DEPARTMENT OF SCIENCE AND HUMANITIES
 SUBJECT: NUMERICAL METHODS (SEMESTER - VI)
 UNIT V
 BOUNDARY VALUE PROBLEMS IN ORDINARY
 AND PARTIAL DIFFERENTIAL EQAUTIONS

1. State the conditions for the equation.
$A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G$ where A, B, C, D, E, F, G are function of x and y to be (i). Elliptic (ii). Parabolic (iii). Hyperbolic.
Solution :
The given equation is said to be
(i). Elliptic at appoint (x, y) in the plane if $B^{2}-4 A C<0$
(ii). Parabolic if $B^{2}-4 A C=0$
(iii). Hyperbolic if $B^{2}-4 A C>0$.
2. State the conditions for the equation.
$A u_{x x}+2 B u_{x y}+C u_{y y}=f\left(u_{x}, u_{y}, x, y\right)$ to be
(i). Elliptic (ii). Parabolic (iii). Hyperbolic when A, B, C are functions of x and y.

Solution :
The given equation is elliptic if $\left(2 \mathrm{~B}^{2}\right)-4 A C<0$

$$
i, e, \quad B^{2}-A C<0
$$

The given equation is parabolic if $\mathrm{B}^{2}-A C=0$.
The given equation is hyperbolic if $\mathrm{B}^{2}-A C>0$.
3. Fill up the blank.

The equation $y u_{x x}+u_{y y}=0$ is hyperbolic in the region \qquad
Solution :

$$
\begin{aligned}
& \text { Here } A=y, B=0, C=1 \\
& \mathrm{~B}^{2}-4 A C=0-4 y=-4 y
\end{aligned}
$$

The equation is hyperbolic in the region (x, y) where $\mathrm{B}^{2}-4 A C>0$.

$$
i, e, B^{2}-A C>-4 y>0 \text { or } y>0 .
$$

It is a parabolic in the region $y>0$.
4. What is the classification of $f_{x}-f_{y y}=0$?

Solution :

$$
\text { Here } A=0, B=0, C=-1
$$

$$
\mathrm{B}^{2}-4 A C=0-4 \times 0 \times(-1)
$$

So the equation is parabolic.
5. Give an example of parabolic equation.

Solution :
The one dimensional heat equation $\frac{\partial u}{\partial \mathrm{t}}=\alpha^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$ is parabolic.
6. State Schmidt's explicit formula for solving heat flow equation.

Solution :

$$
\begin{aligned}
& \quad u_{i, j+1}=\lambda u_{i+1, j}+(1-2 \lambda) u_{i, j}+\lambda u_{i-1, j} \\
& \text { If } \lambda=\frac{1}{2}, \quad u_{i, j+1}=\frac{1}{2}\left[u_{i+1, j}+u_{i-1, j}\right]
\end{aligned}
$$

7. Fill in the blank.

Bender Schmidt's recurrence formula is useful to solve \qquad equation.

Solution : One dimensional heat equation.
8. Write an explicit formula to solve numerically the heat equation (parabolic equation)
$\mathrm{u}_{\mathrm{xx}}-\mathrm{a}_{\mathrm{t}}=0$.
Solution :

$$
u_{i, j+1}=\lambda u_{i+1, j}+(1-2 \lambda) u_{i, j}+\lambda u_{i-1, j}
$$

Where $\lambda=\frac{k}{h^{2} a}$ (h is the space for the variable x and k is the space in the time direction).
9. What is the value of k to solve $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{1}{2} \mathrm{u}_{\mathrm{xx}}$ by Bender Schmidt's method with $h=1$ if
h and t respectively ?
Solution :
Given $u_{x x}=2 \frac{\partial u}{\partial t}$
Here $\alpha^{2}=2, h=1$
$\lambda=\frac{k \alpha^{2}}{h^{2}}=\frac{k(2)}{1}=2 k$
$\lambda=2 k=\frac{1}{2}$
$k=\frac{1}{4}$.
10. What is the classification of one dimensional flow equation.

Solution :
Here $A=1, B=0, C=0$
$\therefore B^{2}-4 A C=0$.
Hence the one dimensional heat flow equation is parabolic.
11. Write down the Crank - Nicolson formula to solve $u_{t}=u_{x x}$.

Solution :

$$
\begin{gathered}
\frac{1}{2} \lambda u_{i+1, j+1}+\frac{1}{2} \lambda u_{i-1, j+1}-(\lambda+1) u_{i, j+1} \\
=-\frac{1}{2} \lambda u_{i+1, j}-\frac{1}{2} \lambda u_{i-1, j}+(\lambda-1) u_{i, j} \\
\text { (or) } \quad \lambda\left(u_{i+1, j+1}+u_{i-1, j+1}\right)-2(\lambda+1) u_{i, j+1} \\
=2(\lambda-1) u_{i, j}-\lambda\left(u_{i+1, j}+u_{i-1, j}\right)
\end{gathered}
$$

12. Write down the implicit formula to solve one dimensional heat flow equation.

Solution :

$$
u_{x x}=\frac{1}{c^{2}} u_{t}
$$

13. Why is Crank Nicholson's scheme called an implicit scheme ?

Solution :
The schematic representation of Crank Nicholson's method is shown below.

The solution value at any point $(i, j+1)$ on the $(j+1)^{\text {th }}$ level is dependent on the solution values at the neighboring points on the same level and three values on the $j^{\text {th }}$ level. Hence it is implicit.
14. Fill up blanks.

In the parabolic equation $u_{t}=\alpha^{2} u_{x x}$ if $\lambda=\frac{k \alpha^{2}}{h^{2}}$ where $k=\Delta t$ and $h=\Delta x$, then
(a). explicit method is stable only if $\lambda=\ldots \ldots \ldots \ldots \ldots$.
(b). implicit method is convergent when $\lambda=\cdots$.

Solution :
(a). explicit method is stable only if $\lambda<\frac{1}{2}$.
(b). implicit method is convergent when $\lambda=\frac{1}{2}$.
15. what type of equations can be solved by using Crank Nicholson's difference formula ?

Solution :
Crank Nicholson's difference formula is used to solve parabolic equations is of the form

$$
u_{x x} a u_{t}
$$

16. State the explicit formula for the solution of the wave equation.

Solution :
The formula to solve numerically the wave equation

$$
a^{2} u_{x x}=2\left(1-\lambda^{2} a^{2}\right) u_{i, j}+\lambda^{2} a^{2}\left(u_{i+1, j}+u_{i-1, j}\right)-u_{i, j-1}
$$

The schematic representation is shown below.

17. Write down the general and simplest forms of the difference equation corresponding to the hyperbolic equation $u_{t t}=a^{2} u_{x x}$.

Solution:
The general form of the difference equation to solve the equation $u_{t t}=a^{2} u_{x x}$ is

$$
u_{i, j+1}=2\left(1-\lambda^{2} a^{2}\right) u_{i, j}+\lambda^{2} a^{2}\left(u_{i+1, j}+u_{i-1, j}\right)-u_{i, j-1}
$$

If $\lambda^{2} a^{2}=1$, coefficient of $u_{i, j}$ in (1) is $=0$
The recurrence equation (1) takes the simplified form

$$
u_{i, j+1}=u_{i+1, j}+u_{i-1, j}-u_{i, j-1}
$$

18. Write the diagonal five point formula to solve the Laplace equation $u_{x x}+u_{y y}=0$.

Solution :

$$
u_{i, j}=\frac{1}{4}\left[u_{i-1, j-1}+u_{i-1, j+1}+u_{i+1, j-1}+u_{i+1, j+1}\right]
$$

	h		
h		$\boldsymbol{u}_{i, j+1}$	
	$\boldsymbol{u}_{i-1, j}$	$\boldsymbol{u}_{i, j}$	$\boldsymbol{u}_{i+1, j}$
		$\boldsymbol{u}_{i, j-1}$	

19. Write down the standard five point formula to solve the Laplace equation $u_{x x}+u_{y y}=0$. Solution :

$$
u_{i, j}=\frac{1}{4}\left[u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right]
$$

20. Write the difference scheme for solving the Laplace equation.

Solution :
The five point difference formula for $\nabla^{2} \varphi=0$ is

$$
u_{i, j}=\frac{1}{4}\left[u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right]
$$

21. What is the purpose of Leibmann's process?

Solution :
The purpose of Leibmann's process is to find the solution of the Laplace equation $u_{x x}+u_{y y}=0$ by iteration.
22. If u satisfies the Laplace equation and $u=100$ on the boundary of a square what will be the value of u at an interior gird point.
Solution :
Since u satisfies Laplace equation and $u=100$ on the boundary square.

$$
\begin{gathered}
u_{i, j}=\frac{1}{4}[100+100+100+100] \\
u_{i, j}=100
\end{gathered}
$$

23. Write the Laplace equations $u_{x x}+u_{y y}=0$ in difference quotients.

Solution :

$$
\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}}+\frac{u_{i, j-1}-2 u_{i, j}+u_{i, j+1}}{k^{2}}=0
$$

24. Define a difference quotient.

Solution :
A difference quotient is the quotient obtained by dividing the difference between two values of a function by the difference between two corresponding values of the independent variable.
25. State Leibmann's iterative formula.

Solution :

$$
u_{i, j}^{n+1}=\frac{1}{4}\left[u_{i-1, j}^{n+1}+u_{i+1, j}^{n} n+u_{i, j-1}^{n}+u_{i, j+1}^{n+1}\right]
$$

26. The number of conditions required to solve the Laplace equation is \qquad ? Solution :

Four.
27. Write down the finite difference form of the equation $\nabla^{2} u=f(x, y)$.

Solution :

$$
u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=h^{2} f(i h, j h)
$$

28. Write the difference scheme for $\nabla^{2} u=f(x, y)$.

Solution :
Consider a square mesh with interval of differencing as h.
Taking $x=i h$ and $y=j h$ the difference equation reduces to

$$
\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}}+\frac{u_{i, j-1}-2 u_{i, j}+u_{i, j+1}}{k^{2}}=f(i h, j h)
$$

29. State the five point formula to solve the Poisson equation $u_{x x}+u_{y y}=100$.

Solution :

$$
u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=h^{2} f(i h, j h)=100 .(\text { Since } h=1)
$$

30. State the general form of Poisson's equation in partial derivatives.

Solution :

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y) \\
\text { PART - B }
\end{gathered}
$$

1. Using finite difference method, find $y(0.25), y(0.5)$ and $y(0.75)$ satisfying the differential equation $\frac{d^{2} y}{d x^{2}}+y=x$ subject to the boundary condition $y(0)=0, y(1)=1$.
2. Using finite difference method, solve $\frac{d^{2} y}{d x^{2}}=y$ in $(0,2)$ given $y(0)=0$,
$y(2)=3.63$ subdividing the range of x into 4 equal parts.
3. Solve $y^{\prime \prime}-y=x, x \in(0,1)$ given $y(0)=y(1)=0$ using finite difference method dividing the intervals into 4 equal parts.
4. Solve the equation $y^{\prime \prime}(x)-x y(x)=0$ for $y\left(x_{i}\right), x_{i} 0, \frac{1}{3}, \frac{2}{3}$, given that $y(0)+y^{\prime}(0)=1, \& y(1)=1$.
5. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1, t \geq 0$ with $u(x, 0)=x(1-x)$, $0<x<1$ and $u(0, t)=u(1, t)=0, \forall t>0$ using explicit method with $\Delta x=0.2$ for 3 time steps.
6. Solve $u_{x x}=32 u_{t}$, taking $h=0.25$ for $t>0,0<x<1$ and $u(x, 0)=0, u(0, t)=0$, $u(1, t)=t$.
7. Solve $u_{t}=u_{x x}$, subject $u(0, t)=0, u(1, t)=0 \quad \& \quad u(x, 0)=\sin \pi x, 0<x<1$.
8. Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 12,0 \leq t \leq 12$ with boundary conditions and initial Conditions

$$
\begin{aligned}
u(x, 0) & =\frac{1}{4} x(15-x) ; \quad 0 \leq x \leq 12 \\
& =u(0, t)=0, \quad u(12, t)=9, \quad 0 \leq t \leq 12
\end{aligned}
$$

9. Solve $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}=0$ given $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$. Assume $h=1$.

Find the values of u up to $t=5$.
10. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=20, u(0, t)=0, u(5, t)=100$, compute u for the time-step with $h=1$ by Crank-Nicholson's method.
11. Solve by Crank-Nicholson's method the equation $u_{x x}=u_{t}$ subject to $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=t$, for two-time steps.
12. Solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, 0<x<2, t>0, u(0, t)=u(2, t)=0, t>0$ and $u(x, 0)=\sin \frac{\pi x}{2}$, $0 \leq x \leq 2$ using $\Delta x=0.5$ and $\Delta t=0.25$ for two-time steps by Crank-Nicholson's implicit finite difference method.
13. Solve $y_{t t}=y_{x x}$ upto $t=0.5$ with a spacing of 0.1 subject to $y(0, t)=0, y(1, t)=$ $0, y_{t}(x, 0)=0$ and $y(x, 0)=10+x(1-x)$.
14. Approximate the solution to the wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, 0<x<1, t>0, u(0, t)=$ $u(1, t)=0, t>0, u(x, 0)=\sin 2 \pi x, 0 \leq x \leq 1$ and $\frac{\partial u}{\partial t}(x, 0)=0,0 \leq x \leq 1$ with $\Delta t=$ 0.25 for three time steps.
15.Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0$, given $u(x, 0)=u_{t}(x, 0)=u(0, t)=0$ and $u(1, t)=$ $100 \sin \pi t$. Compute u for four time steps with $h=0.25$.
16. Solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<1, t>0$, given $u(x, 0)=100\left(x-x^{2}\right), \frac{\partial u}{\partial t}(x, 0)=0$, $u(0, t)=u(1, t)=0, t>0$ by finite difference method for one time step method with $h=0.25$.
17. Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0$, given $u(0, t)=0, u(1, t)=0, u(x, 0)=\left(x-x^{2}\right)$, $\frac{\partial u}{\partial t}(x, 0)=0$, taking $h=0.2$ up to one-half of the period of vibration by taking appropriate time step.
18. Obtain a finite difference scheme to solve the Laplace equation. Solve $\Delta^{2} u=0$ at the pivotal points in the square shown fitted with square mesh. Use Leibmann's iteration procedure.
(5 iteration only).
Figure

19. Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=8 x^{2} y^{2}$ in the square mesh given $u=0$ on the four boundaries dividing the square into 16 sub squares of length 1 unit.
20. Solve the Poisson equation $u_{x x}+u_{y y}=-81 x y, 0<x<1,0<y<1$ given that $u(0, y)=0, u(x, 0)=0, u(1, y)=100, u(x, 1)=100$ and $h=\frac{1}{3}$.

