
 

 

Tutorial - 1 
1. Obtain the principal disjunctive normal form and principal conjunction form of the statement 

𝑷 ∨  ∼ 𝑷 →  𝑸 ∨  ∼ 𝑸 → 𝑹    

Solution: 

Let 𝑆 ⇔  𝑃 ∨  ∼ 𝑃 →  𝑄 ∨  ∼ 𝑄 → 𝑅    

𝐴: ∼ 𝑃 →  𝑄 ∨  ∼ 𝑄 → 𝑅    

𝐏 𝑸 𝑹 ∼ 𝑷 ∼ 𝑸 ∼ 𝑸 → 𝑹 𝑸 ∨  ∼ 𝑸 → 𝑹  𝑨 𝐒 𝑴𝒊𝒏𝒕𝒆𝒓𝒎 𝑴𝒂𝒙𝒕𝒆𝒓𝒎 

T T T F F T T T T 𝑷 ∧ 𝑸 ∧ 𝑹  

T F T F T T T T T 𝑷 ∧∼ 𝑸 ∧ 𝑹  

F T T T F T T T T ∼ 𝑷 ∧ 𝑸 ∧ 𝑹  

F F T T T T T T T ∼ 𝑷 ∧∼ 𝑸 ∧ 𝑹  

T T F F F T T T T 𝑷 ∧ 𝑸 ∧∼ 𝑹  

T F F F T F F T T 𝑷 ∧∼ 𝑸 ∧∼ 𝑹  

F T F T F T T T T ∼ 𝑷 ∧ 𝑸 ∧∼ 𝑹  

F F F T T F F F F  𝐏 ∨ 𝐐 ∨ 𝐑 

𝑆 ⇔  𝑃 ∧ 𝑄 ∧ 𝑅 ∨  𝑃 ∧∼ 𝑄 ∧ 𝑅 ∨  ∼ 𝑃 ∧ 𝑄 ∧ 𝑅 ∨  ∼ 𝑃 ∧∼ 𝑄 ∧ 𝑅 ∨  𝑃 ∧ 𝑄 ∧∼ 𝑅  
                           ∨  𝑃 ∧∼ 𝑄 ∧∼ 𝑅 ∨  ∼ 𝑃 ∧ 𝑄 ∧∼ 𝑅   is a PDNF 
𝑆 ⇔ P ∨ Q ∨ R  is a PCNF 
 
2. Show that 𝐏 ∨  𝐐 ∧ 𝐑  and  𝐏 ∨ 𝐐 ∧  𝐏 ∨ 𝐑  are logically equivalent. 
Solution: 

To prove: 𝑆:  P ∨  Q ∧ R   ↔   P ∨ Q ∧  P ∨ R   is a tautology. 

𝐏 𝑸 𝑹 𝐐 ∧ 𝐑 𝐏 ∨  𝐐 ∧ 𝐑   𝐏 ∨ 𝐐 𝐏 ∨ 𝐑  𝐏 ∨ 𝐐 ∧  𝐏 ∨ 𝐑  𝑺 

T T T T T T T T T 

T F T F T T T T T 

F T T T T T T T T 

F F T F F F T F T 

T T F F T T T T T 

T F F F T T T T T 

F T F F F T F F T 

F F F F F F F F T 

 

Since all the values in last column are true.   P ∨  Q ∧ R   ↔   P ∨ Q ∧  P ∨ R   is a tautology. 

∴  P ∨  Q ∧ R   ⇔   P ∨ Q ∧  P ∨ R   

 

3. Find the principal disjunctive normal form of the statement  𝒒 ∨  𝒑 ∧ 𝒓  ∧∼   𝒑 ∨ 𝒓 ∧ 𝒒 . 

Solution: 

Let S ⇔  𝑞 ∨  𝑝 ∧ 𝑟  ∧∼   𝑝 ∨ 𝑟 ∧ 𝑞 . 

          ⇔  𝑞 ∨  𝑝 ∧ 𝑟  ∧  ∼  𝑝 ∨ 𝑟 ∨∼ 𝑞  

          ⇔  𝑞 ∨  𝑝 ∧ 𝑟  ∧   ∼ 𝑝 ∧∼ 𝑟 ∨∼ 𝑞  

          ⇔   𝑞 ∨ 𝑝 ∧  𝑞 ∨ 𝑟  ∧   ∼ 𝑝 ∨∼ 𝑞 ∧  ∼ 𝑟 ∨∼ 𝑞   



 

 

          ⇔  𝑞 ∨ 𝑝 ∨ 𝐹 ∧  𝐹 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨∼ 𝑞 ∨ 𝐹 ∧  𝐹 ∨∼ 𝑟 ∨∼ 𝑞  

          ⇔  𝑞 ∨ 𝑝 ∨  𝑟 ∧∼ 𝑟  ∧   𝑝 ∧∼ 𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨∼ 𝑞 ∨  𝑟 ∧∼ 𝑟  ∧   𝑝 ∧∼ 𝑝 ∨∼ 𝑟 ∨∼ 𝑞  

          ⇔  𝑞 ∨ 𝑝 ∨ 𝑟 ∧  𝑞 ∨ 𝑝 ∨∼ 𝑟 ∧  𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨∼ 𝑞 ∨ 𝑟  
                  ∧  ∼ 𝑝 ∨∼ 𝑞 ∨∼ 𝑟 ∧  𝑝 ∨∼ 𝑟 ∨∼ 𝑞 ∧  ∼ 𝑝 ∨∼ 𝑟 ∨∼ 𝑞  
          ⇔  𝑞 ∨ 𝑝 ∨∼ 𝑟 ∧  𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨∼ 𝑞 ∨ 𝑟  
                  ∧  ∼ 𝑝 ∨∼ 𝑞 ∨∼ 𝑟 ∧  𝑝 ∨∼ 𝑟 ∨∼ 𝑞  
          ⇔  𝑝 ∨ 𝑞 ∨∼ 𝑟 ∧  𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨∼ 𝑞 ∨ 𝑟  
                  ∧  ∼ 𝑝 ∨∼ 𝑞 ∨∼ 𝑟 ∧  𝑝 ∨∼ 𝑞 ∨∼ 𝑟  𝑤𝑖𝑐 𝑖𝑠 𝑎 𝑃𝐶𝑁𝐹  
∼ 𝑆 ⇔ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑎𝑥 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑆 
∼ 𝑆 ⇔  𝑝 ∨∼ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨ 𝑞 ∨∼ 𝑟  
∼∼ 𝑆 ⇔∼   𝑝 ∨∼ 𝑞 ∨ 𝑟 ∧  ∼ 𝑝 ∨ 𝑞 ∨∼ 𝑟   
𝑆 ⇔  ∼ 𝑝 ∧ 𝑞 ∧∼ 𝑟 ∨  𝑝 ∧∼ 𝑞 ∧ 𝑟  𝑤𝑖𝑐 𝑖𝑠 𝑃𝐷𝑁𝐹. 
𝑆 ⇔∼  𝑝 ∨∼ 𝑞 ∨ 𝑟 ∨∼  ∼ 𝑝 ∨ 𝑞 ∨∼ 𝑟  

 

Tutorial – 2 
 

1. Show that the hypothesis, “It is not sunny this afternoon and it is colder than yesterday”, “we will 

go swimming only if it is sunny”, “If we do not go swimming, then we will take a canoe trip” and “If we 

take a canoe trip, then we will be home by sunset” lead to the conclusion “We will be home by 

sunset”. 

Solution: 

Let 𝑆 represents it is sunny this afternoon. 

Let 𝐶 represents it is colder than yesterday. 

Let 𝑊 represents we will go swimming. 

Let 𝑇𝑟  represents we will take a canoe trip. 

Let 𝐻 represents we will be home by sunset. 

The inference is ∼ 𝑆 ∧ 𝐶, 𝑊 → 𝑆, ∼ 𝑊 → 𝑇𝑟 , 𝑇𝑟 → 𝐻 ⇒ 𝐻 

1. ∼ 𝑆 ∧ 𝐶                                                                𝑅𝑢𝑙𝑒 𝑃 
2.  𝑊 → 𝑆                                                                𝑅𝑢𝑙𝑒 𝑃              
3. ∼ 𝑊 → 𝑇𝑟                                                            𝑅𝑢𝑙𝑒 𝑃 
4.  𝑇𝑟 → 𝐻                                                               𝑅𝑢𝑙𝑒 𝑃 
5. ∼ 𝑆                                                                      𝑅𝑢𝑙𝑒 𝑇, 1, 𝑃 ∧ 𝑄 ⇒ 𝑃 

      6. ∼ 𝑊                                                                    𝑅𝑢𝑙𝑒 𝑇, 5,2, 𝑀𝑜𝑑𝑢𝑠 𝑡𝑜𝑙𝑙𝑒𝑛𝑠    
      7.  𝑇𝑟                                                                        𝑅𝑢𝑙𝑒 𝑇, 6,3, 𝑀𝑜𝑑𝑢𝑠 𝑝𝑜𝑛𝑒𝑠     
      8. 𝐻                                                                      𝑅𝑢𝑙𝑒 𝑇, 7,4, 𝑀𝑜𝑑𝑢𝑠 𝑝𝑜𝑛𝑒𝑠     

 
2. Using indirect method of proof, derive 𝒑 →∼ 𝒔 from the premises 𝒑 →  𝒒 ∨ 𝒓 ,𝒒 →∼ 𝒑,  
              𝒔 →∼ 𝒓 and 𝒑.  
Solution: 
Let us assume ∼  𝑝 →∼ 𝑠   be the addition premise. 

1. 𝑝 →  𝑞 ∨ 𝑟  Rule P 
2. 𝑞 →∼ 𝑝  Rule P 
3. 𝑠 →∼ 𝑟  Rule P 
4. 𝑝 Rule P 
5. ∼  𝑝 →∼ 𝑠   Addition premise 
6. 𝑞 ∨ 𝑟 Rule T,1,4, Modus phones 



 

 

7. ∼ 𝑞 Rule T,2,4, Modus tollens 
8. 𝑟 Rule T,6,7, Disjunctive Syllogism 
9. ∼ 𝑠 Rule T,3,8, Modus tollens 
10. ∼  ∼ 𝑝 ∨∼ 𝑠   Rule T,5, 𝑎 → 𝑏 ⇒∼ 𝑎 ∨ 𝑏 
11.  𝑝 ∧ 𝑠 Rule T,10, Demorgan’s law 
12. 𝑠 Rule T,11, 𝑎 ∧ 𝑏 ⇒ 𝑏   
13. 𝑠 ∧∼ 𝑠 Rule T,9,12, 𝑎, 𝑏 ⇒ 𝑎 ∧ 𝑏 
14. 𝐹 Rule T,13, 𝑎 ∧∼ 𝑎 ⇒ 𝐹 

which is a contradiction. 
∴ Our assumption is wrong.  
𝑝 →  𝑞 ∨ 𝑟 , 𝑞 →∼ 𝑝, 𝑠 →∼ 𝑟 and 𝑝 ⇒ 𝑝 →∼ 𝑠.  
 
3. Determine the validity of the following argument: 
If 7 is less than 4 then 7 is not a prime number, 7 is not less than 4. Therefore 7 is a prime number. 
Solution: 
Let 𝐿 represents 7 is less than 4. 
Let 𝑁 represents 7 is a prime number 
The inference is 𝐿 →∼ 𝑁, ∼ 𝐿 ⇒ 𝑁 

1. 𝑳 →∼ 𝑵 Rule P 
2. ∼ 𝑳 Rule P 

The argument is not valid, since 𝐿 →∼ 𝑁, ∼ 𝐿 ⇏ 𝑁 

 
Tutorial – 3 

 
1. By indirect method prove that (𝒙) (𝑷(𝒙) → 𝑸(𝒙)), (∃𝒙)𝑷(𝒙)   ⇒  (∃𝒙)𝑸(𝒙) 

Solution: 
Let us assume that ¬(∃𝑥)𝑄(𝑥) as additional premise 

1. ¬(∃𝑥)𝑄(𝑥)                                                        𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 
2.  𝑥 ¬𝑄 𝑥                                                            𝑅𝑢𝑙𝑒 𝑇, 1, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤              
3. ¬𝑄 𝑎                                                                   𝑅𝑢𝑙𝑒 𝑇, 2, 𝑈𝑆 
4. (∃𝑥)𝑃(𝑥)                                                             𝑅𝑢𝑙𝑒 𝑃 
5. 𝑃 𝑎                                                                       𝑅𝑢𝑙𝑒 𝑇, 4, 𝐸𝑆 

      6. 𝑃 𝑎 ⋀¬𝑄 𝑎                                                        𝑅𝑢𝑙𝑒 𝑇, 5,3 𝑎𝑛𝑑 𝑐𝑜𝑛𝑗𝑢𝑐𝑡𝑖𝑜𝑛    

      7. ¬ ¬𝑃 𝑎 ⋁𝑄 𝑎                                                 𝑅𝑢𝑙𝑒 𝑇, 6, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤     

      8. ¬ 𝑃 𝑎 → 𝑄 𝑎                                                  𝑅𝑢𝑙𝑒 𝑇, 7, 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒     

      9.   𝑥  𝑃 𝑥 → 𝑄 𝑥                                              𝑅𝑢𝑙𝑒 𝑃 

      10.  𝑃 𝑎 → 𝑄 𝑎                                                    𝑅𝑢𝑙𝑒 𝑇, 9, 𝑈𝑆               

      11. ¬ 𝑃 𝑎 → 𝑄 𝑎   ⋀ 𝑃 𝑎 → 𝑄 𝑎               𝑅𝑢𝑙𝑒 𝑇, 8,10 𝑎𝑛𝑑 𝑐𝑜𝑛𝑗𝑢𝑐𝑡𝑖𝑜𝑛       
      12.  𝐹                                                                         𝑅𝑢𝑙𝑒 𝑇, 11 𝑎𝑛𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤    

 
2. Prove that (𝒙) (𝑷(𝒙) ⋁ 𝑸(𝒙))  ⇒  𝒙 𝑷 𝒙  ⋁  (∃𝒙)𝑸(𝒙) 

Proof: 
Let us prove this by indirect method 

Let us assume that ¬  𝑥 𝑃 𝑥 ⋁  (∃𝑥)𝑄(𝑥)  as additional premise 

1. ¬  𝒙 𝑷 𝒙 ⋁   ∃𝒙 𝑸 𝒙   𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 𝒑𝒓𝒆𝒎𝒊𝒔𝒆 



 

 

2. ¬ 𝒙  𝑷 𝒙 ⋀  ¬  ∃𝒙 𝑸 𝒙  𝑹𝒖𝒍𝒆 𝑻, 𝟏, 𝑫𝒆 𝑴𝒐𝒓𝒈𝒂𝒏′𝒔 𝒍𝒂𝒘              
3. ¬ 𝒙  𝑷 𝒙  𝑹𝒖𝒍𝒆 𝑻, 𝟐 
4.  ∃𝒙 ¬ 𝑷 𝒙                     𝑹𝒖𝒍𝒆 𝑻, 𝟑, 𝑫𝒆 𝑴𝒐𝒓𝒈𝒂𝒏′𝒔 𝒍𝒂𝒘 
5. ¬ 𝑷 𝒂                                                                      𝑹𝒖𝒍𝒆 𝑬𝑺, 𝟒 
6. ¬  ∃𝒙 𝑸 𝒙  𝑹𝒖𝒍𝒆 𝑻, 𝟐           
7.  𝒙 ¬ 𝑸 𝒙                                                               𝑹𝒖𝒍𝒆 𝑻, 𝟔, 𝑫𝒆 𝑴𝒐𝒓𝒈𝒂𝒏′𝒔 𝒍𝒂𝒘 
8. ¬𝑸 𝒂  𝑹𝒖𝒍𝒆 𝑼𝑺, 𝟕   
9. ¬ 𝑷 𝒂 ⋀ ¬𝑸 𝒂  𝑹𝒖𝒍𝒆 𝑻, 𝟓, 𝟖, 𝒄𝒐𝒏𝒋𝒖𝒏𝒄𝒕𝒊𝒐𝒏   
10. ¬  𝑷 𝒂 ⋁ 𝑸 𝒂   𝑹𝒖𝒍𝒆 𝑻, 𝟗, 𝑫𝒆 𝑴𝒐𝒓𝒈𝒂𝒏′𝒔 𝒍𝒂𝒘         

11. (𝒙) (𝑷(𝒙) ⋁ (𝑸(𝒙)) 𝑹𝒖𝒍𝒆 𝑷         
12. 𝑷 𝒂 ⋁ 𝑸 𝒂  𝑹𝒖𝒍𝒆 𝑼𝑺, 𝟏𝟏         
13. ¬  𝑷 𝒂 ⋁ 𝑸 𝒂   ⋀  𝑷 𝒂 ⋁ 𝑸 𝒂   𝑹𝒖𝒍𝒆 𝑻, 𝟏𝟏, 𝟏𝟐, 𝒄𝒐𝒏𝒋𝒖𝒏𝒄𝒕𝒊𝒐𝒏    

14. 𝑭 𝑹𝒖𝒍𝒆 𝑻, 𝟏𝟑 
 

3. Prove that  𝟐 is irrational by giving a proof by contradiction. 
Proof:  

Suppose  2 is rational. 

∴  2 =
𝑝

𝑞
  for 𝑝, 𝑞 ∈ 𝑍, 𝑞 ≠ 0, 𝑝 & 𝑞have no common divisor. 

𝑝2

𝑞2
= 2 ⇒ 𝑝2 = 2𝑞2 

Since 𝑝2 is an even integer, 𝑝 is even integer. 
∴ 𝑝 = 2𝑚 for some integer 𝑚. 

∴  2𝑚 2 = 𝑝2 = 2𝑞2 ⇒ 𝑞2 = 2𝑚2 
Since 𝑞2is an even integer, 𝑞 is even integer. 
∴ 𝑞 = 2𝑘 for some integer 𝑘. 
Thus 𝑝 and 𝑞 are even. Hence they have a common factor 2. 
which is a contradiction to our assumption. 

∴  2 is irrational. 

 
Tutorial – 4 

 
1. Use mathematical induction to prove the inequality 𝒏 < 𝟐𝒏 for all positive integer 𝒏. 
Proof: 
𝐿𝑒𝑡 𝑃 𝑛 : 𝑛 < 2𝑛                      … (1) 
𝑃 1 : 1 < 21  
⇒ 1 < 2 
∴ 𝑃(1) is true. 
Let us assume that 𝑃(𝑛)  is true. Now we have to prove that 𝑃(𝑛 + 1) is true. 
To prove: 
𝑃 𝑛 + 1 : 𝑛 + 1 < 2𝑛+1 
𝑛 < 2𝑛             (𝑓𝑟𝑜𝑚  1 ) 

𝑛 + 1 < 2𝑛 + 1 
𝑛 + 1 < 2𝑛 + 2𝑛         ∵ 1 < 2𝑛   



 

 

𝑛 + 1 < 2.2𝑛  
𝑛 + 1 < 2𝑛+1 

∴ 𝑃 𝑛 + 1  is true. 
∴ By induction method,  

𝑃 𝑛 : 𝑛 < 2𝑛  𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 
 

2. Prove, by mathematical induction, that for all 𝒏 ≥ 𝟏,𝒏𝟑 + 𝟐𝒏 is a multiple of 3. 
Solution: 
𝐿𝑒𝑡 𝑃 𝑛 : 𝑛 ≥ 1, 𝑛3 + 2𝑛 is a multiple of 3.                    … (1) 
𝑃 1 : 13 + 2 1 = 1 + 2 = 3 is a multiple of 3.  
∴ 𝑃(1) is true. 
Let us assume that 𝑃(𝑛)  is true. Now we have to prove that 𝑃(𝑛 + 1) is true. 
To prove: 

𝑃 𝑛 + 1 : (𝑛 + 1)3 + 2(𝑛 + 1) is a multiple of 3 
(𝑛 + 1)3 + 2 𝑛 + 1 = 𝑛3 + 3𝑛 + 3𝑛2 + 1 + 2𝑛 + 2            

= 𝑛3 + 2𝑛 + 3𝑛 + 3𝑛2 + 3   
= 𝑛3 + 2𝑛 + 3 𝑛2 + 𝑛 + 1    

From (1)  𝑛3 + 2𝑛 is a multiple of 3 
∴ (𝑛 + 1)3 + 2 𝑛 + 1  𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3  

 
∴ 𝑃 𝑛 + 1  is true. 
∴ By induction method, 
𝑃 𝑛 : 𝑛 ≥ 1, 𝑛3 + 2𝑛 is a multiple of 3, is true for all positive integer n. 

 
 
 3. What is the maximum number of students required in a discrete mathematics class to be sure that 
at least six will receive the same grade if there are five possible grades 𝑨, 𝑩, 𝑪, 𝑫 and 𝑭. 
Solution: 
By Pigeonhole principle, If there are 𝑛 holes and 𝑘 pigeons 𝑛 ≤ 𝑘 then there is at least one hole contains 

at least  
𝑘−1

𝑛
 + 1 pigeons. 

Here 𝑛 = 5 

 
𝑘 − 1

5
 + 1 = 6 

𝑘 − 1

5
= 5 ⇒ 𝑘 − 1 = 25 ⇒ 𝑘 = 26 

The maximum number of students required in a discrete mathematics class is 26. 

 
Tutorial – 5 

 
1. Using method of generating function to solve the recurrence relation                                                
         𝒂𝒏 + 𝟑𝒂𝒏−𝟏 − 𝟒𝒂𝒏−𝟐 = 𝟎; 𝒏 ≥ 𝟐 , given that 𝒂𝟎 = 𝟑 and 𝒂𝟏 = −𝟐. 
Solution:  

𝐿𝑒𝑡 𝐺 𝑥 =  𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯            … 1  

where 𝐺 𝑥  is the generating function for the sequence  𝑎𝑛 . 

Given          𝑎𝑛 + 3𝑎𝑛−1 − 4𝑎𝑛−2 = 0 



 

 

Multiplying by 𝑥𝑛  and summing from 2 to ∞, we have 

 𝑎𝑛𝑥𝑛

∞

𝑛=2

+ 3  𝑎𝑛−1𝑥
𝑛

∞

𝑛=2

− 4  𝑎𝑛−2𝑥
𝑛

∞

𝑛=2

= 0  

 𝑎𝑛𝑥𝑛

∞

𝑛=2

+ 3𝑥  𝑎𝑛−1𝑥
𝑛−1

∞

𝑛=2

− 4𝑥2  𝑎𝑛−2𝑥
𝑛−2

∞

𝑛=2

= 0 

 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + ⋯  + 3𝑥 𝑎1𝑥 + 𝑎2𝑥

2 + ⋯  − 4𝑥2 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯  = 0 

𝐺 𝑥 − 𝑎0 − 𝑎1𝑥 + 3𝑥𝐺 𝑥 − 3𝑥𝑎0 − 4𝑥2𝐺 𝑥 = 0            [𝑓𝑟𝑜𝑚  1 ] 

𝐺 𝑥  1 + 3𝑥 − 4𝑥2 − 3 + 2𝑥 − 9𝑥 = 0 

𝐺 𝑥  1 + 3𝑥 − 4𝑥2 = 3 + 7𝑥 

𝐺 𝑥 =
3 + 7𝑥

 1 + 3𝑥 − 4𝑥2 
=

3 + 7𝑥

 1 + 4𝑥  1 − 𝑥 
 

 

3 + 7𝑥

 1 + 4𝑥  1 − 𝑥 
=

𝐴

 1 + 4𝑥 
+

𝐵

 1 − 𝑥 
 

3 + 7𝑥 = 𝐴 1 − 𝑥 + 𝐵 1 + 4𝑥 …  2  

Put 𝑥 = −  
1

4
 in (2) 

3 + 7  −
1

4
 = 𝐴  1 +

1

4
 ⇒

5

4
𝐴 = 3 −

7

4
⇒ 𝐴 =

5

5
= 1 

Put 𝑥 = 1 in (2) 

3 + 7 = 𝐵 1 + 4 ⇒ 5𝐵 = 10 ⇒ 𝐵 = 2 

𝐺 𝑥 =
1

 1 + 4𝑥 
+

2

 1 − 𝑥 
 

 

 𝑎𝑛𝑥𝑛

∞

𝑛=0

=   −4 𝑛𝑥𝑛

∞

𝑛=0

+ 2  𝑥𝑛

∞

𝑛=0

                            ∵
1

1 − 𝑥
=  𝑥𝑛

∞

𝑛=0

    

𝑎𝑛 = Coefficient of 𝑥𝑛  in 𝐺(𝑥) 

𝑎𝑛 =  −4 𝑛 + 2 

 
2. Using the generating function, solve the difference equation                                                                

𝐲𝐧+𝟐 − 𝐲𝐧+𝟏 − 𝟔𝐲𝐧 = 𝟎,𝐲𝟏 = 𝟏,𝐲𝟎 = 𝟐 
Solution:  

𝐿𝑒𝑡 𝐺 𝑥 =  𝑦𝑛𝑥𝑛

∞

𝑛=0

… (1) where 𝐺 𝑥  is the generating function for the sequence  𝑦𝑛 . 

Given 𝑦𝑛+2 − 𝑦𝑛+1 − 6𝑦𝑛 = 0  

Multiplying by 𝑥𝑛  and summing from 0 to ∞, we have 

 𝑦𝑛+2𝑥
𝑛

∞

𝑛=0

−  𝑦𝑛+1𝑥
𝑛

∞

𝑛=0

− 6  𝑦𝑛𝑥𝑛

∞

𝑛=0

= 0  

1

𝑥2
 𝑦𝑛+2𝑥

𝑛+2 

∞

𝑛=0

−
1

𝑥
 𝑦𝑛+1𝑥

𝑛+1

∞

𝑛=0

− 6  𝑦𝑛𝑥𝑛

∞

𝑛=0

= 0 



 

 

1

𝑥2
 𝐺 𝑥 − 𝑦1𝑥 − 𝑦0 −

1

𝑥
 𝐺 𝑥 − 𝑦0 − 6𝐺 𝑥 = 0            [𝑓𝑟𝑜𝑚  1 ] 

𝐺 𝑥  
1

𝑥2
−

1

𝑥
− 6 −

𝑦1

𝑥
−

𝑦0

𝑥2
+

𝑦0

𝑥
= 0 

𝐺 𝑥  
1

𝑥2
−

1

𝑥
− 6 −

1

𝑥
−

2

𝑥2
+

2

𝑥
= 0 ⇒ 𝐺 𝑥  

6𝑥2 − 𝑥 + 1

𝑥2
 =

2

𝑥2
−

1

𝑥
 

𝐺 𝑥  
1 − 𝑥 − 6𝑥2

𝑥2
 =

2 − 𝑥

𝑥2
 

𝐺 𝑥 =
2 − 𝑥

1 − 𝑥 − 6𝑥2
=

2 − 𝑥

 1 − 3𝑥  1 + 2𝑥 
 

2 − 𝑥

 1 − 3𝑥  1 + 2𝑥 
=

𝐴

 1 − 3𝑥 
+

𝐵

 1 + 2𝑥 
 

2 − 𝑥 = 𝐴 2𝑥 + 1 + 𝐵 1 − 3𝑥 …  2  

Put 𝑥 = −  
1

2
 in (2) 

2 −  −  
1

2
 = 𝐵  1 +  

3

2
 ⇒  

5

2
𝐵 =

5

2
⇒ 𝐵 = 1 

Put 𝑥 =
1

3
 in (2) 

2 −  
1

3
 = 𝐴  

2

3
+ 1 ⇒  

5

3
𝐴 =

5

3
⇒ 𝐴 = 1 

𝐺 𝑥 =
1

 1 − 3𝑥 
+

1

 1 + 2𝑥 
=

1

 1 − 3𝑥 
+

1

 1 −  −2𝑥  
 

 

 𝑦𝑛𝑥𝑛

∞

𝑛=0

=  3𝑛𝑥𝑛

∞

𝑛=0

+   −2 𝑛𝑥𝑛

∞

𝑛=0

          ∵
1

1 − 𝑥
=  𝑥𝑛

∞

𝑛=0

  

𝑦𝑛 = Coefficient of 𝑥𝑛  in 𝐺(𝑥) 

𝑦𝑛 = 3𝑛 +  −2 𝑛  

 

3. Find the number of integers between 1 and 250 both inclusive that are divisible by any of the 
integers 2,3,5,7. 
Solution: 
Let 𝐴, 𝐵, 𝐶 and 𝐷 represents the integer from 1 to 250 that are divisible by 2,3,5 and 7 respectively. 

 𝐴 =  
250

2
 = 125,  𝐵 =  

250

3
 = 83,  𝐶 =  

250

5
 = 50,  𝐷 =  

250

7
 = 35 

 𝐴 ∩ 𝐵 =  
250

2 × 3
 = 41,  𝐴 ∩ 𝐶 =  

250

2 × 5
 = 25,  𝐴 ∩ 𝐷 =  

250

2 × 7
 = 17,  𝐵 ∩ 𝐶 =  

250

3 × 5
 = 16  

 𝐵 ∩ 𝐷 =  
250

3 × 7
 = 11,  𝐶 ∩ 𝐷 =  

250

5 × 7
 = 7,  𝐴 ∩ 𝐵 ∩ 𝐶 =  

250

2 × 3 × 5
 = 8 

 𝐴 ∩ 𝐵 ∩ 𝐷 =  
250

2 × 3 × 7
 = 5,  𝐴 ∩ 𝐶 ∩ 𝐷 =  

250

2 × 5 × 7
 = 3,  𝐵 ∩ 𝐶 ∩ 𝐷 =  

250

3 × 5 × 7
 = 2 

 𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷 =  
250

2 × 3 × 5 × 7
 = 1 

∴The number of integers between 1 and 250 both inclusive that are divisible by any of the 
integers 2,3,5,7 is  
 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 =  𝐴 +  𝐵 +   𝐶 +  𝐷 −  𝐴 ∩ 𝐵 −   𝐴 ∩ 𝐶 −  𝐴 ∩ 𝐷 −  𝐵 ∩ 𝐶 −  𝐵 ∩ 𝐷  



 

 

                − 𝐶 ∩ 𝐷 +  𝐴 ∩ 𝐵 ∩ 𝐶 +  𝐴 ∩ 𝐵 ∩ 𝐷 +  𝐴 ∩ 𝐶 ∩ 𝐷 +  𝐵 ∩ 𝐶 ∩ 𝐷 −  𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷  
 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 = 125 + 83 + 50 + 35 − 41 − 25 − 17 − 16 − 11 − 7 + 8 + 5 + 3 + 2 − 1 

 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 = 193 
 

Tutorial – 6 
 

1. Suppose that there are 9 faculty members in the mathematics department and 11 in the computer 
science department. How many ways are there to select a committee to develop a discrete 
mathematics course at a school if the committee is to consist of three faculty member from 
mathematics department and four from the computer science department? 
Solution: 
The number of ways to select 3 mathematics faculty members from 9 faculty members is 9𝐶3  ways. 
The number of ways to select 4 computer Science faculty members from 11 faculty members is 11𝐶4  
ways. 
The number of ways to select a committee to develop a discrete mathematics course at a school if the 
committee is to consist of three faculty member from mathematics department and four from the 
computer science department is  9𝐶3 . 11𝐶4  ways.  

9𝐶3 . 11𝐶4 =
9 × 8 × 7

3!
.
11 × 10 × 9 × 8

4!
= 27720 

 
2. How many positive integers 𝒏 can be formed using the digits 𝟑,𝟒, 𝟒,𝟓, 𝟓,𝟔,𝟕 if 𝒏 has to exceed 
𝟓𝟎𝟎𝟎𝟎𝟎𝟎? 
Solution: 
The positive integer 𝑛 exceeds 5000000 if the first digit is either 5 or 6 or 7.If the first digit is 5 then the 
remaining six digits are 3,4,4,5,6,7.  
Then the number of positive integers formed by six digits is  

6!

2!
= 360                [𝑆𝑖𝑛𝑐𝑒 4 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑡𝑤𝑖𝑐𝑒] 

If the first digit is 6 then the remaining six digits are 3,4,4,5,5,7.  
Then the number of positive integers formed by six digits is  

6!

2! 2!
= 180                [𝑆𝑖𝑛𝑐𝑒 4 & 5 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑡𝑤𝑖𝑐𝑒] 

If the first digit is 7 then the remaining six digits are 3,4,4,5,6,5.  
Then the number of positive integers formed by six digits is  

6!

2! 2!
= 180                [𝑆𝑖𝑛𝑐𝑒 4 & 5 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑡𝑤𝑖𝑐𝑒] 

∴ The number of positive integers 𝑛 can be formed using the digits 3,4,4,5,5,6,7 if 𝑛 has to exceed 
5000000 is 360 + 180 + 180 = 720. 

 
3. Find the number of distinct permutations that can be formed from all the letters of each word  
     (1) RADAR (2) UNUSUAL. 
Solution:  
(1) The word RADAR contains 5 letters of which 2 A’s and 2 R’s are there. 

𝑇𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠 =
5!

2! 2!
= 30 

Number of distinct permutation =  30. 
(2) The word UNUSUAL contains 7 letters of which 3 U’s are there. 



 

 

𝑇𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠 =
7!

3!
= 840 

Number of distinct permutation =  840. 
 
4.What is the maximum number of students required in a discrete mathematics class to be sure that 
at least six will receive the same grade if there are five possible grades 𝑨, 𝑩, 𝑪, 𝑫 and 𝑭. 
Solution: 
By Pigeonhole principle, If there are 𝑛 holes and 𝑘 pigeons 𝑛 ≤ 𝑘 then there is at least one hole contains 

at least  
𝑘−1

𝑛
 + 1 pigeons. 

Here 𝑛 = 5 

 
𝑘 − 1

5
 + 1 = 6 

𝑘 − 1

5
= 5 ⇒ 𝑘 − 1 = 25 ⇒ 𝑘 = 26 

The maximum number of students required in a discrete mathematics class is 26. 

 
Tutorial – 7 

 
1. Determine which of the following graphs are bipartite and which are not. If a graph is bipartite, 
state if it is completely bipartite.  

 
                                                                                                                                                          
Solution: 
In the graph 𝐺1, Since there is no edges between 𝐷, 𝐸 and 𝐹, let us take it as one vertex set  
𝑉1 =  𝐷, 𝐸, 𝐹 . Obviously the other vertex set will be 𝑉2 =  𝐴, 𝐵, 𝐶 . 
Since there are edges between 𝐴 and 𝐵, and 𝐵 and 𝐶.  
∴ 𝐺1is not a bipartite graph.  

𝐴 

𝐵 

𝐷 
𝐸 

𝐶 

𝐹 
𝐷 

𝐸 

𝐷 𝐸 𝐹 

𝐵 𝐶 

𝐴 𝐺1 𝐺2 

𝐺3 

𝐴 𝐵 𝐶 



 

 

In the graph 𝐺2, Let 𝑉1 =  𝐴, 𝐶  and 𝑉2 =  𝐵, 𝐷, 𝐸 . Since there is no edge between the vertices in the 
same vertex set, 𝐺2 is a bipartite graph. Since there are edges between every vertices in the vertex set 
𝑉1to every vertices in the vertex set 𝑉2,  𝐺2 is completely bipartite. 
In the graph 𝐺3, Let 𝑉1 =  𝐴, 𝐵, 𝐶  and 𝑉2 =  𝐷, 𝐸, 𝐹 . Since there is no edge between the vertices in the 
same vertex set, 𝐺3 is a bipartite graph. Since there is no edge between 𝐴 and 𝐹, 𝐶and 𝐷, where 
𝐴, 𝐶 ∈ 𝑉1 𝑎𝑛𝑑 𝐷, 𝐹 ∈ 𝑉2 .  ∴  𝐺3 is not completely bipartite. 
 
2. Prove that the maximum number of edges in a simple disconnected graph with 𝒏 vertices and         
𝒌 components is                                                                                                                                            

 𝒏 − 𝒌  𝒏 − 𝒌 + 𝟏 

𝟐
. 

Solution: 

Let 𝑛𝑖  be the number of vertices in 𝑖𝑡   component. 

 𝑛𝑖

𝑘

𝑖=1

= 𝑛 … (1) 

 (𝑛𝑖 − 1)

𝑘

𝑖=1

=  𝑛𝑖

𝑘

𝑖=1

−  1

𝑘

𝑖=1

= 𝑛 − 𝑘 … 2  [𝑓𝑟𝑜𝑚  1 ] 

Squaring on both sides of  (2), we get 

   𝑛𝑖 − 1 

𝑘

𝑖=1

 

2

=  𝑛 − 𝑘 2 

  𝑛𝑖 − 1 2

𝑘

𝑖=1

+   𝑛𝑖 − 1  𝑛𝑗 − 1 

𝑘

𝑖≠𝑗

=  𝑛 − 𝑘 2  

  𝑛𝑖 − 1 2

𝑘

𝑖=1

≤   𝑛 − 𝑘 2 

 

  𝑛𝑖
2 − 2𝑛𝑖 + 1 

𝑘

𝑖=1

≤  𝑛2 − 2𝑛𝑘 + 𝑘2  

 𝑛𝑖
2

𝑘

𝑖=1

− 2  𝑛𝑖

𝑘

𝑖=1

+  1

𝑘

𝑖=1

≤  𝑛2 − 2𝑛𝑘 + 𝑘2  

 𝑛𝑖
2

𝑘

𝑖=1

− 2𝑛 + 𝑘 ≤  𝑛2 − 2𝑛𝑘 + 𝑘2          [𝑓𝑟𝑜𝑚  1 ] 

 𝑛𝑖
2

𝑘

𝑖=1

≤  𝑛2 − 2𝑛𝑘 + 𝑘2 + 2𝑛 − 𝑘 … (3) 

The maximum number of edges in 𝑖𝑡  component is 
𝑛𝑖 𝑛𝑖 − 1 

2
 

∴The maximum number of edges in the graph is 

 
𝑛𝑖 𝑛𝑖 − 1 

2

𝑘

𝑖=1

=
1

2
 𝑛𝑖

2

𝑘

𝑖=1

−
1

2
 𝑛𝑖

𝑘

𝑖=1

 



 

 

=
1

2
 𝑛𝑖

2

𝑘

𝑖=1

−
1

2
𝑛         [𝑓𝑟𝑜𝑚  1 ] 

≤  
1

2
 𝑛2 − 2𝑛𝑘 + 𝑘2 + 2𝑛 − 𝑘 −

1

2
𝑛         [𝑓𝑟𝑜𝑚  3 ] 

≤  
1

2
 𝑛2 − 2𝑛𝑘 + 𝑘2 + 𝑛 − 𝑘         

≤  
1

2
  𝑛 − 𝑘 2 + 𝑛 − 𝑘         

≤  
1

2
 𝑛 − 𝑘  𝑛 − 𝑘 + 1         

∴The maximum number of edges in the graph is 

≤
 𝑛 − 𝑘  𝑛 − 𝑘 + 1 

2
        

 
3. Draw the graph with 5 vertices, 𝑨, 𝑩, 𝑪,𝑫, 𝑬 such that 𝒅𝒆𝒈(𝑨)  =  𝟑 , 𝑩 is an odd vertex,  
     𝒅𝒆𝒈(𝑪)  =  𝟐 and 𝑫and 𝑬 are adjacent.                                                                                                      

 
 

Tutorial - 8 
 
1.  Using circuits, examine whether the following pairs of graphs 𝑮𝟏,𝑮𝟐 given below are isomorphic or 
not:  

 
Solution:  
In 𝐺1, the number of vertices is 4, the number of edges is 6. 

deg(𝐴) = 3 , deg(𝐵) = 3 , deg(𝐶) = 3 , deg(𝐷) = 3   
In 𝐺2, the number of vertices is 4, the number of edges is 6. 

deg(𝑉1) = 3 , deg(𝑉2) = 3 , deg(𝑉3) = 3 , deg(𝑉4) = 3  

𝐴 𝐵 

𝐶 𝐷 
𝐸 

𝐴 

𝐵 𝐶 

𝐷 

𝑉1  

𝑉3  𝑉4  

𝑉2  

𝐺1 𝐺2 



 

 

There are same number of vertices and edges in both the graph 𝐺1 and 𝐺2. 
Here in both graphs 𝐺1 and 𝐺2, all vertices are of degree 3.  
The mapping between the vertices of two graphs is given below 

𝐴 → 𝑉1, 𝐵 → 𝑉2, 𝐶 → 𝑉3, 𝐷 → 𝑉4 
There is one to one correspondences between the adjacency of the vertices in the graphs 𝐺1 and 𝐺2. 
∴ The graphs 𝐺1and 𝐺2 are isomorphic. 
 
2. Examine whether the following pair of graphs are isomorphic. If not isomorphic, give the reasons.  
 

 
Solution:  
In 𝐺, the number of vertices is 5, the number of edges is 8. 

deg(𝑢1) = 3 , deg(𝑢2) = 4 , deg(𝑢3) = 2 , deg(𝑢4) = 4 , deg(𝑢5) = 3  
In 𝐺′, the number of vertices is 5, the number of edges is 8. 

deg(𝑣1) = 3 , deg(𝑣2) = 2 , deg(𝑣3) = 4 , deg(𝑣4) = 3 , deg(𝑣5) = 4 
There are same number of vertices and edges in both the graph 𝐺 and 𝐺 ′ . 
Here in both graphs 𝐺 and 𝐺′, two vertices are of degree 3, two vertices are of degree 4, and one vertex 
is of degree 2.  

𝑢1 → 𝑣1,𝑢2 → 𝑣5,𝑢3 → 𝑣2,𝑢4 → 𝑣3, 𝑢5 → 𝑣4 
There is one to one correspondences between the graphs 𝐺 and 𝐺 ′ . 
∴ The graphs 𝐺and 𝐺′ are isomorphic. 
 
3. Find the all the connected sub graph obtained form the graph given in the following Figure, by  
deleting each vertex. List out the simple paths from 𝑨 to in each sub graph.  

 
Solution: 
The connected sub graph obtained form the graph given in the Figure, by deleting each vertex are 

𝐴 𝐶 

𝐹 𝐸 𝐷 

𝑢1 𝑢2 

𝑢3 

𝑢4 𝑢5 

𝑣1 𝑣2 

𝑣3 𝑣4 

𝑣5 

𝐺 𝐺′ 

𝐵 



 

 

 

 
The simple paths from 𝑨 to in each sub graph is 
(1) 𝐴 → 𝐹 → 𝐸 → 𝐷 → 𝐶, 𝐴 → 𝐹 → 𝐸 → 𝐶 → 𝐷 
(2)  𝐴 → 𝐹 → 𝐸 → 𝐷 
(3)  𝐴 → 𝐹 → 𝐸 
(4) 𝐴 → 𝐹 
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1. Find an Euler path or an Euler circuit, if it exists in each of the three graphs below. If it does not 
exist,  explain why?                                                                                                                                                      

 
Solution: 
In graph 𝐺1, deg 𝐴 = 3, deg 𝐵 = 3, deg 𝐶 = 2, deg 𝐷 = 4, deg 𝐸 = 2 
The graph 𝐺1 contains only two vertices of odd degree and all the other vertices are of even degree. 
∴ 𝐺1 has an Eulerian path but not Eulerian circuit. 
The Eulerian path for graph 𝐺1 is 𝐴 → 𝐵 → 𝐸 → 𝐷 → 𝐶 → 𝐴 → 𝐷 → 𝐵 
In graph 𝐺2, deg 𝐴 = 3, deg 𝐵 = 3, deg 𝐶 = 3, deg 𝐷 = 3, deg 𝐸 = 3 , deg 𝐹 = 3, deg 𝐺 = 6 

𝐴 

𝐹 𝐸 

𝐴 

𝐹 

𝐴 

𝐴 

𝐹 𝐸 𝐷 

𝐴 𝐶 

𝐹 𝐸 𝐷 

𝐴 𝐵 

𝐶 𝐷 𝐸 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 
𝐺 

𝐴 

𝐵 

𝐷 𝐸 
𝐺1 𝐺2 𝐺3 

𝐶 



 

 

The graph 𝐺2 contains only one vertex of even degree and all the other vertices are of odd degree. 
∴ 𝐺2 don’t contain neither Eulerian  path nor Eulerian circuit. 
In graph 𝐺3, deg 𝐴 = 4, deg 𝐵 = 4, deg 𝐶 = 4, deg 𝐷 = 4, deg 𝐸 = 4 
The graph 𝐺3 has all the vertices are of even degree. 
∴ 𝐺3 has an Eulerian circuit.  
The Eulerian circuit for graph 𝐺3 is 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸 → 𝐴 → 𝐷 → 𝐵 → 𝐸 → 𝐶 → 𝐴 
 

2. Check whether the graph given below is Hamiltonian or Eulerian or 2-colourable. Justify 
your answer. 

 
Solution: 

 
Since all the vertices of the above graph are of odd degree, ∴ The graph is not Eulerian. 
The graph is Hamiltonian, since there is a circuit which starts from the vertex 𝑣1 and traversing 
through all the vertices of the graph only once and ends at the vertex 𝑣1. 
The circuit is 𝑣1 → 𝑣2 → 𝑣3 → 𝑣4 → 𝑣6 → 𝑣5 → 𝑣8 → 𝑣7 → 𝑣1. 
The graph is 2-colourable, since all the vertices are coloured in such a way that adjacent 
vertices doesn’t have the same colour and the vertices are coloured with only two colours. 
Here 𝑣1, 𝑣3 , 𝑣6  and 𝑣8 have one colour and 𝑣2, 𝑣4, 𝑣5 and 𝑣7 have another colour. 
 
3. Which of the following simple graphs have a Hamiltonian circuit or, if not, a Hamiltonian path? 

Solution: 

𝑑 

𝑒 

𝐺1 

𝑎 

𝑐 

𝑏 

𝑑 

𝐺2 

𝑎 

𝑐 

𝑏 

𝑒 

𝐺3 

𝑎 𝑔 𝑏 

𝑑 𝑓 𝑐 

𝒗𝟐 𝒗𝟏 

𝒗𝟒 

𝒗𝟔 𝒗𝟓 

𝒗𝟕 𝒗𝟖 

𝒗𝟑 



 

 

The circuit 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑎 contains all the vertices of the graph 𝐺1by traversing through the 
vertices only once except end vertex. ∴The graph 𝐺1is a Hamiltonian circuit. 
The path 𝑎 → 𝑏 → 𝑐 → 𝑑 contains all the vertices of the graph 𝐺2 by traversing through the vertices only 
once. ∴The graph 𝐺1is a Hamiltonian path. 
There is no path containing all the vertices of the graph 𝐺3 by traversing through the vertices only once. 
∴The graph 𝐺3is neither a Hamiltonian circuit nor a Hamiltonian path. 
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1. If  𝑮,∗ is an abelian group, show that  𝒂 ∗ 𝒃  𝟐  =  𝒂𝟐  ∗ 𝒃𝟐. 
Proof: 

 𝑎 ∗ 𝑏  2  =  𝑎 ∗ 𝑏  ∗  𝑎 ∗ 𝑏  
= 𝑎 ∗  𝑏 ∗ 𝑎 ∗ 𝑏    𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
= 𝑎 ∗  𝑎 ∗ 𝑏 ∗ 𝑏  𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
=  𝑎 ∗ 𝑎  ∗  𝑏 ∗ 𝑏   𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

 𝑎 ∗ 𝑏  2 = 𝑎2  ∗ 𝑏2   
 
2. Prove that the intersection of any two subgroups of a group (𝑮,∗) is again a subgroup of  𝑮,∗ . 
Proof: 
Let 𝐻1  and 𝐻2  be two normal subgroups of a group(𝐺,∗).  
Let 𝐻1  𝑎𝑛𝑑  𝐻2  are subgroups (𝐺,∗). 
Since 𝑒 ∈ 𝐻1  𝑎𝑛𝑑 𝑒 ∈  𝐻2 ⇒ 𝑒 ∈ 𝐻1 ∩ 𝐻2 

∴ 𝐻1 ∩ 𝐻2  𝑖𝑠 𝑛𝑜𝑛 𝑒𝑚𝑝𝑡𝑦. 
∀𝑎, 𝑏 ∈ 𝐻1 ∩ 𝐻2  

⇒ 𝑎, 𝑏 ∈ 𝐻1  𝑎𝑛𝑑 𝑎, 𝑏 ∈ 𝐻2  
⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻1  𝑎𝑛𝑑 𝑎 ∗ 𝑏−1 ∈ 𝐻2       ∵ 𝐻1  𝑎𝑛𝑑  𝐻2  are subgroups    

⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻1 ∩ 𝐻2       ∵ 𝐻1  𝑎𝑛𝑑  𝐻2  are subgroups    
∴ 𝐻1 ∩ 𝐻2  is a subgroup. 
 
3. Prove that the necessary and sufficient condition for a non empty subset 𝑯 of a group  𝑮,∗  to be a 

subgroup is 𝒂,𝒃 ∈ 𝑯 ⇒ 𝒂 ∗ 𝒃−𝟏 ∈ 𝑯. 

Proof: 

Necessary condition: 

Let us assume that 𝐻is a subgroup of 𝐺. 

𝐻 itself is a group. 

𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏 ∈ 𝐻 … 1   𝐶𝑙𝑜𝑠𝑢𝑟𝑒   

𝑏 ∈ 𝐻 ⇒ 𝑏−1 ∈ 𝐻 … (2)       𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎, 𝑏−1 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻      𝑓𝑟𝑜𝑚  1  𝑎𝑛𝑑  2   

∴ 𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻. 

Sufficient condition: 

Let 𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻 and 𝐻 is a subset of 𝐺. 

Closure property: 

If 𝑏 ∈ 𝐻 ⇒ 𝑏−1 ∈ 𝐻 

𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎, 𝑏−1 ∈ 𝐻 ⇒ 𝑎 ∗  𝑏−1 −1 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏 ∈ 𝐻 

𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏 ∈ 𝐻 



 

 

Hence 𝐻 is closed. 

Associative property: 

∵ 𝐻 is a subset of 𝐺. All the elements in 𝐻 are elements of 𝐺. Since 𝐺 is associative under ∗. 

∴ 𝐻 is associative under ∗. 

Identity property: 

𝑎, 𝑎 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑎−1 ∈ 𝐻 ⇒ 𝑒 ∈ 𝐻 

∴ 𝑒 ∈ 𝐻 be the identity element. 

Inverse property: 

𝑒, 𝑎 ∈ 𝐻 ⇒ 𝑒 ∗ 𝑎−1 ∈ 𝐻 ⇒ 𝑎−1 ∈ 𝐻 

∴ 𝑎−1 ∈ 𝐻 be the inverse of 𝑎 ∈ 𝐻. 

𝐻 itself is a group. 

∴ 𝐻 is a subgroup of 𝐺. 
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1. State and Prove Lagrange’s theorem. 
Statement: 
The order of a subgroup of a finite group is a divisor of the order of the group. 
Proof: 
Let 𝑎𝐻 and 𝑏𝐻 be two left cosets of the subgroup {𝐻,∗} in the group {𝐺,∗}. 
Let the two cosets 𝑎𝐻 and 𝑏𝐻 be not disjoint. 
Then let 𝑐 be an element common to 𝑎𝐻 and 𝑏𝐻 i.e., 𝑐 ∈ 𝑎𝐻 ∩  𝑏𝐻 

∵ 𝑐 ∈ 𝑎𝐻, 𝑐 = 𝑎 ∗ 1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 1 ∈ 𝐻 … (1) 
∵ 𝑐 ∈ 𝑏𝐻, 𝑐 = 𝑏 ∗ 2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 2 ∈ 𝐻 … (2) 

From (1) and (2), we have 
𝑎 ∗ 1 = 𝑏 ∗ 2 

𝑎 = 𝑏 ∗ 2 ∗ 1
−1 … (3) 

             Let 𝑥 be an element in 𝑎𝐻 
             𝑥 = 𝑎 ∗  3, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 3 ∈ 𝐻 

= 𝑏 ∗ 2 ∗ 1
−1 ∗  3, 𝑢𝑠𝑖𝑛𝑔 (3) 

             Since H is a subgroup, 2 ∗ 1
−1 ∗  3 ∈ 𝐻 

             Hence, (3) means 𝑥 ∈ 𝑏𝐻 
             Thus, any element in 𝑎𝐻 is also an element in 𝑏𝐻. ∴  𝑎𝐻 ⊆ 𝑏𝐻 
              Similarly, we can prove that 𝑏𝐻 ⊆ 𝑎𝐻 
              Hence 𝑎𝐻 = 𝑏𝐻 
              Thus, if 𝑎𝐻 and 𝑏𝐻 are disjoint, they are identical. 
              The two cosets 𝑎𝐻 and 𝑏𝐻 are disjoint or identical. …(4) 
              Now every element 𝑎 ∈ 𝐺 belongs to one and only one left coset of 𝐻 in 𝐺, 
             For,  
             𝑎 = 𝑎𝑒 ∈ 𝑎𝐻, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∈ 𝐻 ⇒ 𝑎 ∈ 𝑎𝐻 

              𝑎 ∉ 𝑏𝐻, since 𝑎𝐻 and 𝑏𝐻 are disjoint i.e., 𝑎 belongs to one and only left coset of     
              𝐻 in 𝐺 i.e., 𝑎𝐻… (5) 
             From (4) and (5), we see that the set of left cosets of 𝐻 in 𝐺 form the partition of  
             𝐺. Now let the order of 𝐻 be 𝑚. 
             Let 𝐻 =  1,2, … , 𝑚  ,𝑤𝑒𝑟𝑒 𝑖 ′𝑠 are distinct 
             Then 𝑎𝐻 =  𝑎1,𝑎2,… , 𝑎𝑚   



 

 

              The elements of 𝑎𝐻  are also distinct, for, 𝑎𝑖 = 𝑎𝑗 ⇒ 𝑖 = 𝑗 , which is not  

              true. 
              Thus 𝐻 and 𝑎𝐻 have the same number of elements, namely 𝑚. 
              In fact every coset of 𝐻 in 𝐺 has exactly 𝑚 elements. 
              Now let the order of the group {𝐺,∗} be 𝑛, i.e., there are 𝑛 elements in 𝐺 
              Let the number of distinct left cosets of 𝐻 in 𝐺 be 𝑝. 
              ∴ The total number of elements of all the left cosets = 𝑝𝑚 = the total number 
              of elements of 𝐺. i.e., 𝑛 = 𝑝𝑚  
              i.e., 𝑚, the order of 𝐻 is adivisor of 𝑛, the order of 𝐺. 
 
2. If (𝒁, +) and (𝑬, +) where 𝒁 is the set all integers and 𝑬 is the set all even integers, show 
that the two semi groups (𝒁, +) and (𝑬, +) are isomorphic. 
Proof: 
 Let 𝑓:  𝑍, + → (𝐸, +)   be the mapping between the two semi groups (𝑍, +) and  𝐸, +  defined by 

𝑓 𝑥 = 2𝑥, ∀𝑥 ∈ 𝑍 
𝑓 is one to one: 

𝑓 𝑥 = 𝑓 𝑦  
⇒ 2𝑥 = 2𝑦 
⇒ 𝑥 = 𝑦 

∴ 𝑓is one to one. 
𝑓 is onto: 

Let 𝑓 𝑥 = 𝑦 ⇒ 𝑦 = 2𝑥 ⇒ 𝑥 =
𝑦

2
∈ 𝑍     ∵ 𝑦 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟  

∴ ∀𝑥 ∈ 𝐸 there is a preimage 
𝑥

2
∈ 𝑍. 

∴ 𝑓 is onto. 
𝑓 is homomorphism: 

∀𝑥, 𝑦 ∈ 𝑍, 𝑓 𝑥 + 𝑦 = 2 𝑥 + 𝑦 = 2𝑥 + 2𝑦 = 𝑓 𝑥 + 𝑓(𝑦) 
𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓(𝑦) 

∴ 𝑓is homomorphism. 
∴ 𝑓is isomorphism. 
∴The two semi groups (𝑍, +) and (𝐸, +) are isomorphic. 
 
3. If 𝒇: 𝑮 → 𝑮′  is a group homomorphism from  𝑮,∗  to  𝑮′ ,𝚫  then prove that for any 𝒂 ∈ 𝑮, 

𝒇 𝒂−𝟏 =  𝒇 𝒂  −𝟏. 

Solution: 

Since 𝑓 is a group homomorphism.  

∀𝑎, 𝑏 ∈ 𝐺, 𝑓 𝑎 ∗ 𝑏 = 𝑓 𝑎  Δ 𝑓 𝑏  

Since G is a group,  𝑎 ∈ 𝐺 ⇒ 𝑎−1 ∈ 𝐺. 

𝑓 𝑎  Δ 𝑓(𝑎−1) = 𝑓(𝑎 ∗ 𝑎−1) 

𝑓 𝑎  Δ 𝑓(𝑎−1) = 𝑓(𝑒) 

𝑓 𝑎  Δ 𝑓 𝑎−1 = 𝑒′                       𝑤𝑒𝑟𝑒 𝑒′  𝑖𝑠 𝑡𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐺′   

The inverse of 𝑓 𝑎  is 𝑓 𝑎−1 . 

∴  𝑓 𝑎  −1 = 𝑓(𝑎−1) 

 

 
 



 

 

Tutorial – 12 
 

1. Let  (𝑮,∗) and (𝑯, ∆) be groups and 𝒈: (𝑮,∗)  →  (𝑯, ∆) be group homomorphism. Then 
prove that kernel of 𝒈 is a normal sub-group of (𝑮,∗). 
Proof: 
Let 𝐾 = 𝑘𝑒𝑟 𝑔 = {𝑔 𝑎 = 𝑒 ′ \𝑎 ∈ 𝐺, 𝑒 ′ ∈ 𝐻} 
To prove 𝐾 is a subgroup of 𝐺: 
We know that 𝑔 𝑒 = 𝑒 ′ ⇒ 𝑒 ∈ 𝐾 
∴ 𝐾 is a non-empty subset of 𝐺. 
By the definition of homomorphism 𝑔 𝑎 ∗ 𝑏 = 𝑔 𝑎  ∆ 𝑔 𝑏 , ∀𝑎, 𝑏 ∈ 𝐺 
Let 𝑎, 𝑏 ∈ 𝐾 ⇒ 𝑔 𝑎 = 𝑒 ′  𝑎𝑛𝑑 𝑔 𝑏 = 𝑒 ′   

Now 𝑔 𝑎 ∗ 𝑏−1 = 𝑔 𝑎  ∆ 𝑔 𝑏−1 = 𝑔 𝑎  ∆  𝑔 𝑏  
−1

= 𝑒 ′∆  𝑒 ′ −1 

= 𝑒 ′∆ 𝑒 ′ = 𝑒′ 
∴ 𝑎 ∗ 𝑏−1 ∈ 𝐾 

∴ 𝐾 is a subgroup of 𝐺 
To prove 𝐾 is a normal subgroup of 𝐺: 
For any 𝑎 ∈ 𝐺 𝑎𝑛𝑑 𝑘 ∈ 𝐾, 

𝑔 𝑎−1 ∗ 𝑘 ∗ 𝑎 = 𝑔 𝑎−1  ∆ 𝑔 𝑘 ∆𝑔 𝑎 =  𝑔 𝑎−1 ∆ 𝑔 𝑘  ∆ 𝑔 𝑎  
= 𝑔 𝑎−1 ∆ 𝑒 ′∆ 𝑔 𝑎 =  𝑔 𝑎−1  ∆ 𝑔 𝑎 = 𝑔 𝑎−1 ∗ 𝑎 = 𝑔 𝑒 = 𝑒′ 

𝑎−1 ∗ 𝑘 ∗ 𝑎 ∈ 𝐾 
∴ 𝐾 is a normal subgroup of 𝐺 

 
2. Show that (𝒁, +,×) is an integral domain where 𝒁 is the set of all integers. 
Proof: 
Closure:  

∀𝑎, 𝑏 ∈ 𝑍 ⇒ 𝑎 + 𝑏 ∈ 𝑍  
∀𝑎, 𝑏 ∈ 𝑍 ⇒ 𝑎 × 𝑏 ∈ 𝑍 

∴ 𝑍 is closed under + and ×. 
Associative: 

∀𝑎, 𝑏, 𝑐 ∈ 𝑍 ⇒  𝑎 + 𝑏 + 𝑐 = 𝑎 +  𝑏 + 𝑐   
∀𝑎, 𝑏 ∈ 𝑍 ⇒  𝑎 × 𝑏 × 𝑐 = 𝑎 ×  𝑏 × 𝑐  

∴ 𝑍 is associative under + and ×. 
Identity: 
Let 𝑒 ∈ 𝑍 be the identity element. 

∀𝑎 ∈ 𝑍, 𝑎 + 𝑒 = 𝑒 + 𝑎 = 𝑎 ⇒ 𝑎 + 𝑒 = 𝑎 ⇒ 𝑒 = 0 
∴ 0 ∈ 𝑍 is the identity element with respect to the binary operation +. 

∀𝑎 ∈ 𝑍, 𝑎 × 𝑒 = 𝑒 × 𝑎 = 𝑎 ⇒ 𝑎 × 𝑒 = 𝑎 ⇒ 𝑒 = 1 
∴ 1 ∈ 𝑍 is the identity element with respect to the binary operation +. 
Inverse: 
Let 𝑏 ∈ 𝑍 be the inverse element of 𝑎 ∈ 𝑍. 

𝑎 + 𝑏 = 𝑏 + 𝑎 = 0 ⇒ 𝑎 + 𝑏 = 0 ⇒ 𝑏 = −𝑎 ∈ 𝑍 
−𝑎 ∈ 𝑍 is the inverse of 𝑎 ∈ 𝑍  
∴ Every element has its inverse in 𝑍 under binary operation +. 
Commutative: 

∀𝑎, 𝑏 ∈ 𝑍, 𝑎 + 𝑏 = 𝑏 + 𝑎 



 

 

∀𝑎, 𝑏 ∈ 𝑍, 𝑎 × 𝑏 = 𝑏 × 𝑎 
∴ 𝑍 is Commutative under + and ×. 
Distributive: 

∀𝑎, 𝑏, 𝑐 ∈ 𝑍, 𝑎 ×  𝑏 + 𝑐 = 𝑎 × 𝑏 + 𝑎 × 𝑐 
∴ × is distributive over +.  

∀𝑎, 𝑏 ∈ 𝑍, 𝑎 × 𝑏 = 0 ⇒ 𝑎 = 0 𝑜𝑟 𝑏 = 0 
∴ 𝑍 has no zero divisors. 
∴ (𝑍, +,×) is an integral domain. 
 
3. If ∗ is a binary operation on the set R of real numbers defined by  𝒂 ∗ 𝒃 = 𝒂 + 𝒃 + 𝟐𝒂𝒃, 
(1) Show that  𝑹,∗  is a semigroup , 
(2) Find the identity element if it exists  
(3) Which elements has inverse and what are they?  
Solution: 
(1) i) Closure: ∀𝑎, 𝑏 ∈ 𝑅, 𝑎 + 𝑏 + 2𝑎𝑏 ∈ 𝑅 ⇒ 𝑎 ∗ 𝑏 ∈ 𝑅 
                ∴ 𝑅 is closed under binary operation ∗. 
ii) Associative: ∀𝑎, 𝑏, 𝑐 ∈ 𝑅, 

𝑎 ∗  𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 + 𝑐 + 2𝑏𝑐  
= 𝑎 +  𝑏 + 𝑐 + 2𝑏𝑐 + 2𝑎 𝑏 + 𝑐 + 2𝑏𝑐 = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑎𝑐 + 4𝑎𝑏𝑐 

=  𝑎 + 𝑏 + 2𝑎𝑏 + 2 𝑎 + 𝑏 + 2𝑎𝑏 𝑐 + 𝑐 
=  𝑎 + 𝑏 + 2𝑎𝑏 ∗ 𝑐 =  𝑎 ∗ 𝑏 ∗ 𝑐 
∴ 𝑎 ∗  𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 + 𝑐 + 2𝑏𝑐  

∴ 𝑅 is associative under binary operation ∗. 
iii) Identity: Let 𝑒 ∈ 𝑅 be the identity element in 𝑅 

∀𝑎 ∈ 𝑅, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 
𝑎 + 𝑒 + 2𝑎𝑒 = 𝑎 ⇒ 𝑒 + 2𝑎𝑒 = 0 ⇒ 𝑒 = 0 ∈ 𝑅 

∴ 0 ∈ 𝑅 is the identity element. 
∴  𝑅,∗  is a semigroup. 
(2) 0 ∈ 𝑅 is the identity element. 
(3) Let 𝑎′ ∈ 𝑅 be the inverse element of 𝑎 ∈ 𝑅 

∀𝑎 ∈ 𝑅, 𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒 

𝑎 + 𝑎′ + 2𝑎𝑎′ = 0 ⇒ 𝑎′ 1 + 2𝑎 = −𝑎 ⇒ 𝑎′ = −
𝑎

1 + 2𝑎
∈ 𝑅 

∴ 𝑎′ = −
𝑎

1+2𝑎
∈ 𝑅 −  

1

2
  is the inverse element for ∀𝑎 ∈ 𝑅 −  

1

2
 . 
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1. Show that (𝑵,≤) is a partially ordered set where 𝑵 is set of all positive integers and ≤ is 
defined by 𝒎 ≤  𝒏 iff 𝒏 − 𝒎 is a non-negative integer. 

Proof: 

Let R be the relation 𝑚 ≤ 𝑛 𝑖𝑓𝑓 𝑛 − 𝑚 is a non-negative integer. 

𝑖) ∀𝑥 ∈ 𝑁,  𝑥 − 𝑥 = 0 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ⇒  𝑥, 𝑥 ∈ 𝑅 
∴ 𝑅 is reflexive. 
𝑖𝑖)∀𝑥, 𝑦 ∈ 𝑁, 
 𝑥, 𝑦 ∈ 𝑅 &  𝑦, 𝑥 ∈ 𝑅 
⇒   𝑥 − 𝑦  𝑖𝑠  𝑎 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 &  𝑦 − 𝑥  𝑖𝑠  𝑎 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  
It is possible only if 𝑥 − 𝑦 = 0 ⇒ 𝑥 = 𝑦 



 

 

 𝑥, 𝑦 ∈ 𝑅 &  𝑦, 𝑥 ∈ 𝑅 ⇒ 𝑥 = 𝑦 
 ∴ 𝑅 is Anti Symmetric. 
𝑖𝑖𝑖)∀𝑥, 𝑦, 𝑧 ∈ 𝑁,  𝑥, 𝑦 ∈ 𝑅 𝑎𝑛𝑑  𝑦, 𝑧 ∈ 𝑅 
𝑥 − 𝑧 =  𝑥 − 𝑦 +  𝑦 − 𝑧  
Since sum of two non-negative integer is also a non-negative integer. 
⇒  𝑥 − 𝑧 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ⇒  𝑥, 𝑧 ∈ 𝑅 
 𝑥, 𝑦 ∈ 𝑅 𝑎𝑛𝑑  𝑦, 𝑧 ∈ 𝑅 ⇒  𝑥, 𝑧 ∈ 𝑅 
∴ 𝑅 is Transitive. 
∴ (𝑵, ≤) is a partially ordered set. 

 
2. Let 𝑳 be lattice, where 𝒂 ∗ 𝒃 = 𝒈𝒍𝒃(𝒂, 𝒃) and 𝒂 ⊕ 𝒃 = 𝒍𝒖𝒃(𝒂, 𝒃) for all 𝒂, 𝒃 ∈ 𝑳. Then both 
binary operations ∗ and ⊕ defined as in 𝑳 satisfies commutative law, associative law, 
absorption law and idempotent law. 
Solution: 
Commutative law: 
To prove: ∀𝑎, 𝑏 ∈ 𝐿 ⇒ 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 
𝑎 ∗ 𝑏 = 𝑔𝑙𝑏 𝑎, 𝑏 = 𝑔𝑙𝑏 𝑏, 𝑎 = 𝑏 ∗ 𝑎   
𝑎 ⊕ 𝑏 = 𝑙𝑢𝑏 𝑎, 𝑏 = 𝑙𝑢𝑏 𝑏, 𝑎 = 𝑏 ⊕ 𝑎 
Associative law: 
To prove: ∀𝑎, 𝑏, 𝑐 ∈ 𝐿 ⇒  𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 ∗ 𝑐 ,  𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕  𝑏 ⊕ 𝑐  
We know that     𝑎 ∗ 𝑏 ≤ 𝑎, 𝑎 ∗ 𝑏 ≤ 𝑏 

⇒  𝑎 ∗ 𝑏 ∗ 𝑐 ≤ 𝑎 ∗ 𝑏 ≤ 𝑎 …  1  
⇒  𝑎 ∗ 𝑏 ∗ 𝑐 ≤ 𝑎 ∗ 𝑏 ≤ 𝑏…  2  

⇒  𝑎 ∗ 𝑏 ∗ 𝑐 ≤ 𝑐 …  3  
From (2)  and (3), we get 

 𝑎 ∗ 𝑏 ∗ 𝑐 ≤ 𝑏 ∗ 𝑐 …  4  
Now from (1) and (4), we get 

 𝑎 ∗ 𝑏 ∗ 𝑐 ≤ 𝑎 ∗  𝑏 ∗ 𝑐 … (5) 
We know that     𝑏 ∗ 𝑐 ≤ 𝑏, 𝑏 ∗ 𝑐 ≤ 𝑐 

⇒ 𝑎 ∗  𝑏 ∗ 𝑐 ≤ 𝑎 …  6  
⇒ 𝑎 ∗  𝑏 ∗ 𝑐 ≤ 𝑏 ∗ 𝑐 ≤ 𝑏…  7  
⇒ 𝑎 ∗  𝑏 ∗ 𝑐 ≤ 𝑏 ∗ 𝑐 ≤ 𝑐 …  8  

From (6) and (7), we get 
𝑎 ∗  𝑏 ∗ 𝑐 ≤ 𝑎 ∗ 𝑏…  9  

Now from (9) and (8), we get 
𝑎 ∗  𝑏 ∗ 𝑐 ≤  𝑎 ∗ 𝑏 ∗ 𝑐 …  10  

From (5) and (10), we get 
 𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 ∗ 𝑐  

Similarly we can prove  
 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕  𝑏 ⊕ 𝑐  

Idempotent law: 
To prove: ∀𝑎 ∈ 𝐿 ⇒ 𝑎 ∗ 𝑎 = 𝑎, 𝑎 ⊕ 𝑎 = 𝑎 
Since 𝑎 ≤ 𝑎, 𝑎 is a lower bound of {𝑎}. If b is any lower bound of {𝑎}, then we have 𝑏 ≤ 𝑎. Thus 
we have 𝑎 ≤ 𝑎 or 𝑏 ≤ 𝑎 equivalently, 𝑎 is an lower bound for  𝑎 and any other lower bound of 
 𝑎  is smaller than 𝑎. This shows that 𝑎 is the greatest lower bound of {𝑎}, i.e., 𝑔𝑙𝑏{𝑎, 𝑎} = 𝑎  



 

 

∴ 𝑎 ∗ 𝑎 = 𝑔𝑙𝑏 𝑎, 𝑎 = 𝑎 
Since 𝑎 ≥ 𝑎, 𝑎 is a upper bound of {𝑎}. If b is any upper bound of {𝑎}, then we have 𝑏 ≥ 𝑎. Thus 
we have 𝑎 ≥ 𝑎 or 𝑏 ≥ 𝑎 equivalently, 𝑎 is an upper bound for  𝑎 and any other upper bound of 
 𝑎  is greater than 𝑎. This shows that 𝑎 is the least upper bound of {𝑎}, i.e., 𝑙𝑢𝑏{𝑎, 𝑎} = 𝑎  
∴ 𝑎 ∗ 𝑎 = 𝑙𝑢𝑏 𝑎, 𝑎 = 𝑎 
Absorption law: 
To prove: ∀𝑎, 𝑏 ∈ 𝐿 ⇒  𝑎 ∗ 𝑏 ⊕ 𝑎 = 𝑎,  𝑎 ⊕ 𝑏 ∗ 𝑎 = 𝑎 
Form the definition of glb, 𝑎 ∗ 𝑏 ≤ 𝑎   

⇒  𝑎 ∗ 𝑏 ⊕ 𝑎 ≤ 𝑎 ⊕ 𝑎 
⇒  𝑎 ∗ 𝑏 ⊕ 𝑎 ≤ 𝑎 …  1   ∵ 𝑎 ⊕ 𝑎 = 𝑎  

Form the definition of lub,  𝑎 ∗ 𝑏 ⊕ 𝑎 ≥ 𝑎 …  2  
From (1) and (2), we get 

 𝑎 ∗ 𝑏 ⊕ 𝑎 = 𝑎 
Form the definition of lub, 𝑎 ⊕ 𝑏 ≥ 𝑎   

⇒  𝑎 ⊕ 𝑏 ∗ 𝑎 ≥ 𝑎 ∗ 𝑎 
⇒  𝑎 ⊕ 𝑏 ∗ 𝑎 ≥ 𝑎 …  3   ∵ 𝑎 ∗ 𝑎 = 𝑎  

Form the definition of glb,  𝑎 ⊕ 𝑏 ∗ 𝑎 ≤ 𝑎 …  4  
From (3) and (4), we get 

 𝑎 ⊕ 𝑏 ∗ 𝑎 = 𝑎 
 
3. Show that in a lattice if 𝒂 ≤ 𝒃 ≤ 𝒄, then 
(1) 𝒂⨁𝒃 = 𝒃 ∗ 𝒄 and 
(2)  𝒂 ∗ 𝒃 ⨁ 𝒃 ∗ 𝒄 = 𝒃 =  𝒂⨁𝒃 ∗  𝒂⨁𝒄  
Solution: 
(1)  𝑎⨁𝑏 = 𝑙𝑢𝑏 𝑎, 𝑏 = 𝑏 

𝑏 ∗ 𝑐 = 𝑔𝑙𝑏 𝑎, 𝑏 = 𝑏 
𝑎⨁𝑏 = 𝑏 ∗ 𝑐 

(2)  𝑎 ∗ 𝑏 ⨁ 𝑏 ∗ 𝑐 = 𝑙𝑢𝑏 𝑎 ∗ 𝑏, 𝑏 ∗ 𝑐 = 𝑙𝑢𝑏 𝑔𝑙𝑏 𝑎, 𝑏 ,𝑔𝑙𝑏 𝑏, 𝑐  = 𝑙𝑢𝑏 𝑎, 𝑏 = 𝑏 

 𝑎⨁𝑏 ∗  𝑎⨁𝑐 = 𝑔𝑙𝑏 𝑙𝑢𝑏 𝑎, 𝑏 , 𝑙𝑢𝑏 𝑎, 𝑐  = 𝑔𝑙𝑏 𝑏, 𝑐 = 𝑏 
 𝑎 ∗ 𝑏 ⨁ 𝑏 ∗ 𝑐 = 𝑏 =  𝑎⨁𝑏 ∗  𝑎⨁𝑐  
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1. Prove that every chain is a distributive lattice. 
Solution: 
Let (𝐿, ≤) be a chain and 𝑎, 𝑏, 𝑐 ∈ 𝐿. Consider the following cases: 
(I) 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑎 ≤ 𝑐, and (II) 𝑎 ≥ 𝑏 𝑎𝑛𝑑 𝑎 ≥ 𝑐 
For (I) 

𝑎 ∗  𝑏⨁𝑐 = 𝑎 … (1) 
 𝑎 ∗ 𝑏 ⨁ 𝑎 ∗ 𝑐 = 𝑎⨁𝑎 = 𝑎… (2) 

For (II) 
𝑎 ∗  𝑏⨁𝑐 = 𝑏⨁𝑐 … (3) 

 𝑎 ∗ 𝑏 ⨁ 𝑎 ∗ 𝑐 = 𝑏⨁𝑐 … (4) 
∴From (1),(2) and (3),(4) 

𝑎 ∗  𝑏⨁𝑐 =  𝑎 ∗ 𝑏 ⨁ 𝑎 ∗ 𝑐  
∴Every chain is a distributive lattice 



 

 

2. If 𝑺𝟒𝟐 is the set all divisors of 42 and 𝑫 is the relation “divisor of” on 𝑺𝟒𝟐 , prove that  𝑺𝟒𝟐, 𝑫  is a  
     complemented Lattice.          
Solution: 
𝑆42 =  1,2,3,6,7,14,21,42          
The Hasse diagram for  𝑆42 , 𝐷  is                                                                                                                       
 

 
1 ∨ 42 = 42, 1 ∧ 42 = 1 
2 ∨ 21 = 42, 2 ∧ 21 = 1 
3 ∨ 14 = 42, 3 ∧ 14 = 1 

7 ∨ 6 = 42, 7 ∧ 6 = 1 
The complement of 1 is 42, The complement of 42 is 1, The complement of 2 is 21, The complement of 
21 is 2, The complement of 3 is 14, The complement of 14 is 3, The complement of 7 is 6, The 
complement of 6 is 7. Since all the elements in (𝑆24 , 𝐷) has a complement, 
∴ (𝑆24 , 𝐷) is a complemented lattice. 
 
3. Draw the Hasse diagram representing the partial ordering   𝑨, 𝑩 : 𝑨 ⊆ 𝑩  on the power set           

𝑷(𝑺) Where 𝑺 =  𝒂,𝒃, 𝒄 . Find the maximal, minimal, greatest and least elements of the Poset. 

Solution: 

 
The minimal element is 𝜙 

The maximal element is  𝑎, 𝑏, 𝑐  

The least element is 𝜙 

The greatest element is  𝑎, 𝑏, 𝑐  

 

{𝒂} {𝒃} {𝒄} 

{𝒃,𝒄} {𝒂,𝒄} {𝒂,𝒃} 

{𝒂,𝒃, 𝒄} 

∅ 

2 3 7 

1 

6 14 
21 

42 
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1. In a Boolean algebra, prove that  𝒂 ∧ 𝒃 ′ = 𝒂′ ∨ 𝒃′.     

Solution: Let 𝑎, 𝑏 ∈ (𝐵,∧,⊕,′ , 0,1) 
To prove  𝑎 ∧ 𝑏 ′ = 𝑎′ ∨ 𝑏′ 

 𝑎 ∧ 𝑏 ∨  𝑎′ ∨ 𝑏′ =  𝑎 ∨  𝑎′ ∨ 𝑏′  ∧  𝑏 ∨  𝑎′ ∨ 𝑏′   

=  𝑎 ∨  𝑎′ ∨ 𝑏′  ∧   𝑎′ ∨ 𝑏′ ∨ 𝑏  

=   𝑎 ∨ 𝑎′ ∨ 𝑏′ ∧  𝑎′ ∨  𝑏′ ∨ 𝑏   

=  1 ∨ 𝑏′ ∧  𝑎′ ∨ 1 = 1 ∧ 1 
 𝑎 ∧ 𝑏 ∨  𝑎′ ∨ 𝑏′ = 1 … (1) 

 𝑎 ∧ 𝑏 ∧  𝑎′ ∨ 𝑏′ =   𝑎 ∧ 𝑏 ∧ 𝑎′ ∨   𝑎 ∧ 𝑏 ∧ 𝑏′  

=   𝑏 ∧ 𝑎 ∧ 𝑎′ ∨   𝑎 ∧ 𝑏 ∧ 𝑏′  

=  𝑏 ∧  𝑎 ∧ 𝑎′  ∨  𝑎 ∧  𝑏 ∧ 𝑏′   

=  𝑏 ∧ 0 ∨  𝑎 ∧ 0 = 0 ∨ 0 
 𝑎 ∧ 𝑏 ∧  𝑎′ ∨ 𝑏′ = 0 … (2) 

𝐹𝑟𝑜𝑚  1  𝑎𝑛𝑑  2  𝑤𝑒 𝑔𝑒𝑡, 
 𝑎 ∧ 𝑏 ′ = 𝑎′ ∨ 𝑏′ 

 
2. Simplify the Boolean expression 𝒂′ .𝒃′ . 𝒄 + 𝒂.𝒃′ . 𝒄 + 𝒂′ .𝒃′ . 𝒄′ using Boolean algebra identities. 

Solution: 

𝑎′ . 𝑏′ . 𝑐 + 𝑎. 𝑏′ . 𝑐 + 𝑎′ . 𝑏′ . 𝑐′ =  𝑎′ + 𝑎 . 𝑏′ . 𝑐 + 𝑎′ .𝑏′ . 𝑐′               𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

                          = 1. 𝑏′ . 𝑐 + 𝑎′ . 𝑏′ . 𝑐′               𝑎′ + 𝑎 = 1  

                 = 𝑏′ . 𝑐 + 𝑎′ . 𝑏′ . 𝑐′               1. 𝑎 = 𝑎  

                     = 𝑏′ . 𝑐 + 𝑏′ . 𝑎′ . 𝑐′               𝑎. 𝑏 = 𝑏. 𝑎  

                                                                       = 𝑏′ .  𝑐 + 𝑎′ . 𝑐′               𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

                                                = 𝑏′ .   𝑐 + 𝑎′ .  𝑐 + 𝑐′                𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

                                                                       = 𝑏′ .   𝑐 + 𝑎′ . 1               𝑎′ + 𝑎 = 1  

          = 𝑏′ .  𝑐 + 𝑎′               1. 𝑎 = 𝑎  

                             = 𝑏′ . 𝑐 + 𝑏′ . 𝑎′              𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

 

3. Prove that 𝑫𝟏𝟏𝟎 , the set of all positive divisors of a positive integer 110, is a Boolean algebra 110  
and find all its sub algebras. 
Solution: 

𝐷110 =  1,2,5,10,11,22,55,110  



 

 

 
Since set all divisors 𝐷 satisfies reflexive, anti-symmetric and transitive properties, 𝐷 is a partial order 
relation. 
∴  𝐷110 , 𝐷  is a Poset. 
From the Hasse diagram, we observe that every element in the Poset  𝐷110 , 𝐷  has a least upper bound 
and greatest lower bound. ∴  𝐷110 , 𝐷  is a Lattice. 
Here 1 is the least element and 110 is the greatest element. 
From the Hasse diagram, we observe that ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐷110 , 𝑎 ∨  𝑏 ∧ 𝑐 =  𝑎 ∨ 𝑏 ∧  𝑎 ∨ 𝑐   
and 𝑎 ∧  𝑏 ∨ 𝑐 =  𝑎 ∧ 𝑏 ∨  𝑎 ∧ 𝑐    
∴ 𝐷110  is a distributive Lattice. 
The complement of 1 is 110.    ∵ 1 ∧ 110 = 1 & 1 ∨ 110 = 110   
The complement of 2 is 55.      ∵ 2 ∧ 55 = 1 & 2 ∨ 55 = 110   
The complement of 5 is 22.      ∵ 5 ∧ 22 = 1 & 22 ∨ 5 = 110   
The complement of 10 is 11.    ∵ 10 ∧ 11 = 1 & 10 ∨ 11 = 110   
The complement of 11 is 10. 
The complement of 22 is 5. 
The complement of 55 is 2. 
The complement of 110 is 1. 
∵ Every element in 𝐷110  has atleast one complement, 𝐷110  is a complemented Lattice. 
The sub Boolean algebras are 
𝑖)  1,110  
𝑖𝑖)  1,2,5,10,11,22,55,110  
𝑖𝑖𝑖)  1,2,5,110  
𝑖𝑣)  1,2,11,110  
𝑣)  1,5,11,110  
𝑣𝑖)  1,10,22,110  
𝑣𝑖𝑖)  1,10,55,110  
𝑣𝑖𝑖𝑖)  1,22,11,110  

 

𝟐 𝟓 𝟏𝟏 

𝟓𝟓 𝟐𝟐 𝟏𝟎 

𝟏𝟏𝟎 
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