Sequences: Definition and examples - Series: Types and Convergence - Series of positive terms - Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test Alternating series - Leibnitz's test - Series of positive and negative terms - Absolute and conditional convergence.

Sequence:

An ordered set of real numbers $u_{1}, u_{2}, u_{3}, \ldots u_{n}, \ldots$ is called a sequence and it is denoted by $\left\{u_{n}\right\}$. If the number of terms is unlimited then the sequence is an infinite sequence. The general term of a sequence is u_{n}.

Example:

1) $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots \ldots . \frac{1}{n^{2}}, \ldots \ldots$. is a sequence.
2) $3,5,7,9, \ldots \ldots(2 n+1), \ldots \ldots$ is a sequence.

Convergent sequence:

A sequence $\left\{u_{n}\right\}$ is said to be convergent if $\lim _{n \rightarrow \infty} u_{n}=$ finite.

Divergent sequence:

A sequence $\left\{u_{n}\right\}$ is said to be divergent if $\lim _{n \rightarrow \infty} u_{n}=+\infty$ or $-\infty$.

Bounded sequence:

A sequence $\left\{u_{n}\right\}$ is bounded if there exists a real number such that $\left|u_{n}\right| \leq M$, for every n in N.

Unbounded sequence:

A sequence $\left\{u_{n}\right\}$ is unbounded if there exists no real number M such that $\left|u_{n}\right| \leq M$, for every n in N .

Oscillatory sequence:

If a sequence $\left\{u_{n}\right\}$ neither converges to a finite no. nor diverges to $-\infty$ or $+\infty$, it is called an oscillatory sequence.
Note:

1) A bounded sequence which does not converge is said to be oscillate finitely.
2) An unbounded sequence which does not diverge is said to be oscillate infinitely.

Monotonic sequences

Let $\left\{a_{n}\right\}$ be the given sequence.

S.no.	Types	Condition
1	Monotonically increasing	$a_{1} \leq a_{2} \leq a_{3} \leq \ldots . . \leq a_{n} \leq a_{n+1} \leq .$
2	Monotonically decreasing	$a_{1} \geq a_{2} \geq a_{3} \geq \ldots . . \geq a_{n} \geq a_{n+1} \geq .$
3	Monotonic	Either monotonically increasing or decreasing
4	Strictly Monotonically increasing	$a_{1}<a_{2}<a_{3}<\ldots . .<a_{n}<a_{n+1}<\ldots .$
5	Strictly Monotonically decreasing	$a_{1}>a_{2}>a_{3}>\ldots . .>a_{n}>a_{n+1}>\ldots .$
6	Strictly Monotonic	Either Strictly Monotonically increasing or decreasing

Problems:

1) Determine the general term and prove that the sequences are convergent.
i)
$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$
iii) $1,-1,1,-1$. \qquad
iv) $\frac{2^{1}}{1!}, \frac{2^{2}}{2!}, \frac{2^{3}}{3!}, \frac{2^{4}}{4!}$

Solution:
i) Given $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \ldots \ldots \ldots$. . Here $u_{n}=\frac{1}{2^{n}}$ $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=\frac{1}{2^{\infty}}=\frac{1}{\infty}=0$, finite.
The sequence in (i) converges.
ii) Given $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \ldots \ldots \ldots$. . Here $u_{n}=\frac{n}{n+1}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n\left(1+\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)}=\frac{1}{(1+0)}=1$, finite.
The given sequence in (ii) converges.
iii) Given $1,-1,1,-1$ \qquad Here $u_{n}=(-1)^{n-1}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}(-1)^{n-1}=0$, finite.
The sequence in (iii) converges.
iv) Given $\frac{2^{1}}{1!}, \frac{2^{2}}{2!}, \frac{2^{3}}{3!}, \frac{2^{4}}{4!} \ldots \ldots . . .$. Here $u_{n}=\frac{2^{n}}{n!}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$, finite.
The sequence in (iv) converges..
2) Give an example of monotonically increasing and decreasing sequences which are convergent and divergent.
Solution:
i)

Let $\left\{\mathrm{u}_{\mathrm{n}}\right\}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \ldots \ldots \ldots ..\right\}$
Since $\frac{1}{2}<\frac{2}{3}<\frac{3}{4}<\frac{4}{5}$. \qquad , the sequence is monotonically increasing.

Here $u_{n}=\frac{n}{n+1}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n\left(1+\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)}=\frac{1}{(1+0)}=1$, finite.

The given sequence converges.

ii) $\operatorname{Let}\left\{u_{n}\right\}=\{1,2,3,4 \ldots \ldots . .$.

Since $1<2<3<4<\ldots$. . the sequence is monotonically increasing.
Here $u_{n}=n$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} n=\infty$, infinite.
The given sequence diverges.
iii) Let $\left\{\mathrm{u}_{\mathrm{n}}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right.$
$\left.\frac{1}{5}\right\}$
Since $1>\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\frac{1}{5} \ldots \ldots . . .$. the sequence is monotonically decreasing.
Here $u_{n}=\frac{1}{n} \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{\infty}=0$, finite.
The sequence converges.
iv) Let $\left\{u_{n}\right\}=\{-1,-2,-3,-4 \ldots$.

Since $-1>-2>-3>-4>$ \qquad the sequence is monotonically decreasing.
Here $u_{n}=-n$.
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}-n=-\infty$, infinite.
The given sequence diverges.
3) Discuss the convergence of the sequence $\left\{u_{n}\right\}$ where (i) $u_{n}=\frac{n+1}{n}$ (ii) $u_{n}=\frac{n}{n^{2}+1}$ $u_{n}=1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \ldots \ldots+\frac{1}{3^{n}}$.
Solution:
(i) $u_{n}=\frac{n+1}{n}$

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n+1}{n}=\lim _{n \rightarrow \infty} 1+\frac{1}{n}=1+\frac{1}{\infty}=1+0=1 \text {, finite }
$$

$\Rightarrow\left\{u_{n}\right\}$ is a convergent sequence.
(ii) $u_{n}=\frac{n}{n^{2}+1}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{n}{n^{2}\left(1+\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{1}{n\left(1+\frac{1}{n^{2}}\right)}=\frac{1}{\infty}=0$, finite
$\Rightarrow\left\{u_{n}\right\}$ is a convergent sequence.
(iii)

$\Rightarrow\left\{u_{n}\right\}$ is a convergent sequence.

Remember:

1) $\lim _{n \rightarrow \infty} x^{n}=0$ if $x<1$
2) $\lim _{n \rightarrow \infty} x^{n}=\infty$ if $x>1$
3) $\lim _{n \rightarrow \infty} n x^{n}=0$ if $x<1$
4) $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$ for all x
5) $\quad \lim _{n \rightarrow \infty} \frac{\log n}{n}=0$
6) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e ; \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+1}=e$ and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n}=e$
7) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
8) $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
9) $\quad \lim _{n \rightarrow \infty}(n!)^{\frac{1}{n}}=\infty$
10) $\lim _{n \rightarrow \infty}\left(\frac{n!}{n}\right)^{\frac{1}{n}}=\frac{1}{e}$
11) $\lim _{n \rightarrow 0}\left(\frac{a^{n}-1}{n}\right)=\log a$
12) $\lim _{n \rightarrow \infty}\left(\frac{a^{\frac{1}{n}}-1}{\frac{1}{n}}\right)=\log a$
13) $\lim _{n \rightarrow \infty} n^{h}=\infty$
14) $\lim _{n \rightarrow \infty} \frac{1}{n^{h}}=0$
15) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
16) $\log \infty=\infty$ and $\log 1=0$
17) $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots \ldots \ldots .+x^{n}$

Series:

A series is the sum of terms of a sequence. Let $\left\{u_{n}\right\}$ be a sequence of real nos. Then the expression $u_{1}+u_{2}+\ldots+u_{n}+\ldots .$. is called the series associated with the sequence.

If the no. of terms of a series is limited, the series is called finite. When the no. of terms of a series are unlimited, it is called an infinite series.

The infinite series $u_{1}+u_{2}+\ldots+u_{n}+\ldots \ldots$. is usually denoted by $\sum_{n=1}^{\infty} u_{n}$ or $\sum u_{n}$. Series of positive terms:

If all the terms of the series $\sum u_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots .$. are positive i.e., if $u_{n}>0$, $\forall n$, then the series $\sum u_{n}$ is called a series of positive terms.

Properties of infinite series:

1. the nature of the infinite series does not change (unaffected) (i) by multiplication of all terms by a constant k . (ii) by addition or deletion of a finite no. of terms.
2. If a series in which all terms are +ve is convergent the series remains convergent even when some or all of its terms are - ve.
3. If $\sum u_{n}$ and $\sum v_{n}$ are converges to S_{1} and S_{2} resp., then $\sum\left(u_{n}+v_{n}\right)$ and $\sum\left(u_{n}+v_{n}\right)$ also converges to $S_{1}+S_{2}$ and $S_{1}-S_{2}$ resp.

Partial sums:

Let $\sum u_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots .$. be an infinite series, where the terms may be +ve or - ve, then $S_{n}=u_{1}+u_{2}+\ldots+u_{n}$ is called the $\mathrm{n}^{\text {th }}$ partial sum of $\sum u_{n}$. Sequence $\left\{S_{n}\right\}$ is called sequence of partial sums.

Note:

To every infinite series $\sum u_{n}$, there corresponds a sequence $\left\{S_{n}\right\}$ of its partial sums.

Convergence, divergence and oscillation of series:

Let $\sum u_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots$. . be an infinite series and $S_{n}=u_{1}+u_{2}+\ldots+u_{n}$ be its $n^{t h}$ partial sum.

$$
\begin{array}{ll}
\sum u_{n} \text { is convergent } & \lim _{n \rightarrow \infty} S_{n}=\text { finite } \\
\sum u_{n} \text { is divergent } & \lim _{n \rightarrow \infty} S_{n}= \pm \infty
\end{array}
$$

$\sum u_{n}$ is oscillatory (finite or infinite) $\lim _{n \rightarrow \infty} S_{n} \neq$ a unique finite or infinite

Problems:

1. Test the convergence of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\infty$

Solution:
Let $\sum u_{n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \frac{1}{2^{n-1}}+\ldots+\infty$
$S_{n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \frac{1}{2^{n-1}}=\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}=2\left(1-\left(\frac{1}{2}\right)^{n}\right)$
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} 2\left(1-\left(\frac{1}{2}\right)^{n}\right)=2\left(1-\left(\frac{1}{2}\right)^{\infty}\right)=2(1-0)=2$
$\Rightarrow \sum u_{n}$ is convergent.
2. Examine the nature of series $1+2+3+\ldots+n+\ldots+\infty$.

Solution:
Let $\sum u_{n}=1+2+3+\ldots+n+\ldots+\infty$
$S_{n}=1+2+3+\ldots+n=\frac{n(n+1)}{2}$
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{n(n+1)}{2}=\infty \Rightarrow \sum u_{n}$ is divergent.
3. Discuss the nature of the series $2-2+2-2+\ldots+\infty$

Solution:

$$
\sum u_{n}=2-2+2-2+\ldots .+\infty
$$

$S_{n}=2-2+2-2+\ldots . .+2=\left\{\begin{array}{l}0 \text { if } n \text { is even } \\ 2 \text { if } n \text { is odd }\end{array}\right.$
$\lim _{n \rightarrow \infty} S_{n}=0$ or $\lim _{n \rightarrow \infty} S_{n}=2$
$\Rightarrow \sum u_{n}$ Oscillates finitely.
4. Discuss the convergence or otherwise of the series $1-2+4-8+16-\ldots .+\infty$.

Solution:
$\sum u_{n}=1-2+4-8+16+\ldots+\infty=1-2+2^{2}-2^{3}+2^{4}+\ldots+(-2)^{n-1}+\ldots .+\infty$.
$S_{n}=1-2+2^{2}-2^{3}+2^{4}+\ldots+(-2)^{n-1}=\frac{1\left(1-(-2)^{n}\right)}{1-(-2)}=\frac{1-(-2)^{n}}{3}$
$\Rightarrow S_{n}=\left\{\begin{array}{l}\frac{1+2^{n}}{3} \text { if } n \text { is odd } \\ \frac{1-2^{n}}{3} \text { if } n \text { is even }\end{array}\right.$
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n} \frac{1+2^{n}}{3}=\frac{1+\infty}{3}=+\infty$ if n is odd and
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n} \frac{1-2^{n}}{3}=\frac{1-\infty}{3}=-\infty$ if n is even
$\therefore \sum u_{n}$ oscillates infinitely.
5. Discuss the convergence or otherwise of the series $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}+\ldots \infty$
Solution:
Consider $u_{n}=\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}=\frac{A(n+1)+B n}{n(n+1)}$
$\Rightarrow A(n+1)+B n=1$
Put $n=-1$

$$
\text { Put } n=0
$$

$A(-1+1)+B(-1)=1 \Rightarrow B=-1$

$$
A(0+1)+B(0)=1 \Rightarrow A=1
$$

$\therefore u_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
$\Rightarrow u_{1}=1-\frac{1}{2}, u_{2}=\frac{1}{2}-\frac{1}{3}, u_{3}=\frac{1}{3}-\frac{1}{4} \ldots . . u_{n}=\frac{1}{n}-\frac{1}{n+1}$.
Now, $S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\left(-\frac{1}{4} \ldots . .+\frac{1}{n}-\frac{1}{n+1} \Rightarrow S_{n}=1-\frac{1}{n+1}\right.$
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1-\frac{1}{\infty}=1-0=1$
$\sum u_{n}$ converges to 1 .
6. Show that the series $1^{2}+2^{2}+3^{2}+\ldots+n^{2}+\ldots \infty$ diverges to $+\infty$.

Solution:
Let $\sum u_{n}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}+\ldots \infty$
$S_{n}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6}=+\infty$
\therefore The series $\sum u_{n}$ diverges to $+\infty$.
Necessary condition for convergence of a series:
If a series $\sum u_{n}$ is convergent then $\lim _{n \rightarrow \infty} u_{n}=0$ (i.e.) $\sum u_{n}$ is convergent $\Rightarrow \lim _{n \rightarrow \infty} u_{n}=0$.
Note:
(1) $\lim _{n \rightarrow \infty} u_{n}=0 \Rightarrow \sum u_{n}$ may or may not be convergent.
(2) $\lim _{n \rightarrow \infty} u_{n} \neq 0 \Rightarrow \sum u_{n}$ is divergent.

Series of positive terms:

If all the terms of the series $\sum u_{n}=u_{1}+u_{2}+\ldots+u_{n}+\ldots \infty$ are positive (i.e.) if $u_{n}>0$, $\forall n$, then the series $\sum u_{n}$ is called the series of positive terms.

Note:

A positive term of the series either converges or diverges to $+\infty$. It cannot oscillate.

Problems:

1. Prove that the geometric series $1+x+x^{2}+\ldots+\infty$
(i) converges if $-1<x<1$ i.e. $|x|<1$.
(ii) diverges if $x \geq 1$.
(iii) oscillates finitely if $x=-1$.
(iv) oscillates infinitely if $x<-1$.

Solution:
(i) Given $-1<x<1$ i.e. $|x|<1$.

Consider $S_{n}=1+x+x^{2}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}=\frac{1}{1-x}-\frac{x^{n+1}}{1-x}$.
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{1-x}-\frac{x^{n+1}}{1-x}\right)=\frac{1}{1-x}-0=\frac{1}{1-x} . \quad\left(\because|x|<1, x^{n} \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right)$.
$\Rightarrow \sum u_{n}$ is convergent.
(ii) Given $x \geq 1$.

For $x>1$, Consider $S_{n}=1+x+x^{2}+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1}=\frac{x^{n+1}}{x-1}-\frac{1}{x-1}$.
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{x^{n+1}}{x-1}-\frac{1}{x-1}\right)=\infty . \quad\left(\because x>1, x^{n} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)$.
For $x=1, S_{n}=1+1+1+\ldots+1(n$ times $)=n$.
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} n=\infty$.
$\Rightarrow \sum u_{n}$ is divergent.
(iii) Given $x=-1$.
$S_{n}=1+(-1)+(-1)^{2}+\ldots+(-1)^{n}=1-1+1+\ldots+(-1)^{n}=\left\{\begin{array}{l}1 \text { if } n \text { is odd } \\ 0 \text { if } n \text { is even }\end{array}\right.$
$\therefore \lim _{n \rightarrow \infty} S_{n}=1$ or $\lim _{n \rightarrow \infty} S_{n}=0$
$\Rightarrow \sum u_{n}$ oscillates finitely.
(iv) Given $x<-1 \Rightarrow-x>1$. Let $r=-x$ then $r>1 .\left(\because r>1, r^{n} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)$.
$S_{n}=1+x+x^{2}+\ldots+x^{n}=\frac{1\left(1-x^{n}\right)}{1-x}=\frac{1\left(1-(-r)^{n}\right)}{1-(-r)}=\frac{1-(-r)^{n}}{1+r}$
$\Rightarrow S_{n}=\left\{\begin{array}{l}\frac{1+r^{n}}{1+r} \text { if } n \text { is odd } \\ \frac{1-r^{n}}{1+r} \text { if } n \text { is even }\end{array}\right.$
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n} \frac{1+r^{n}}{1+r}=\frac{1+\infty}{1+r}=+\infty$ if n is odd and
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n} \frac{1-r^{n}}{1+r}=\frac{1-\infty}{1+r}=-\infty$ if n is even
$\therefore \sum u_{n}$ oscillates infinitely.
2. Prove that Hyper harmonic series or $\mathrm{p}-$ series $\sum \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}+\ldots \infty$ converges if $p>1$, diverges if $p \leq 1$.
Solution:
Consider $S_{n}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}$
Case (i) $p>1$.
$\frac{1}{1^{p}}=1$
$\frac{1}{2^{p}}+\frac{1}{3^{p}}<\frac{1}{2^{p}}+\frac{1}{2^{p}}=\frac{2}{2^{p}}=\frac{1}{2^{p-1}}$
$\frac{1}{4^{p}}+\frac{1}{5^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}<\frac{1}{4^{p}}+\frac{1}{4^{p}}+\frac{1}{4^{p}}+\frac{1}{4^{p}}=\frac{4}{4^{p}}=\frac{1}{4^{p-1}}=\frac{1}{\left(2^{p-1}\right)^{2}}$
$\frac{1}{8^{p}}+\frac{1}{9^{p}}+\frac{1}{10^{p}}+\ldots+\frac{1}{15^{p}}<\frac{1}{8^{p}}+\frac{1}{8^{p}}+\frac{1}{8^{p}}+\ldots+\frac{1}{8^{p}}=\frac{8}{8^{p}}=\frac{1}{8^{p-1}}=\frac{1}{\left(2^{p-1}\right)^{3}}$ and so on.
Now $\sum \frac{1}{n^{p}}<\frac{1}{2^{p-1}}+\frac{1}{\left(2^{p-1}\right)^{2}}+\frac{1}{\left(2^{p-1}\right)^{3}} \ldots \ldots$, , which is G.P. with common ratio $\frac{1}{2^{p-1}}$.
Common ratio $=\frac{1}{2^{p-1}}<1, \because p>1$.
$\frac{1}{2^{p-1}}+\frac{1}{\left(2^{p-1}\right)^{2}}+\frac{1}{\left(2^{p-1}\right)^{3}} \ldots \ldots \infty$ converges (by geometric series condition (i)).
$\Rightarrow \sum \frac{1}{n^{p}}$ converges.
Case (ii) $p \leq 1$
(a) Consider $p=1$.
$\sum \frac{1}{n^{p}}=\sum \frac{1}{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}+\ldots \infty$
$1+\frac{1}{2}>\frac{1}{2}$
$\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$
$\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{4}{8}=\frac{1}{2}$
$\frac{1}{8^{p}}+\frac{1}{9}+\frac{1}{10}+\ldots+\frac{1}{16}<\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\ldots+\frac{1}{16}=\frac{8}{16}=\frac{1}{2}$ and so on.
$\sum \frac{1}{n^{p}}=\sum \frac{1}{n}>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots . \infty=\frac{1}{2}(1+1+\ldots \infty)=\frac{1}{2} \sum v_{n}$.
$\sum v_{n}$ is geometric series with common ratio 1 which is a divergent series (by condition (ii) of geometric series).
$\therefore \sum \frac{1}{n^{p}}=\sum \frac{1}{n}$ is also a divergent series.
(b) Consider $p<1$.

When $p<1, n^{p}<n \Rightarrow \frac{1}{n^{p}}>\frac{1}{n}$ for all n .
$\sum \frac{1}{n}$ is divergent by case (ii) (a). $\Rightarrow \sum \frac{1}{n^{p}}$ is also divergent.
3. Test the convergence or divergence of the series $\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\ldots \infty$.

Solution:
Given $\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\ldots \infty=\left(\frac{1}{2}+\frac{1}{2^{3}}+\ldots \infty\right)+\left(\frac{1}{3^{2}}+\frac{1}{3^{4}}+\ldots \infty\right)=\sum u_{n}+\sum v_{n}$
$\sum u_{n}$ is a geometric series with common ration $=\frac{1}{2^{2}}=\frac{1}{4}<1$
$\Rightarrow \sum u_{n}$ is a convergent series.
$\sum v_{n}$ is a geometric series with common ration $=\frac{1}{3^{2}}=\frac{1}{9}<1$
$\Rightarrow \sum v_{n}$ is a convergent series.
$\Rightarrow \sum u_{n}+\sum v_{n}$ is also convergent.
4. Examine the convergence of the series $1+\frac{1}{4^{2 / 3}}+\frac{1}{9^{2 / 3}}+\frac{1}{16^{2 / 3}}+\ldots \infty$.

Solution:
Let $\sum u_{n}=1+\frac{1}{4^{2 / 3}}+\frac{1}{9^{2 / 3}}+\frac{1}{16^{2 / 3}}+\ldots \infty$

$$
\begin{aligned}
& =1+\frac{1}{\left(2^{2}\right)^{2 / 3}}+\frac{1}{\left(3^{2}\right)^{2 / 3}}+\frac{1}{\left(4^{2}\right)^{2 / 3}}+\ldots \infty \\
& =1+\frac{1}{2^{4 / 3}}+\frac{1}{3^{4 / 3}}+\frac{1}{4^{4 / 3}}+\ldots \infty=\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}} .
\end{aligned}
$$

Here $p=\frac{4}{3}>1 . \therefore$ by p-series $\sum u_{n}=1+\frac{1}{4^{2 / 3}}+\frac{1}{9^{2 / 3}}+\frac{1}{16^{2 / 3}}+\ldots \infty$ is convergent.

Comparison test: (form - I i.e. limit form)

Let $\sum u_{n}$ and $\sum v_{n}$ be two positive term series.
(i) If $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\ell$ (finite and non zero), then $\sum u_{n}$ and $\sum v_{n}$ both converge or diverge together.
(ii) If $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=0$ and $\sum v_{n}$ converges, then $\sum u_{n}$ converges.
(iii) If $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\infty$ and $\sum v_{n}$ diverges, then $\sum u_{n}$ diverges.

Note:
Select the series $\sum v_{n}$ as follows: $v_{n}=\frac{n^{a}}{n^{b}}$ where $\mathrm{a}=$ highest power term of n in u_{n} numerator and $\mathrm{b}=$ highest power term of n in u_{n} denominator.

For example, let $u_{n}=\frac{2 n+3}{n(n-5)(n+3)}$. Here $\mathrm{a}=1$ (highest power term of n in u_{n} numerator) and $\mathrm{b}=3$ (highest power term of n in u_{n} denominator). Then $v_{n}=\frac{n^{1}}{n^{3}}=\frac{1}{n^{2}}$. $\therefore \sum v_{n}=\sum \frac{1}{n^{2}}$.

Problems:

1. Test convergence of the series $\frac{1}{1 \cdot 2 \cdot 3}+\frac{3}{2 \cdot 3 \cdot 4}+\frac{5}{3 \cdot 4 \cdot 5}+\ldots+\infty$

Solution:
Let $\sum u_{n}=\frac{1}{1 \cdot 2 \cdot 3}+\frac{3}{2 \cdot 3 \cdot 4}+\frac{5}{3 \cdot 4 \cdot 5}+\ldots+\infty$. Then $u_{n}=\frac{2 n-1}{n(n+1)(n+2)}, n=1,2,3, \ldots \infty$.
$v_{n}=\frac{n^{a}}{n^{b}}=\frac{n^{1}}{n^{3}}=\frac{1}{n^{2}} .($ Here $\mathrm{a}=1$ and $\mathrm{b}=3)$.
$\frac{u_{n}}{v_{n}}=\frac{\frac{2 n-1}{n(n+1)(n+2)}}{\frac{1}{n^{2}}}=\frac{2 n-1}{n(n+1)(n+2)} \times \frac{n^{2}}{1}$
$\Rightarrow \frac{u_{n}}{v_{n}}=\frac{\not h\left(2-\frac{1}{n}\right)}{\not h \cdot \not h\left(1+\frac{1}{n}\right) \cdot \not h\left(1+\frac{1}{n}\right)} \times \not h^{2}=\frac{\left(2-\frac{1}{n}\right)}{\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{\left(2-\frac{1}{n}\right)}{\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)}=\frac{\left(2-\frac{1}{\infty}\right)}{\left(1+\frac{1}{\infty}\right)\left(1+\frac{1}{\infty}\right)}=\frac{2-0}{(1+0)(1+0)}=2$, a finite value.
$\Rightarrow \sum u_{n}$ and $\sum v_{n}$ both converge or diverge together. By $\mathrm{p}-$ series $\sum v_{n}=\frac{1}{n^{2}}$ converges (since $p=2>1$).
$\Rightarrow \sum u_{n}$ also converges.
2. Test the convergence of the following series
(i) $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \infty$.
(ii) $\sqrt{\frac{1}{4}}+\sqrt{\frac{2}{6}}+\sqrt{\frac{3}{8}}+\ldots+\sqrt{\frac{n}{2(n+1)}}+\ldots+\infty$.

Solution:
(i) Let $\sum u_{n}=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \infty$. Then $u_{n}=\frac{1}{\sqrt{n}+\sqrt{n+1}}$. $v_{n}=\frac{n^{a}}{n^{b}}=\frac{1}{n^{1 / 2}}=\frac{1}{\sqrt{n}}($ here $\mathrm{a}=0$ and $\mathrm{b}=1 / 2)$.
$\frac{u_{n}}{v_{n}}=\frac{\frac{1}{\sqrt{n}+\sqrt{n+1}}}{\frac{1}{\sqrt{n}}}=\frac{1}{\sqrt{n}+\sqrt{n+1}} \times \sqrt{n}=\frac{1}{\sqrt{n}\left(1+\sqrt{\frac{n+1}{n}}\right)} \times \sqrt{n}=\frac{1}{\left(1+\sqrt{1+\frac{1}{n}}\right)}$.
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\sqrt{1+\frac{1}{n}}\right)}=\frac{1}{\left(1+\sqrt{1+\frac{1}{\infty}}\right)}=\frac{1}{(1+\sqrt{1+0})}=\frac{1}{2}$, a finite value.
$\Rightarrow \sum u_{n}$ and $\sum v_{n}$ both converge or diverge together By $\mathrm{p}-$ series $\sum v_{n}=\frac{1}{\sqrt{n}}$ diverges (since $p=\frac{1}{2}<1$).
$\Rightarrow \sum u_{n}$ also diverges.
(ii) Let $\sum u_{n}=\sqrt{\frac{1}{4}}+\sqrt{\frac{2}{6}}+\sqrt{\frac{3}{8}}+\ldots+\sqrt{\frac{n}{2(n+1)}}+\ldots+\infty$. Then $u_{n}=\sqrt{\frac{n}{2(n+1)}}$.
$v_{n}=\frac{n^{a}}{n^{b}}=\frac{n^{1 / 2}}{n^{1 / 2}}=1$ (here $\mathrm{a}=1 / 2$ and $\mathrm{b}=1 / 2$).
$\frac{u_{n}}{v_{n}}=\frac{\sqrt{\frac{n}{2(n+1)}}}{1}=\sqrt{\frac{n}{2(n+1)}}=\sqrt{\frac{\not n}{2 n\left(1+\frac{1}{n}\right)}}=\sqrt{\frac{1}{2\left(1+\frac{1}{n}\right)}}$.
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \sqrt{\frac{1}{2\left(1+\frac{1}{n}\right)}}=\sqrt{\frac{1}{2\left(1+\frac{1}{\infty}\right)}}=\sqrt{\frac{1}{2}}$, a finite value.
$\Rightarrow \sum u_{n}$ and $\sum v_{n}$ both converge or diverge together. By geometric series $\sum v_{n}=\sum 1$ diverges (condition (ii) of geometric series).
$\Rightarrow \sum u_{n}$ is also divergent.
3. Test the convergence of the series $1+\frac{1}{2^{2}}+\frac{2^{2}}{3^{3}}+\frac{3^{3}}{4^{4}}+\frac{4^{4}}{5^{5}}+\ldots . \infty$.

Solution:

Leaving aside the first term (since addition or deletion of a finite no. of terms does not alter the nature of the series), we have $\sum u_{n}=\frac{1}{2^{2}}+\frac{2^{2}}{3^{3}}+\frac{3^{3}}{4^{4}}+\frac{4^{4}}{5^{5}}+\ldots . \infty$. Then $u_{n}=\frac{n^{n}}{(n+1)^{n+1}}$. Now, $v_{n}=\frac{n^{a}}{n^{b}}=\frac{n^{n}}{n^{n+1}}=\frac{1}{n}$.
$\frac{u_{n}}{v_{n}}=\frac{n^{n}}{(n+1)^{n+1}} \times n=\frac{n^{n}+1}{x^{n+1}\left(1+\frac{1}{n}\right)^{n+1}}=\frac{1}{\left(1+\frac{1}{n}\right)^{n+1}}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n+1}}=\frac{1}{e}$, a finite value. $\quad\left(\because \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+1}=e\right.$
$\Rightarrow \sum u_{n}$ and $\sum v_{n}$ both converge or diverge together. By p - series $\sum v_{n}=\sum \frac{1}{n}$ is divergent (since $p=1$).
$\Rightarrow \sum u_{n}$ is also divergent.
4. Using Comparison test, prove that the series $\frac{1}{1 \cdot 3}+\frac{2}{3 \cdot 5}+\frac{3}{5 \cdot 7}+\ldots+\infty$ is divergent.
Solution:
Given $\sum u_{n}=\frac{1}{1 \cdot 3}+\frac{2}{3 \cdot 5}+\frac{3}{5 \cdot 7}+\ldots . \ldots \ldots+\infty \Rightarrow u_{n}=\frac{n}{(2 n-1)(2 n+1)}$

$$
\begin{aligned}
& v_{n}=\frac{n^{a}}{n^{b}}=\frac{n^{1}}{n^{2}}=\frac{1}{n} \\
& \frac{u_{n}}{v_{n}}=\frac{n}{(2 n-1)(2 n+1)} \times n=\frac{n^{\not 2}}{\not n^{\not 2}\left(2-\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}=\frac{1}{\left(2-\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(2-\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}=\frac{1}{4}$, a finite value.
$\Rightarrow \sum u_{n}$ and $\sum v_{n}$ both converge or diverge together. By $\mathrm{p}-$ series $\sum v_{n}=\sum \frac{1}{n}$ is divergent (since $p=1$).
$\Rightarrow \sum u_{n}$ is also divergent.
5. Test the convergence of the series $\frac{1}{4 \cdot 7 \cdot 10}+\frac{4}{7 \cdot 10 \cdot 13}+\frac{9}{10 \cdot 13 \cdot 16}+\ldots \ldots+\infty$ Solution:

$$
\begin{aligned}
& \sum u_{n}=\frac{1}{4 \cdot 7 \cdot 10}+\frac{4}{7 \cdot 10 \cdot 13}+\frac{9}{10 \cdot 13 \cdot 16}+\ldots . .+\infty \Rightarrow u_{n}=\frac{n^{2}}{(3 n+1)(3 n+4)(3 n+7)} \\
& v_{n}=\frac{n^{a}}{n^{b}}=\frac{n^{2}}{n^{3}}=\frac{1}{n} \\
& \frac{u_{n}}{v_{n}}=\frac{n^{2}}{(3 n+1)(3 n+4)(3 n+7)} \times n=\frac{n^{b}}{n^{\not 2}\left(3+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)\left(3+\frac{7}{n}\right)}=\frac{1}{\left(3+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)\left(3+\frac{7}{n}\right)}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(3+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)\left(3+\frac{7}{n}\right)}=\frac{1}{27}, \text { a finite value. }
$$

$\Rightarrow \sum u_{n}$ and $\sum v_{n}$ both converge or diverge together. By $\mathrm{p}-$ series $\sum v_{n}=\sum \frac{1}{n}$ is divergent (since $p=1$).
$\Rightarrow \sum u_{n}$ is also divergent.

Comparison test (Form II)

\diamond If $\sum u_{n}$ and $\sum v_{n}$ are two series of positive terms such that $u_{n} \leq v_{n}$ for all $\mathrm{n}=1,2,3, \ldots \infty$ and if $\sum v_{n}$ is convergent then $\sum u_{n}$ is also convergent.
\diamond If $\sum u_{n}$ and $\sum v_{n}$ are two series of positive terms such that $u_{n} \geq v_{n}$ for all $\mathrm{n}=1,2,3, \ldots \infty$ and if $\sum v_{n}$ is divergent then $\sum u_{n}$ is also divergent.

Problems:

1. Test the convergence of the series $\frac{1}{5}+\frac{\sqrt{2}}{7}+\frac{\sqrt{3}}{9}+\frac{\sqrt{4}}{11}+\cdots \infty$

Solution:
Here $u_{n}=\frac{\sqrt{n}}{2 n+3} \cdot v_{n}=\frac{n^{a}}{n^{b}}=\frac{n^{1 / 2}}{n^{1}}=\frac{1}{n^{1 / 2}}=\frac{1}{\sqrt{n}}$
$\frac{u_{n}}{v_{n}}=\frac{\sqrt{n}}{2 n+3} \sqrt{n}=\frac{n}{2 n+3} \geq 1$
$\Rightarrow u_{n} \geq v_{n}, \forall n$ and $\sum v_{n}=\frac{1}{\sqrt{n}}$ is a divergent series ($\mathrm{p}-$ series, $\mathrm{p}=\frac{1}{2}<1$).
$\Rightarrow \sum u_{n}$ is also divergent.
2. Test the convergence of the series $\sum\left(\frac{1}{n}-\log \frac{n+1}{n}\right)$.

Solution:
Given $\sum u_{n}=\sum\left(\frac{1}{n}-\log \frac{n+1}{n}\right)=\sum\left(\frac{1}{n}-\log \left(1+\frac{1}{n}\right)\right)$.
$\frac{1}{n}-\log \left(1+\frac{1}{n}\right)=\frac{1}{n}-\left(\frac{1}{n}-\frac{1}{2} \cdot \frac{1}{n^{2}}+\frac{1}{3} \cdot \frac{1}{n^{3}}-\frac{1}{4} \cdot \frac{1}{n^{4}}+\cdots \infty\right)$

$$
=\frac{1}{n}-\frac{1}{n}+\frac{1}{2} \cdot \frac{1}{n^{2}}-\frac{1}{3} \cdot \frac{1}{n^{3}}+\frac{1}{4} \cdot \frac{1}{n^{4}}-\cdots \infty=\frac{1}{n^{2}}\left(\frac{1}{2}-\frac{1}{3} \cdot \frac{1}{n}+\frac{1}{4} \cdot \frac{1}{n^{2}}-\cdots \infty\right)
$$

Choose $v_{n}=\frac{1}{n^{2}}$.
$\frac{u_{n}}{v_{n}}=\frac{1}{n^{\chi^{2}}}\left(\frac{1}{2}-\frac{1}{3} \cdot \frac{1}{n}+\frac{1}{4} \cdot \frac{1}{n^{2}}-\cdots \infty\right) \cdot n^{\not 2}=\frac{1}{2}-\frac{1}{3} \cdot \frac{1}{n}+\frac{1}{4} \cdot \frac{1}{n^{2}}-\cdots \infty \leq 1$
$\Rightarrow u_{n} \leq v_{n}, \forall n$ and $\sum v_{n}=\frac{1}{n^{2}}$ is a convergent series ($\mathrm{p}-$ series, $\mathrm{p}=2>1$).
$\Rightarrow \sum u_{n}$ is also convergent.

D'Alembert's Ratio Test:

If $\sum u_{n}$ is a positive term series, and $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\ell$, then
(i) $\sum u_{n}$ is convergent if $\ell>1$
(ii) $\sum u_{n}$ is divergent if $\ell<1$.

Note:
If $l=1$, the test fails. i.e., no conclusion can be drawn about the convergence or divergence of the series. The series may converge, it mat diverge.

Problems:

1. Discuss the convergence of the following series:
(i) $1+\frac{2^{p}}{2!}+\frac{3^{p}}{3!}+\frac{4^{p}}{4!}+\cdots \cdots(p>0)$
(ii) $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2^{n-1}+1}+\cdots$
(iii) $\frac{1^{2} \cdot 2^{2}}{1!}+\frac{2^{2} \cdot 3^{2}}{2!}+\frac{3^{2} \cdot 4^{2}}{3!}+\frac{4^{2} \cdot 5^{2}}{4!}+\cdots \cdots$

Solution:
(i) Here $u_{n}=\frac{n^{p}}{n!} . \quad \therefore u_{n+1}=\frac{(n+1)^{p}}{(n+1)!}$.
$\frac{u_{n}}{u_{n+1}}=\frac{n^{p}}{n!} \frac{(n+1)!}{(n+1)^{p}}=\frac{n^{p}}{n!} \frac{(n+1) n!}{(n+1)^{p}}=\frac{n^{p}}{(n+1)^{p-1}}=\frac{n^{p}}{n^{p-1}\left(1+\frac{1}{n}\right)^{p-1}}=\frac{n}{\left(1+\frac{1}{n}\right)^{p-1}}$.
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{n}{\left(1+\frac{1}{n}\right)^{p-1}}=\infty>1$.
\therefore By D'Alembert's Ratio Test, $\sum u_{n}$ is convergent.
(ii) Here $u_{n}=\frac{1}{2^{n-1}+1} . \quad \therefore u_{n+1}=\frac{1}{2^{n}+1}$.
$\frac{u_{n}}{u_{n+1}}=\frac{2^{n}+1}{2^{n-1}+1}=\frac{2^{n}\left(1+\frac{1}{2^{n}}\right)}{2^{n-1}\left(1+\frac{1}{2^{n-1}}\right)}=2 \cdot \frac{\left(1+\frac{1}{2^{n}}\right)}{\left(1+\frac{1}{2^{n-1}}\right)}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} 2 \cdot \frac{\left(1+\frac{1}{2^{n}}\right)}{\left(1+\frac{1}{2^{n-1}}\right)}=2>1$.
\therefore By D'Alembert's Ratio Test, $\sum u_{n}$ is convergent.
(iii) Here $u_{n}=\frac{n^{2}(n+1)^{2}}{n!} . \quad \therefore u_{n+1}=\frac{(n+1)^{2}(n+2)^{2}}{(n+1)!}$

$$
\begin{aligned}
& \frac{u_{n}}{u_{n+1}}=\frac{n^{2}(n+1)^{2}}{n!} \frac{(n+1)!}{(n+1)^{2}(n+2)^{2}}=\frac{n^{2} \cdot(n+1) n!}{n!(n+2)^{2}}=\frac{n^{\not ㇒}\left(1+\frac{1}{n}\right)}{\not n^{\not 2}\left(1+\frac{2}{n}\right)^{2}}=n \cdot \frac{\left(1+\frac{1}{n}\right)}{\left(1+\frac{2}{n}\right)^{2}} . \\
& \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} n \cdot \frac{\left(1+\frac{1}{n}\right)}{\left(1+\frac{2}{n}\right)^{2}}=\infty>1 .
\end{aligned}
$$

\therefore By D'Alembert's Ratio Test, $\sum u_{n}$ is convergent.
2. Discuss the convergence of the series $\sum \frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n}$.

Solution:
Here $u_{n}=\frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n} . \quad \therefore u_{n+1}=\frac{\sqrt{n+1}}{\sqrt{(n+1)^{2}+1}} x^{n+1}$.
$\frac{u_{n}}{u_{n+1}}=\frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n} \cdot \frac{\sqrt{(n+1)^{2}+1}}{\sqrt{n+1}} \frac{1}{x^{n+1}}=\frac{1}{x} \sqrt{\frac{n}{n+1} \cdot \frac{n^{2}+2 n+2}{n^{2}+1}}=\frac{1}{x} \sqrt{\frac{1}{1+\frac{1}{n}} \cdot \frac{1+\frac{2}{n}+\frac{2}{n^{2}}}{1+\frac{1}{n^{2}}}}$.
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{1}{x} \sqrt{\frac{1}{1+\frac{1}{n}} \cdot \frac{1+\frac{2}{n}+\frac{2}{n^{2}}}{1+\frac{1}{n^{2}}}}=\frac{1}{x}$.
\therefore By D'Alembert's Ratio Test, $\sum u_{n}$ is convergent if $\frac{1}{x}>1$ i.e. $x<1$ and diverges if
$\frac{1}{x}<1$ i.e. $x>1$. When $x=1$, the Ratio test fails.
When $x=1, u_{n}=\frac{\sqrt{n}}{\sqrt{n^{2}+1}}=\sqrt{\frac{n}{n^{2}\left(1+\frac{1}{n^{2}}\right)}}=\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{1+\frac{1}{n^{2}}}}$.
Take $v_{n}=\frac{1}{\sqrt{n}} . \lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\frac{1}{\sqrt{1+\frac{1}{2}}}=1$, which is finite and $\neq 0 . \therefore$ By Comparison Test,
$\sum u_{n}$ and $\sum v_{n}$ both converge or diverge together.
Since, $\sum v_{n}=\sum \frac{1}{\sqrt{n}}$ is of the form $\sum \frac{1}{n^{p}}$ with $p=\frac{1}{2}(<1), \sum v_{n}$ is a divergent series
(p -series). $\Rightarrow \sum u_{n}$ diverges.
Hence the given series $\sum u_{n}$ converges if $x<1$ and diverges if $x \geq 1$.
3. Examine the convergence or divergence of the following series
$1+\frac{2}{5} x+\frac{6}{9} x^{2}+\frac{14}{17} x^{3}+\ldots . .+\frac{2^{n}-2}{2^{n}+1} x^{n-1}+\ldots .(x>0)$
Solution:
Leaving the first term, $u_{n}=\frac{2^{n+1}-2}{2^{n+1}+1} x^{n} \quad \therefore u_{n+1}=\frac{2^{n+2}-2}{2^{n+2}+1} x^{n+1}$.
$\frac{u_{n}}{u_{n+1}}=\frac{2^{n+1}-2}{2^{n+1}+1} x^{n} \cdot \frac{2^{n+2}+1}{2^{n+2}-2} \frac{1}{x^{n+1}}=\frac{1}{x} \frac{2^{n+1}\left(1-\frac{2}{2^{n+1}}\right)}{2^{n+1}\left(1+\frac{1}{2^{n+1}}\right)} \cdot \frac{2^{n+2}\left(1+\frac{1}{2^{n+2}}\right)}{2^{n+2}\left(1-\frac{2}{2^{n+2}}\right)}$
$\frac{u_{n}}{u_{n+1}}=\frac{1}{x} \frac{\left(1-\frac{2}{2^{n+1}}\right)}{\left(1+\frac{1}{2^{n+1}}\right)} \cdot \frac{\left(1+\frac{1}{2^{n+2}}\right)}{\left(1-\frac{2}{2^{n+2}}\right)}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{1}{x} \frac{\left(1-\frac{2}{2^{n+1}}\right)}{\left(1+\frac{1}{2^{n+1}}\right)} \cdot \frac{\left(1+\frac{1}{2^{n+2}}\right)}{\left(1-\frac{2}{2^{n+2}}\right)}=\frac{1}{x}$
By Ratio test, $\sum u_{n}$ converges if $\frac{1}{x}>1$ i.e., $x<1$ and diverges if $\frac{1}{x}<1$ i.e., $x>1$.
If $x=1$, then $u_{n}=\frac{2^{n+1}-2}{2^{n+1}+1}=\frac{2^{n+1}\left(1-\frac{2}{2^{n+1}}\right)}{2^{n+1}\left(1+\frac{1}{2^{n+1}}\right)}=\frac{\left(1-\frac{2}{2^{n+1}}\right)}{\left(1+\frac{1}{2^{n+1}}\right)}$.
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{\left(1-\frac{2}{2^{n+1}}\right)}{\left(1+\frac{1}{2^{n+1}}\right)}=1 \neq 0 \Rightarrow \sum u_{n}$ does not conve
it must diverge.
Hence, $\sum u_{n}$ converges if $x<1$ and diverges if $x \geq 1$.
4. Test the convergence of the series $1+\frac{3}{7} x+\frac{3 \cdot 6}{7 \cdot 10} x^{2}+\frac{3 \cdot 6 \cdot 9}{7 \cdot 10 \cdot 13} x^{3}+\ldots$. by

D'Alembert's ratio test.
Solution:
Leaving the first term, $u_{n}=\frac{3 \cdot 6 \cdots(3 n)}{7 \cdot 10 \cdots(3 n+4)} x^{n} \quad \therefore u_{n+1}=\frac{3 \cdot 6 \cdots(3 n+3)}{7 \cdot 10 \cdots(3 n+7)} x^{n+1}$.

$$
\frac{u_{n}}{u_{n+1}}=\frac{3 \cdot 6 \cdots(3 n)}{7 \cdot 10 \cdots(3 n+4)} x^{n} \cdot \frac{7 \cdot 10 \cdots(3 n+7)}{3 \cdot 6 \cdots(3 n+3)} \frac{1}{x^{n+1}}=\frac{1}{x} \frac{(3 n+7)}{(3 n+3)}
$$

$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{1}{x} \frac{3 n\left(1+\frac{7}{3 n}\right)}{3 n\left(1+\frac{1}{n}\right)}=\frac{1}{x}$. By Ratio test, $\sum u_{n}$ converges if $\frac{1}{x}>1$ i.e., $x<1$ and diverges if $\frac{1}{x}<1$ i.e., $x>1$.

If $x=1$, Ratio test fails.
(by Raabe's test $\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{(3 n+7)}{(3 n+3)}-1\right)=\lim _{n \rightarrow \infty} \frac{4 n}{3 n+3}=\frac{4}{3}>1 \sum u_{n}$ converges if $x=1$ (this test is not in syllabus))

Hence, $\sum u_{n}$ converges if $x<1$ and diverges if $x>1$.

Integral test:

If for $x \geq 1, f(x)$ is a non-negative, monotonic decreasing function of x such that $f(n)=u_{n}$ for all positive integral values of n, then the series $\sum u_{n}$ and the integral $\int_{1}^{\infty} f(x) d x$ converge or diverge together.

Note:

1. If $\int_{1}^{\infty} f(x) d x=$ finite then $\int_{1}^{\infty} f(x) d x$ converges.
2. If $\int_{1}^{\infty} f(x) d x=+\infty$ then $\int_{1}^{\infty} f(x) d x$ diverges.

Problems:

1. Test for convergence the series: $\sum \frac{1}{n^{2}+1}$

Solution:
Here $u_{n}=\frac{1}{n^{2}+1}=f(n) \Rightarrow f(x)=\frac{1}{x^{2}+1}$.
For $x \geq 1, f(x)$ is a positive and monotonic decreasing. \therefore Integral test is applicable.
Now, $\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x^{2}+1} d x=\left(\tan ^{-1} x\right)_{1}^{\infty}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}=$ fnite .
$\Rightarrow \int_{1}^{\infty} f(x) d x$ converges and hence by integral test, $\sum u_{n}$ also converges.
2. Show that the series $\sum_{1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $0<p \leq 1$.

Solution:
Here $u_{n}=\frac{1}{n^{p}}=f(n) \Rightarrow f(x)=\frac{1}{x^{p}}$.
For $x \geq 1, f(x)$ is a positive and monotonic decreasing. \therefore Integral test is applicable.
Case 1: $p>1 \Rightarrow p-1>+v e$.
$\therefore \int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x^{p}} d x=\int_{1}^{\infty} x^{-p} d x=\left(\frac{x^{-p+1}}{-p+1}\right)_{1}^{\infty}$ $=\left(\frac{x^{-(p-1)}}{-p+1}\right)_{1}^{\infty}=\frac{1}{1-p}\left(\frac{1}{x^{(p-1)}}\right)_{1}^{\infty}=\frac{1}{1-p}(0-1)=\frac{1}{p-1}=$ finite
$\Rightarrow \int_{1}^{\infty} f(x) d x$ converges and hence by integral test, $\sum u_{n}$ also converges.
Case 2: \square $\Rightarrow 1-p>+v e$.
$\therefore \int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x^{p}} d x=\int_{1}^{\infty} x^{-p} d x=\left(\frac{x^{-p+1}}{-p+1}\right)_{1}^{\infty}=\left(\frac{x^{(1-p)}}{1-p}\right)_{1}^{\infty}=\frac{1}{1-p}(\infty-1)=\infty$
$\Rightarrow \int_{1}^{\infty} f(x) d x$ diverges and hence by integral test, $\sum u_{n}$ also diverges.
Case 3: $p=1$
$\therefore \int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x} d x=(\log x)_{1}^{\infty}=(\infty-0)=\infty$
$\Rightarrow \int_{1}^{\infty} f(x) d x$ diverges and hence by integral test, $\sum u_{n}$ also diverges.
Hence $\sum u_{n}$ converges if $p>1$ and diverges if $0<p \leq 1$.
3. Test for convergence the series: $\sum n e^{-n^{2}}$.

Solution:
Here $u_{n}=n e^{-n^{2}}=f(n) \Rightarrow f(x)=x e^{-x^{2}}$.
For $x \geq 1, f(x)$ is a positive and monotonic decreasing. \therefore Integral test is applicable.
Now, $\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} x e^{-x^{2}} d x$.
Put $x^{2}=t \Rightarrow 2 x d x=d t$. When $x=1, t=x^{2}=1$. When $x=\infty, t=x^{2}=$
$\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} x e^{-x^{2}} d x=\frac{1}{2} \int_{1}^{\infty} e^{-t} d t=\frac{1}{2}\left(\frac{e^{-t}}{-1}\right)_{1}^{\infty}=\frac{-1}{2}\left(e^{-\infty}-e^{-1}\right)=\frac{-1}{2}\left(0-\frac{1}{e}\right)=\frac{1}{2 e}=$ finite
$\Rightarrow \int_{1}^{\infty} f(x) d x$ converges and hence by integral test , $\sum u_{n}$ also converges.
4. Using the integral test, discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$.

Solution:
Here $u_{n}=\frac{1}{n \sqrt{n^{2}-1}}=f(n) \Rightarrow f(x)=\frac{1}{x \sqrt{x^{2}-1}}$.
For $x \geq 2, f(x)$ is a positive and monotonic decreasing. \therefore Integral test is applicable.
Now, $\int_{2}^{\infty} f(x) d x=\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x=\left(\sec ^{-1} x\right)_{2}^{\infty}=\left(\cos ^{-1}\left(\frac{1}{x}\right)\right)_{2}^{\infty}$

$$
\begin{aligned}
& =\cos ^{-1}\left(\frac{1}{\infty}\right)-\cos ^{-1}\left(\frac{1}{2}\right) \\
& =\cos ^{-1}(0)-\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}=\text { finite }
\end{aligned}
$$

$\Rightarrow \int_{2} f(x) d x$ converges and hence by integral test, $\sum u_{n}$ also converges.
5. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$

Solution:
Here $u_{n}=\frac{1}{(n+1)^{2}}=f(n) \Rightarrow f(x)=\frac{1}{(x+1)^{2}}$.
For $x \geq 1, f(x)$ is a positive and monotonic decreasing. \therefore Integral test is applicable.

Now, $\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{(x+1)^{2}} d x=\left(\frac{(x+1)^{-1}}{-1}\right)_{1}^{\infty}=-\left(\frac{1}{x+1}\right)_{1}^{\infty}=-\left(\frac{1}{\infty}-\frac{1}{2}\right)=\frac{1}{2}=$ finite
$\Rightarrow \int_{1}^{\infty} f(x) d x$ converges and hence by integral test , $\sum u_{n}$ also converges.
6. Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{2 n^{3}}{n^{4}+3}$

Solution:
Here $u_{n}=\frac{2 n^{3}}{n^{4}+3}=f(n) \Rightarrow f(x)=\frac{2 x^{3}}{x^{4}+3}$.
For $x \geq 1, f(x)$ is a positive and monotonic decreasing. \therefore Integral test is applicable.
Now, $\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{2 x^{3}}{x^{4}+3} d x$
Put $\quad x^{4}+3=t \Rightarrow 4 x^{3} d x=d t \Rightarrow x^{3} d x=\frac{d t}{4}$. When $x=1, t=x^{4}+3=1+3=4$. When $x=\infty, t=x^{4}+3=\infty$.
$\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{2 x^{3}}{x^{4}+3} d x=2 \int_{4}^{\infty} \frac{1}{4} \frac{d t}{t}=\frac{1}{2}(\log t)_{4}^{\infty}=\frac{1}{2}(\log \infty-\log 4)=\infty=$ infinite $\Rightarrow \int_{1}^{\infty} f(x) d x$ diverges and hence by integral test, $\sum u_{n}$ also diverges.

Alternating series:

A series in which the terms are alternate positive and negative is called an alternating series. Thus, the series $\sum(-1)^{n-1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\cdots+(-1)^{n-1} u_{n}+\cdots \cdots$ where $u_{n}>0$, for every n is an alternating series.

Leibnitz's Test on alternating series:

The alternating series $\sum(-1)^{n-1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\cdots+(-1)^{n-1} u_{n}+\cdots \cdots\left(u_{n}>0\right.$, $\forall n$) converges if (i) $u_{n}>u_{n+1}, \forall n$
(ii) $\lim _{n \rightarrow \infty} u_{n}=0$.

Note:

The alternating series will not convergent if any one of the two conditions is not satisfied. If $\lim _{n \rightarrow \infty} u_{n} \neq 0$, then the series is oscillatory.

Problems:

1. Examine the convergence of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$

Solution:
It is an alternating series.
(i) Here $u_{n}=\frac{1}{n}, u_{n+1}=\frac{1}{n+1}, \because \frac{1}{n}>\frac{1}{n+1} \quad \forall n, \therefore u_{n}>u_{n+1}, \forall n$.
(ii) $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Both conditions of Leibnitz's Test are satisfied. Hence the given series is conyergent.
2. Examine the convergence of the following series :
(a) $2-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\cdots$
(b) $\frac{1}{2^{3}}-\frac{1}{3^{3}}(1+2)+\frac{1}{4^{3}}(1+2+3)-\frac{1}{5^{3}}(1+2+3+4)+$

Solution:
(a) It is an alternating series.

$$
\begin{align*}
& u_{n}=\frac{n+1}{n}, u_{n+1}=\frac{n+2}{n+1} . \tag{i}\\
& u_{n}-u_{n+1}=\frac{n+1}{n}-\frac{n+2}{n+1}=\frac{(n+1)^{2}-n(n+1)}{n(n+1)}=\frac{1}{n(n+1)}>0, \forall n . \\
& \Rightarrow u_{n}>u_{n+1}, \forall n .
\end{align*}
$$

(ii) $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n+1}{n}=\lim _{n \rightarrow \infty} \frac{n\left(1+\frac{1}{n}\right)}{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1 \neq 0$.

Since the second condition of Leibnitz's test is not satisfied, the series is not convergent.
(b) It is an alternating series.
(i) Here $u_{n}=\frac{1}{(n+1)^{3}}(1+2+3+\cdots+n)=\frac{1}{(n+1)^{3}} \frac{n(n+1)}{2}=\frac{1}{2} \frac{n}{(n+1)^{2}}$, and

$$
u_{n+1}=\frac{1}{2} \frac{n+1}{(n+2)^{2}} .
$$

$$
u_{n}-u_{n+1}=\frac{1}{2} \frac{n}{(n+1)^{2}}-\frac{1}{2} \frac{n+1}{(n+2)^{2}}=\frac{1}{2} \frac{n^{2}+n-1}{(n+1)^{2}(n+2)^{2}}>0, \quad \forall n .
$$

$$
\Rightarrow u_{n}>u_{n+1}, \forall n
$$

(ii) $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{2} \frac{n}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{1}{2} \frac{\frac{1}{n}}{\left(1+\frac{1}{n}\right)^{2}}=0$. Since both the conditions of Leibnitz's Test are satisfied, the given series is convergent.
3. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{2 n-1}$.

Solution:
The given series is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{2 n-1}=\frac{1}{1}-\frac{2}{3}+\frac{3}{5}-\frac{4}{7}+\cdots \infty$.
It is an alternating series.
(i) Here $u_{n}=\frac{n}{2 n-1}$ and $u_{n+1}=\frac{n+1}{2(n+1)-1}=\frac{n+1}{2 n+1}$.

$$
\begin{aligned}
& u_{n}-u_{n+1}=\frac{n}{2 n-1}-\frac{n+1}{2 n+1}=\frac{1}{4 n^{2}-1}>0, \forall n . \\
& \Rightarrow u_{n}>u_{n+1}, \forall n .
\end{aligned}
$$

(ii) $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n}{2 n-1}=\lim _{n \rightarrow \infty} \frac{n}{n\left(2-\frac{1}{n}\right)}=\frac{1}{2} \neq 0$. Here the second condition of

Leibnitz's Test is not satisfied. Hence the given series is not convergent.

Absolute convergence of a series:

If a convergent series whose terms are not all positive, remains convergent when all its terms are made positive, then it is called an absolutely convergent series, i.e., The convergent series $\sum u_{n}$ is said to be absolutely convergent if $\sum\left|u_{n}\right|$ is a convergent series.

Conditionally convergent:

A series is said to be conditionally convergent if it is convergent but does not converge absolutely.

Note:

Absolutely convergent
i) $\sum u_{n}$ is convergent.

Conditionally convergent
i) $\sum u_{n}$ is convergent.
ii) $\sum\left|u_{n}\right|$ is convergent.
ii) $\sum\left|u_{n}\right|$ is divergent.

Problems:

1. Test whether the following series are absolutely convergent or conditionally convergent?
(a) $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \infty$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$.

Solution:
(a) Given $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \infty$
(i) It is an alternating series. Here $u_{n}=\frac{1}{n^{2}}$ and $u_{n+1}=\frac{1}{(n+1)^{2}}$.
$u_{n}-u_{n+1}=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}=\frac{n^{2}+2 n+1-n^{2}}{n^{2}(n+1)^{2}}=\frac{2 n+1}{n^{2}(n+1)^{2}}>0 \forall n$.
$\Rightarrow u_{n}>u_{n+1}, \forall n$.
(ii) $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.

Since both the conditions of Leibnitz's Test are satisfied, the given series is convergent.
(iii) $\sum\left|u_{n}\right|=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \infty=\sum \frac{1}{n^{2}}$ which we know is a convergent series.
Thus the given series converges absolutely.
(b) Given $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \infty$.

It is an alternating series.
(i) $u_{n}=\frac{1}{2 n-1}$ and $u_{n+1}=\frac{1}{2(n+1)-1}=\frac{1}{2 n+1}$
$u_{n}-u_{n+1} \frac{1}{2 n-1}-\frac{1}{2 n+1}=\frac{2 / n+1-2 \sqrt{2}+1}{4 n^{2}-1}=\frac{2}{4 n^{2}-1}>0 \forall n$.
$\Rightarrow u_{n}>u_{n+1}, \forall n$.
(ii) $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{2 n-1}=0$.

Since both the conditions of Leibnitz's Test are satisfied, the given series is convergent.
(iii) $\sum\left|u_{n}\right|=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots \infty$. Here $u_{n}=\frac{1}{2 n-1}$. Take $v_{n}=\frac{1}{n}$. $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{n}{2 n-1}=\lim _{n \rightarrow \infty} \frac{\not h}{\not n\left(2-\frac{1}{n}\right)}=\frac{1}{2}=$ finite. Hence by comparison test, $\sum u_{n}$ and $\sum v_{n}$ behave alike.
But $\sum v_{n}=\sum \frac{1}{n}$, is a divergent series. (by p -series since $\mathrm{p}=1$)..$\sum \sum u_{n}$ also diverges. Hence the given series converges, and the series of absolute terms diverges, therefore the given series converges conditionally.

Result:

Every absolutely convergent series is convergent.

Problems:

1. Prove that the series $\frac{\sin x}{1^{3}}-\frac{\sin 2 x}{2^{3}}+\frac{\sin 3 x}{3^{3}}-\cdots \infty$ converge absolutely.

Solution:
The given series is $\sum_{n=1}^{\infty} u_{n}=\frac{\sin x}{1^{3}}-\frac{\sin 2 x}{2^{3}}+\frac{\sin 3 x}{3^{3}}-\cdots \infty=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin n x}{n^{3}}$.
Here $\left|u_{n}\right|=\frac{|\sin n x|}{n^{3}}$. Choose $v_{n}=\frac{1}{n^{3}}$. Since $\quad \frac{|\sin n x|}{n^{3}} \leq \frac{1}{n^{3}} \Rightarrow\left|u_{n}\right| \leq v_{n}, \quad \forall n \quad$ by comparison test the series $\sum\left|u_{n}\right|$ converges.
\Rightarrow the given series converges absolutely.
2. Examine the convergence of $x-\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{3}}-\frac{x^{4}}{\sqrt{4}}+\cdots \infty$ (or) Find the interval of convergence of the series $x-\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{3}}-\frac{x^{4}}{\sqrt{4}}+\cdots \infty$.

Solution:

The given series is $\sum_{n=1}^{\infty} u_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{\sqrt{n}}$. Here $\left|u_{n}\right|=\frac{\left|x^{n}\right|}{\sqrt{n}}=\frac{|x|^{n}}{\sqrt{n}}$ and $\left|u_{n+1}\right|=\frac{|x|^{n+1}}{\sqrt{n+1}}$.

$$
\begin{aligned}
& \frac{\left|u_{n}\right|}{\left|u_{n+1}\right|}=\frac{\left|x^{n}\right|}{\sqrt{n}} \times \frac{\sqrt{n+1}}{|x|^{n+1}}=\sqrt{\frac{n+1}{n}} \cdot \frac{1}{|x|}=\sqrt{1+\frac{1}{n}} \cdot \frac{1}{|x|} \\
& \lim _{n \rightarrow \infty} \frac{\left|u_{n}\right|}{\left|u_{n+1}\right|}=\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}} \cdot \frac{1}{|x|}=\frac{1}{|x|} .
\end{aligned}
$$

By ratio test, $\sum\left|u_{n}\right|$
(i) Converges if $\frac{1}{|x|}>1$ i.e. $|x|<1$ i.e. if $-1<x<1$
(ii) Diverges if $\frac{1}{|x|}<1$ i.e. $|x|>1$ i.e. $\mathrm{x}>1$ or $\mathrm{x}<-1$.
(iii) Test fails when $|x|=1$ i.e. $\mathrm{x}=1$ or $\mathrm{x}=-1$.

Case (i) When $\mathrm{x}=1$, the series becomes $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots \infty$ which is an alternating series and is convergent.
Case (ii) When $\mathrm{x}=-1$, the series becomes
$-1-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots \infty=-\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\cdots \infty\right)=-\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is divergent by p - series. Hence the given series for $-1<x \leq 1$.
3. Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2}+1}$.

Solution:
Here $\left|u_{n}\right|=\left|\frac{\cos n \pi}{n^{2}+1}\right|=\frac{1}{n^{2}+1}$. Choose $v_{n}=\frac{1}{n^{2}}$.
$\lim _{n \rightarrow \infty} \frac{\left|u_{n}\right|}{v_{n}}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}+1} n^{2}=\lim _{n \rightarrow \infty} \frac{\not x^{22}}{n^{\not 2}\left(1+\frac{1}{n^{2}}\right)}=1$, finite and non zero.
$\therefore \sum\left|u_{n}\right|$ and $\sum v_{n}$ converge or diverge together.
Since $\sum v_{n}=\sum \frac{1}{n^{2}}$ is a convergent series (p series with $\mathrm{p}=2>1$), we have $\sum\left|u_{n}\right|$ is convergent, by comparison test.
\Rightarrow the given series converges absolutely.

