SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE- 10

DEPARTMENT OF SCIENCE AND HUMANITIES
COMMON TO BE (CSE)
SUBJECT: NUMERICAL METHODS (SEMESTER - IV)
UNIT III

NUMERICAL DIFFERENTIATION \& INTEGRATION

1. Given $\mathrm{f}(x)=-1, f(1)=1$ and $f(2)=4$, find the roots of the polynomial equation $f(x)=0$.

Answer :
Let us known $\quad f\left(x_{0}\right)=y_{0}$.
Here $y_{0}=-1, \Delta y_{0}=2, \Delta y_{1}=3, \Delta^{2} y_{0}=1, p=x$

$$
\begin{gathered}
f(x)=-1+2 x+\frac{x(x-1)}{2}(1)=\frac{1}{2}\left[x^{2}+3 x-2\right] \\
f(x)=0 \Rightarrow x=\frac{-3 \pm \sqrt{9+8}}{2}=\frac{-3 \pm \sqrt{17}}{2}
\end{gathered}
$$

2. State Newton's forward Difference formula to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{0}$. Answer :

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)=\frac{1}{h}\left\{\Delta y_{0}-\frac{\Delta^{2} y_{0}}{2}+\frac{\Delta^{3} y_{0}}{3}-\cdots\right\} \text { and } \\
& \left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{h^{2}}\left\{\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\cdots\right\}
\end{aligned}
$$

3. Find the parabola of the form $y=a x^{2}+b x+c$ passing through the points $(0,0),(1,1) \&(2,20)$.

Answer :
Let us known $\quad f\left(x_{0}\right)=y_{0}$.
Here $y_{0}=0, \Delta y_{0}=1, \Delta y_{1}=19, \Delta^{2} y_{0}=18, p=x$

$$
f(x)=0+x(1)+\frac{x(x-1)}{2}(18) \Rightarrow y=9 x^{2}-8 x
$$

4. Write the formula to compute $\frac{d y}{d x}$ at $x=x_{0}+p h$ for the given data $\left(x_{i}, y_{i}\right), i=0,1,2, \ldots n$.

Answer:
$\left(\frac{d y}{d x}\right)=\frac{1}{h}\left\{\Delta y_{0}-\frac{2 p-1}{2} \Delta^{2} y_{0}+\frac{3 p^{2}-6 p+2}{6} \Delta^{3} y_{0}+\frac{2 p^{3}-9 p^{2}+11 p-3}{12} \Delta^{4} y_{0}-\cdots\right\}$ where $p=\frac{x-x_{0}}{h .}$
5. Write the formula to compute $\frac{d^{2} y}{d x^{2}}$ at $x=x_{0}+p h$ for the given data $\left(x_{i}, y_{i}\right), i=$ $0,1,2, \ldots n$.
Answer:

$$
\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{h^{2}}\left\{\Delta^{2} y_{0}+(p-1) \Delta^{2} y_{0}+\frac{6 p^{2}-18 p+11}{12} \Delta^{4} y_{0}+\cdots\right\}
$$

where $p=\frac{x-x_{0}}{h .}$
6. State Newton's Backward interpolation formula to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{n}$.

Answer:

$$
\begin{aligned}
\left(\frac{d y}{d x}\right)_{x=x_{n}} & =\frac{1}{h}\left\{\nabla y_{n}+\frac{\nabla^{2} y_{n}}{2}+\frac{\nabla^{3} y_{n}}{3}+\cdots\right\} \text { and } \\
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{n}} & =\frac{1}{h^{2}}\left\{\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{0}-\cdots\right\}
\end{aligned}
$$

7. Write the formula to compute $\frac{d y}{d x}$ at $x=x_{n}+p h$ for the given data $\left(x_{i}, y_{i}\right), i=$ $0,1,2, \ldots n$.
Answer :

$$
\left(\frac{d y}{d x}\right)=\frac{1}{h}\left\{\nabla y_{n}-\frac{2 p+1}{2} \nabla^{2} y_{n}+\frac{3+6 p+2}{6} \nabla^{3} y_{n}+\frac{2 p^{3}+9 p^{2}+11 p+3}{12} \nabla^{4} y_{0}-\cdots\right\}
$$

where $p=\frac{x-x_{n}}{h .}$
8. Write the formula to compute $\frac{d^{2} y}{d x^{2}}$ at $x=x_{n}+p h$ for the given data $\left(x_{i}, y_{i}\right), i=$ $0,1,2, \ldots n$.
Answer :

$$
\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{h^{2}}\left\{\nabla^{2} y_{n}+(p+1) \nabla^{3} y_{n}+\frac{6 p^{2}+18 p+11}{12} \nabla^{4} n+\cdots\right\}
$$

where $p=\frac{x-x_{n}}{h .}$
9. Find $\frac{d y}{d x}$ at $x=2$ from the following data.

$x:$	2	3	4
$y:$	26	58	112

Answer: $\Delta y_{0}=32, \Delta y_{1}=54, \Delta^{2} y_{0}=22$

$$
\frac{d y}{d x}=32-\frac{1}{2}(22)=21 .
$$

10. Find $\frac{d y}{d x}$ at $x=6$ from the following data.
$x: 246$
$y: 31127$
Answer: $\nabla y_{n}=16, \nabla y_{n-1}=8, \nabla^{2} y_{n}=16-8=8$

$$
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=6}=\frac{1}{2}\left(16+\frac{8}{2}\right)=10 .
$$

11. A curve passing through the points $(1,0),(2,1)$ and $(4,5)$. Find the slope of the curve at $x=3$.

Answer :

$$
\begin{gathered}
f(1,2)=1, \quad f(2,4)=2, \quad f(1,2,4)=\frac{1}{3} \\
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
f(x)=0+(x-1)(1)+(x-1)(x-2) \frac{1}{3}=x-1+\frac{1}{3}\left(x^{2}-3 x+2\right) \\
f^{\prime(x)}=1+\frac{2 x}{3}-1=\frac{2 x}{3}
\end{gathered}
$$

Slope at $x=3$ is $\frac{2(3)}{3}=2$.
12. State Trapezoidal rule with the error order.

Answer :
For the given data $\left(x_{i}, y_{i}\right)$ where $x_{i}=x_{0}+i h, i=0,1,2 \ldots . n$

$$
\int_{x_{0}}^{x_{n}} y d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{3}+\cdots+y_{n-1}\right)\right] \quad \text { and }
$$

Error is of order h^{2}.
13. State Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule.

Answer :
If $\left(x_{i}, y_{i}\right) i=0,1,2, \ldots n$ where $x_{i}=x_{0}+i h$, then
Simpson's $\frac{1}{3}$ rule :

$$
\int_{x_{0}}^{x_{n}} y d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\cdots+\right)+2\left(y_{2}+y_{4}+y_{6}+\cdots\right)\right]
$$

Simpson's $\frac{3}{8}$ rule :

$$
\int_{x_{0}}^{x_{n}} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots+\right)+2\left(y_{3}+y_{6}+y_{9} \ldots\right)\right]
$$

14. State the basic principle for deriving Simpson's $\frac{1}{3}$ rule.

Answer:
The curve passing through the consecutive points is replaced by a parabola.
15. State the order of error in Simpson's $\frac{1}{3}$ rule.

Answer:
Error in Simpson's $\frac{1}{3}$ rule is of order h^{4}.
16. Using Simpson's rule, find $\int_{0}^{4} e^{x} d x$ given $e^{0}=1, e^{1}=2.72, e^{2}=7.39, e^{3}=$ $20.09 \& e^{4}=54.6$.

Answer:

$$
\int_{0}^{4} e^{x} d x=\frac{1}{3}[(1+54.6)+4(2.72+20.09)+2(7.39)]=53.873
$$

17. A curve passes through $(2,8),(3,27),(4,64) \&(5,125)$. find the area of the curve between x - axis and the line $x=2$ and $x=5$, by Trapezoidal rule.

Answer :

$$
\int_{2}^{5} y d x=\frac{1}{2}[(8+125)+2(27+64)]=157.5 \text { sq.units. }
$$

18. Find $\int_{-2}^{+2} x^{4} d x$ by Simpson's rule, taking $\mathrm{h}=1$.

Answer:

$$
\begin{aligned}
& x: \quad-2 \quad-1 \quad 0 \quad 1 \quad 2 \\
& y: 16 \quad 1 \quad 0 \quad 1 \quad 16 \\
& \therefore \int_{-2}^{+2} x^{4} d x=\frac{1}{3}[(16+16)+4(2)]=13.3 \text { sq.units. }
\end{aligned}
$$

19. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Trapezoidal rule with $h=0.5$.

Answer :

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{0.5}{2}[1.5+2(0.8)]=0.775
$$

20. Use Simpson's $\frac{1}{3}$ rule with $h=0.5$ to evaluate $\int_{0}^{1} \frac{d x}{1+x}$.

Answer :

$$
\int_{0}^{1} \frac{d x}{1+x}=\frac{1}{6}\left[1+\frac{4}{1.5}+\frac{1}{2}\right]=0.6944
$$

21. Evaluate $\int_{-1}^{+1}|x| d x$ with two subintrevals by Simpson's $\frac{1}{3}$ rule and by Trapezoidal rule.

Answer :
By Simpson's $\frac{1}{3}$ rule $I=\frac{1}{3}[1+0+1]=\frac{2}{3}$
By Trapezoidal rule $I=\frac{1}{2}[1+1]=1$
22. If $I=\int_{0}^{1} e^{-x^{2}} d x$, then $I_{1}=0.731 \& I_{2}=0.7430$ with $h=0.5 \& h=0.25$. Find I by using Romberg's method.

Answer :

$$
I=\int_{0}^{1} e^{-x^{2}} d x=0.7430+\left(\frac{0.7430-0.7314}{3}\right)=0.7469 .
$$

23. Find $I=\int_{-1}^{+1} \frac{d x}{1+x^{2}}$ by Two - Point Gaussian formula.

Answer :

$$
I=\int_{-1}^{+1} \frac{d x}{1+x^{2}}=\frac{1}{1+1 / 3}+\frac{1}{1+1 / 3}=\frac{3}{2}=1.5
$$

24. Find $I=\int_{0}^{+1} \frac{d x}{1+x}$ by Two - Point Gaussian formula.

Answer :

$$
I=\int_{-1}^{+1} \frac{d x}{t+3} u \operatorname{sing} x=\frac{1+t}{2} . \text { Then } I=\frac{1}{3+\frac{1}{\sqrt{3}}}+\frac{1}{3+\frac{1}{\sqrt{3}}}=0.6923
$$

25. Evaluate $I=\int_{-1}^{+1} \cos x d x$ by Two - Point Gaussian formula.

Answer :

$$
I=\int_{-1}^{+1} \cos x d x=2 \cos \left(\frac{1}{\sqrt{3}}\right)=1.67585
$$

26. State three point Gaussin quadrature formula.

Answer :
The three point Gaussian quadrature formula is

$$
\int_{-1}^{+1} f(x) d x=\frac{5}{9}\left[f\left(-\sqrt{\frac{3}{5}}\right)+f\left(\sqrt{\frac{3}{5}}\right)\right]+\frac{8}{9} f(0)
$$

This formula is exact for polynamials upto degree 5.
27. State two point Gaussin quadrature formula.

Answer :
The three point Gaussian quadrature formula is

$$
\int_{-1}^{+1} f(x) d x=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

This formula is exact for polynamials upto degree 3.
28. If the range is not $(-1,+1)$ then what is the idea to solve the Gaussian quadrature problems.

Answer :

$$
x=\frac{b-a}{2} z+\frac{b+a}{2}
$$

PART - B

1. Find $f^{\prime}(3) \& f^{\prime \prime}(3)$ for the following data:

$x:$	3.0	3.2	3.4	3.6	3.8	4.0
$f(x):$	-14	-10.032	-5.296	-0.256	6.672	14

2. Compute $f^{\prime}(0) \& f^{\prime \prime}(4)$ from the data.

$x:$	0	1	2	3	4
$f(x):$	1	2.718	7.381	20.086	54.598

3. Find the maximum and minimum value of y tabulated below.

$x:$	-2	-1	0	1	2	3	4
$f(x):$	2	-0.25	0	-0.25	2	15.75	56

4. Consider the following table of data :

$x:$	0.2	0.4	0.6	0.8	1.0
$f(x):$	0.9798652	0.9177710	0.8080348	0.6386093	0.3843735

Find $f^{\prime}(0.25)$ using Newton's Forward difference approximation, $f^{\prime}(0.6)$ using Stirling's approximation and $f^{\prime}(0.95)$ using Newton's Backward difference approximation.
5. Obtain the value of $f^{\prime}(0.04)$ using Bessel's formula given in the table below :
6. Using Trapezoidal rule, evaluate $\int_{-1}^{+1} \frac{d x}{1+x^{2}}$ taking 8 intervals.
7. Evaluate $\int_{0}^{+1} \frac{d x}{1+x^{2}}$ with $h=\frac{1}{6}$ by Trapezoidal rule.
8. Evaluate $\int_{0}^{5} \frac{d x}{4 x+5}$ by Simpson's one-third and hence find the value of $\log _{\mathrm{e}} 5(n=5)$.
9. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by (1). Trapezoidal rule (2). Simpson's rule. Also check up the results by actual integration.
10. By dividing the range into ten equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule and Simpson's rule. Verify the answer by actual integration.
11. Apply Gauss two - point formula to evaluate $\int_{-1}^{+1} \frac{1}{1+x^{2}} d x$.
12. Use Three-Point Gaussian quadrature formula, evaluate
(1). $\int_{-1}^{+1} \frac{1}{1+x^{2}} d x$ (2). $\int_{0}^{+1} \frac{1}{1+t^{2}} d t$.
13. Evaluate $\int_{0}^{2} \frac{x^{2}+2 x+1}{1+(x+1)^{2}} d x$ by Gaussian three point formula.
14. Evaluate $\int_{0.2}^{1.5} e^{-x^{2}} d x$ using the three point Gaussian quadrature formula.
15. Evaluate $\int_{-1}^{+1} \frac{x^{2}}{1+x^{4}} d x$ by using the three point Gaussian quadrature formula.
16. Evaluate $\int_{0}^{2} \int_{0}^{2} f(x, y) d x d y$ by Trapezoidal rule for the following data :

$y \backslash x$	0	0.2	1.0	1.5	2
0	2	3	4	5	5
1	3	4	6	9	11
2	4	6	8	11	14

17. Use Simpson's $\frac{1}{3}$ rule evaluate $\int_{0}^{1} \int_{0}^{1} \frac{1}{1+x+y} d x d y$ taking $h=k=0.5$.
18. Evaluate $\int_{0}^{1} \int_{0}^{2} \frac{2 x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)} d x d y$ by Trapezoidal rule with $h=k=0.25$.
19. Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{1}{x^{2}+y^{2}} d x d y$ numerically with $h=0.2$ along x-direction and $k=0.25$ along y-direction.
20. The function $f(x, y)$ is defined by the following table. Compute $\int_{1}^{3} \int_{0}^{2} f(x, y) d x d y$, using Simpson's rule in both direction.
