STATISTICS AND NUMERICAL METHODS

QUESTION III APRIL / MAY 2011

1. What are the applications of \boldsymbol{t} distributions?

* Test the hypothesis about the population mean for small samples
* Test the hypothesis about the difference between two means for small samples.

2. Define Type I and Type II errors in taking a decision.

Solution:
(i). Type-I error: Reject H_{0} when it is true.
(ii). Type-II error : Accept H_{0} when it is wrong.
3. What are the conditions for the validity of $\boldsymbol{\psi}^{\mathbf{2}}$ test?

Solution:

1. The experimental data (samples) must be independent to each other.
2. The total frequency (no. of observations in the sample) must be large, say ≥ 50.
3. All the individual data's should be greater than 5 .
4. The no. of classes n must lies in $4 \leq n \leq 16$.

4. Write any two differences between RBD and CRD.

Solution:
i. This design is more efficient than CRD. That is it has less experimental error.
ii. The statistical analysis for this design is simple and rapid.
5. What is the order of convergence and also state the error term for Newton Raphson method?

Solution:
The Criterion for convergence of Newton- Raphson -method is

$$
\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2} \text { in the interval considered. }
$$

The order of convergence of Newton- Raphson -method is 2.
6. Find the dominant Eigen value of the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ by power method.

Solution:
Solution : Let $X_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ be the initial vector.

Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]=3\left[\begin{array}{c}
0.33 \\
1
\end{array}\right]=3 X_{2} \\
A X_{2}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
0.33 \\
1
\end{array}\right]=\left[\begin{array}{l}
2.33 \\
4.99
\end{array}\right]=4.99\left[\begin{array}{c}
0.47 \\
1
\end{array}\right]=4.99 X_{3}
\end{gathered}
$$

$$
\begin{gathered}
A X_{3}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
0.47 \\
1
\end{array}\right]=\left[\begin{array}{l}
2.47 \\
5.41
\end{array}\right]=5.41\left[\begin{array}{c}
0.46 \\
1
\end{array}\right]=5.41 X_{4} \\
A X_{4}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
0.46 \\
1
\end{array}\right]=\left[\begin{array}{l}
2.46 \\
5.38
\end{array}\right]=5.38\left[\begin{array}{c}
0.46 \\
1
\end{array}\right]=X_{5} \\
A X_{5}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
0.46 \\
1
\end{array}\right]=\left[\begin{array}{l}
2.46 \\
5.38
\end{array}\right]=5.38\left[\begin{array}{c}
0.46 \\
1
\end{array}\right]=X_{6}
\end{gathered}
$$

\therefore The dominant Eigen value $=5.38$.
7. Using Trapezoidal rule, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ with $h=0$. 2. Hence obtain an approximate value of π. Solution:

Here $y(x)=\frac{1}{1+x^{2}}$. We form a table

$x:$	0	0.2	0.4	0.6	0.8	1.0
$y=\frac{1}{1+x^{2}}:$	1	0.961	0.862	0.735	0.609	0.5

Trapezoidal rule

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{1+x^{2}} d x=\frac{1}{2}[(1+0.5)+2(0.961+0.862+0.735+0.609)] \\
& I=3.917
\end{aligned}
$$

By Actual Integration:

$$
I=\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1} 1-\tan ^{-1} 0=\pi
$$

$$
\text { Hence } I=3.197=\pi
$$

8. State the formula to find the second order derivative using the forward differences. Solution:

The second derivative of y at $x=x_{0}+p h$ is

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+(p-1) \Delta^{3} y_{0}+\frac{6 p^{2}-18 p+11}{12} \Delta^{4} y_{0}+\cdots\right]
$$

9. Given $y^{\prime}=-y$ and $y(0)=1$, determine the value of $y(0.01)$ by Euler's method.

Solution:

$$
\text { Given } y^{\prime}=f(x, y)=-y \quad \text { and } y(0)=1 \Rightarrow x_{0}=0, y_{0}=1
$$

To find $\boldsymbol{h}: \quad$ Since $y(0)=1 \Rightarrow y\left(x_{0}\right)=y_{0}$
$\therefore h=x_{1}-x_{0}=0.01-0.0=0.01$
The Euler's formula is

$$
y_{n+1}\left(x_{n}+h\right)=y_{n}+h\left[f\left(x_{n}, y_{n}\right)\right], n=0,1,2, \ldots . \quad \text { To find }
$$

$$
\begin{aligned}
& \quad y_{1}\left(x_{0}+h\right)=y_{0}+h\left[f\left(x_{0}, y_{0}\right)\right] \\
& \therefore \quad \\
& \quad y_{1}(0+0.01)=1+(0.01)[f(0,1)]=1+(0.01)[-1]=1-0.01 \\
& \\
& y_{\mathbf{1}}(\mathbf{0 . 0 1})=\mathbf{0 . 9 9}
\end{aligned}
$$

10. Write the Milne's Predictor-corrector formula.

Solution:

The Milne's Predictor formula is

$$
y_{n+1, P}\left(x_{n}+h\right)=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

The Milne's Corrector formula is

$$
y_{n+1, C}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

Part - B

11. (a) (i). In a random sample of 1000 people from city $A, 400$ are found to be consumers of wheat. In a sample of 800 from city B, 400 are found to be consumers of wheat. Does this data give a significant difference between the two cities as far as the proportion of wheat consumers is concerned?

Solution:

$$
\begin{array}{lll}
\text { Given that } n_{1}=1000, x_{1}=400 & \text { and } & n_{2}=800, x_{2}=400 \\
p_{1}=\text { Sample prop of consume alcohol in } A & p_{1}=\frac{400}{1000}=0.4 \quad \& \quad q_{1}=0.6 \\
p_{2}=\text { Sample prop of consume alcohol in } B & p_{2}=\frac{x_{2}}{n_{2}}=\frac{400}{800}=0.5 \quad \& \quad q_{2}=0.5
\end{array}
$$

Null Hypothesis:

$H_{0}: P_{1}=P_{2} \quad$ i.e., there is no difference between A \& B

Alternative hypothesis:

$$
H_{1}: P_{1} \neq P_{2}
$$

Here Population Proportion P is not known.

$$
\begin{aligned}
& \therefore \quad P=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}} \\
& P=\frac{1000 * 0.4+800 * 0.5}{1000+800}=0.444
\end{aligned}
$$

$$
\therefore P=0.444 \text { and } Q=0.556
$$

$$
\text { The test statistic is given by } z=\frac{p_{1}-p_{2}}{\sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
z=\frac{0.5-0.4}{\sqrt{[0.444 * 0.556]\left(\frac{1}{1000}+\frac{1}{800}\right)}}=\frac{0.1}{0.02356}
$$

$$
z=4.24 \mathrm{app}
$$

At 5% level of significance, the table value for $z_{\alpha}=1.96$.

$$
\mid \text { calculated value } \mid>\text { tabulated value }
$$

$$
|4.24|>1.96 \quad \Rightarrow \text { reject } H_{0}
$$

Conclusion: We reject the null hypothesis. That is there is some difference b / w two groups.
11. (a). (ii). 4 coins were tossed 160 times and the following results were obtained :

No. of heads:	0	1	2	3	4
Observed frequencies:	1	7	52	54	31

Under the assumption that the coins are unbiased, find the expected frequencies of getting $0,1,2,3,4$ heads and test the goodness of fit.

Solution:

H_{0} : The coin is unbiased.
H_{1} : The coin is biased.

Probability of getting head $p=\frac{1}{2}$.
Probability of getting tail $q=\frac{1}{2}$
The expected frequencies are $P(x)=n C_{x} p^{x} q^{n-x}, \quad x=0,1,2 .$.

$$
\begin{gathered}
P(x)=4 C_{x} p^{x} q^{4-x}, \quad x=0,1,2 . . \\
P(0 \text { head })=P(x=0)=4 C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4-0}=0.0625 \\
P(1 \text { head })=P(x=1)=4 C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4-1}=0.25 \\
P(2 \text { head })=P(x=2)=4 C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{4-2}=0.375 \\
P(3 \text { head })=P(x=3)=4 C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{4-3}=0.25 \\
P(4 \text { head })=P(x=4)=4 C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{4-4}=0.0625
\end{gathered}
$$

No. of Heads	O_{i}	$E_{i}=N * P(x)$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
0	17	10	4.9
1	52	40	3.6
2	54	60	0.6
3	31	40	2.025
4	6	10	1.6
		$\mathrm{~N}=160$	12.725

At 5% LOS with $n-1=5-1=4$ d.o.f is $9.488 \chi^{\chi^{2}=12.725}$
\mid Cacl value $\mid>$ Table value
We reject H_{0}, The coin is biased one.
OR
11. (b). (i). The heights of 10 males of a given locality are found to be $67,62,68,61,68,70,64,64,66$ inches. Is it reasonable to believe that the average height is greater than 64 inches?
Solution:

x_{i}	70	67	62	68	61	68	70	64	64	66	$\sum x=660$
$x_{i}-\bar{x}$	4	1	-4	2	-5	2	4	-2	-2	0	
$\left(x_{i}-\bar{x}\right)^{2}$	16	1	16	4	25	4	16	4	4	0	$\sum\left(x_{i}-\bar{x}\right)^{2}$ $=90$

$\bar{x}=\frac{\sum x_{i}}{n}=\frac{660}{10}=66$
$\sigma=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\frac{90}{10-1}=\frac{90}{9}=10$
$\therefore \quad \sigma=\sqrt{10}=3.162$
Hence $n=10, \bar{x}=66, \quad \sigma=3.162, \quad \mu=64$
Null Hypothesis $\quad: \boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\mu}=\mathbf{6 4}$ i.e., the average height is equal to 64 inches.
Alternative Hypothesis : $\boldsymbol{H}_{\mathbf{1}}: \boldsymbol{\mu}>64$ (Right tailed test)
The test statistic is given by

$$
\begin{aligned}
& t=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \text { with } n-1 \text { degrees of freedom } \\
& t=\frac{66-64}{\frac{3.162}{\sqrt{10}}}=\frac{2}{1}=2 \\
& |t|=2
\end{aligned}
$$

The critical value for t for a right tailed test at 5% level of significance with $10-1=9$ degrees of freedom is 1.833 .
Calculated value $=2 \quad$ and \quad Tabulated value $=1.833$
\mid Calculated value $\mid \leq$ Tabulated value then accept H_{0}
But $|2|>1.833 \quad$ Reject H_{0}

Conclusion:

$\left|t_{\alpha}\right|>t$, we reject H_{0}. That is the average height is greater than 64 inches.
11. (b). (ii). Test of the fidelity and selectivity of 190 radio receivers produced the results shown in the following table :

		Fidelity	
Selectivity	Low	Average	High
Low	6	12	32
Average	33	61	18
High	12	15	0

Use the $0.0 l$ level of significance to test whether there is a relationship between fidelity and selectivity.

Solution:

$\boldsymbol{H}_{\mathbf{0}}$: There is no relationship between fidelity and selectivity.
$\boldsymbol{H}_{\mathbf{1}}$: There is some relationship between fidelity and selectivity.
The test statistic is given by

$$
\begin{aligned}
\chi^{2} & =\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} \quad \chi^{2} \text { distribution with } n=(r-1)(s-1)-1 \text { d.o. } f \\
E_{i j} & =\frac{R_{i} C_{j}}{N} ; \quad i=1,2, \ldots r \text { and } j=1,2, \ldots . s
\end{aligned}
$$

The expected frequencies are

$$
\begin{aligned}
& E(6)=\frac{52 * 50}{190}=13.684 ; \quad E(12)=\frac{88 * 50}{190}=23.158 \\
& E(32)=13.158 ; \quad E(33)=30.653 \\
& E(61)=51.874 ; \quad E(18)=29.474 \\
& E(13)=7.663 ; \quad E(15)=12.968 ; \quad E(0)=7.368
\end{aligned}
$$

$O_{i j}$	$E_{i j}$	$\left(O_{i j}-E_{i j}\right)$	$\left(O_{i j}-E_{i j}\right)^{2}$	$\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
6	13.684	-7.684	59.04386	4.31481
12	23.158	-11.158	124.501	5.376154
32	13.158	18.842	355.021	26.98138
33	30.653	2.347	5.508409	0.179702
61	51.874	9.126	83.28388	1.605503
18	29.474	-11.474	131.6527	4.466739
12	7.663	5.337	28.48357	3.717026
15	12.968	2.032	4.129024	0.318401

0	7.368	-7.368	54.28742	7.368

$$
\chi^{2}=54.33
$$

Table value of $\chi_{0.01}^{2}$ with $n=(r-1)(s-1)=(3-1)(3-1)=3$ d.o.f is 11.345 .

Conclusion:

Since $\chi^{2}>\chi_{0.01}^{2}$, we reject null hypothesis. That is some relationship between fidelity and selectivity.
12. (a). (i). The following are the number of mistakes made in 5 successive days by 4 technicians working for a photographic laboratory test at a level of significance $\alpha=0.01$. Test whether the difference among the four sample means can be attributed to chance.

Technician

I	II	III	IV
6	14	10	9
14	9	12	12
10	12	7	8
8	10	15	10
11	14	11	11

Solution:

	Technician			
	1	II	III	IV
	6	14	10	9
	14	9	12	12
	10	12	7	8
	8	10	15	10
	11	14	11	11
Total	49	59	55	50

Let us take the null hypothesis that there is no difference b / w four sample means.
i. e., $\quad H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$

Here $\quad G=$ Grand total $=49+59+55+50=213$
\therefore Correction factor $=\frac{G^{2}}{N}=\frac{(213)^{2}}{20}=2268.45$
Total sum of squares $\quad S S T=2383-2268.45=114.55$
Between samples sum of squares

$$
\begin{aligned}
& \quad \operatorname{SSR}=\frac{(49)^{2}}{5}+\frac{(59)^{2}}{5}+\frac{(55)^{2}}{5}+\frac{(50)^{2}}{5}-2268.45=12.95 \\
& S S E=S S T-S S R=114.55-12.95 \\
& S S E=101.6
\end{aligned}
$$

Source of Variation	Degrees of Freedom	Sum of squares	Mean square	F-ratio
Between samples	3	12.95	4.32	$F=0.6803$
Error	16	101.6	6.35	

The table value for $F_{(3,16)}$ at 1% level of significance is 5.29 .
We accept the null hypothesis.
12. (a). (ii). The following data represents the number of units of production per day turned out by different workers using 4 different types of machines.

Machine Type

W.		A	B	C	D
	$\mathbf{1}$	44	38	47	36
	$\mathbf{2}$	46	40	52	43
	$\mathbf{3}$	34	36	44	32
	$\mathbf{4}$	43	38	46	33
	$\mathbf{5}$	38	42	49	39

1. Test whether the five men differ with respect to mean productivity and
2. Test whether the mean productivity is the same for the four different machine types.

Solution: Let us take the null hypothesis that
The 5 workers do not differ with respect to mean productivity

$$
\text { i.e., } \quad H_{01}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}
$$

The mean productivity is the same for the four different machines.

$$
\text { i.e., } \quad H_{02}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}
$$

To simplify calculation let us subtract 40 from each value, the new values are

Machine Type

Workers		A	B	C	D	Total
	$\mathbf{1}$	4	-2	7	-4	5
	$\mathbf{2}$	6	0	12	3	21
	$\mathbf{3}$	-6	-4	4	-8	-14
	$\mathbf{4}$	3	-2	6	-7	0
	$\mathbf{5}$	-2	2	9	-1	8
	Total	5	-6	38	-17	20

Correction factor $=C . F=\frac{G^{2}}{N}=\frac{(20)^{2}}{20}=20$
$S S T=$ Total sum of squares $=\sum_{i} \sum_{j} y_{i j}^{2}-C . F$

$$
\begin{aligned}
= & {\left[(4)^{2}+(-2)^{2}+(7)^{2}+(-4)^{2}+(6)^{2}+(0)^{2}+(12)^{2}+(3)^{2}+(-6)^{2}+(-4)^{2}+(4)^{2}+(-8)^{2}+(3)^{2}+(-2)^{2}\right.} \\
& \left.+(6)^{2}+(-7)^{2}+(-2)^{2}+(2)^{2}+(9)^{2}+(-1)^{2}\right]-20 \\
& =574
\end{aligned}
$$

$$
S S C=\frac{(5)^{2}}{4}+\frac{(21)^{2}}{4}+\frac{(-14)^{2}}{4}+\frac{(0)^{2}}{4}+\frac{(8)^{2}}{4}-20=181.5-20=161.5
$$

Between machines sum of squares

$$
\operatorname{SSR}=\frac{(5)^{2}}{5}+\frac{(-6)^{2}}{5}+\frac{(38)^{2}}{5}+\frac{(-17)^{2}}{5}-20=358.8-20=338.8
$$

Error sum of squares

$$
S S E=S S T-S S C-S S R=574-161.5-338.8=73.7
$$

ANOVA table for two-way classification					
Source of variation	Degrees of freedom	Sum of squares (SS)	Mean sum of squares (MS)	(F-Ratio)	Table Value
B/w Row	$5-1=4$	161.5	$\frac{161.5}{4}=40.375$	$F_{1}=6.576$	$F_{0.05}(4,12)$ $=3.26$
B/w Column	$4-1=3$	338.8	$\frac{338.8}{3}=112.93$	$F_{2}=18.393$	$F_{0.05}(3,12)$ $=3.49$
Error	$4 * 3=12$	73.7	$\frac{73.7}{12}=6.14$		

Conclusion:

1. $F_{1}>F_{0.05}(4,12)$. Hence H_{01} is accepted. That is the 5 workers differ respect to mean productivity.
2. $F_{2}>F_{0.05}(3,12)$. Hence H_{02} is rejected. That is the mean productivity is not the same for the four machines.
3. (b). (i). What are the basic assumptions involved in ANOVA?

Solution:

1. Each of the samples are drawn from a normal population.
2. The variances for the population from which samples have been drawn are equal.
3. The variation of each value obtained around its own grand mean should be independent for each value.
12.. (b). (ii). In a Latin square experiment given below are the yields in quintals per acre on paddy crop carried out for testing the effect of five fertilizers A, B, C, D, E. Analyze the data for variations.

| B 25 | A 18 | E 27 | D 30 | C 27 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A 19 | D 31 | C 29 | E 26 | B 23 |
| C 28 | B 22 | D 33 | A 18 | E 27 |
| E 28 | C 26 | A 20 | B 25 | D 33 |
| D 32 | E 25 | B 23 | C 28 | A 20 |

Solution:
Null hypothesis: There is no significant difference between rows, columns and between the treatments.
Let us subtract 25 from each value, we get

Columns (j) / Rows (i)	1	2	3	4	5	Total
1	0	-7	2	5	2	2
2	-6	6	4	1	-2	3

3	3	-3	8	-7	2	3
4	3	1	-5	0	8	7
5	7	0	-2	3	-5	3
Total	7	-3	7	2	5	18

Treatment total $A=-7-6-7-5-5=-30$

$$
\begin{aligned}
& B=0-2-3+0-2=-7 \\
& C=2+4+3+1+3=13 \\
& D=5+6+8+8+7=34 \\
& E=2+1+2+3+0=8
\end{aligned}
$$

$$
\text { Here } G=18 \text { and } N=28
$$

$$
\text { Correction factor }=\frac{G^{2}}{N}=\frac{(18)^{2}}{25}=12.96
$$

$$
\text { Total sum of squares }=\sum_{i} \sum_{j} y_{i j}^{2}-C . F
$$

$$
S S T=496-12.96=483.04
$$

Between row sum of squares

$$
\begin{gathered}
S S R=\frac{1}{5}\left(2^{2}+3^{2}+3^{2}+7^{2}+3^{2}\right)-12.96 \\
=16-12.96=3.04
\end{gathered}
$$

Between column sum of squares

$$
\begin{gathered}
S S C=\frac{1}{5}\left(7^{2}+(-3)^{2}+7^{2}+2^{2}+5^{2}\right)-12.96 \\
=27.2-12.96=14.24
\end{gathered}
$$

Between treatment sum of squares

$$
\operatorname{SSK}=\frac{1}{5}\left[(-30)^{2}+(-7)^{2}+(13)^{2}+(34)^{2}+(8)^{2}\right]-12.96=454.64
$$

Error sum of squares

$$
\begin{aligned}
S S E=S S T-S S R-S S C-S S K & =483.04-3.04-14.24-454.64 \\
S S E & =11.12
\end{aligned}
$$

ANOVA TABLE					Table Value
Source of variation	D.o.f	Sum of squares (SS)	Mean Sum of squares (MS)	F-ratio	
Between rows	4	3.04	0.76	$F_{1}=0.82$	$F_{0.05}(4,6)=3.26$
Between columns	4	14.24	3.56	$F_{2}==3.83$	$F_{0.05}(4,6)=3.26$
between treatments	4	454.64	113.66	$F_{1}=122.22$	$F_{0.05}(4,6)=3.26$
Error	12	11.12	0.93		

Conclusion:

Since $F_{1}<F_{0.05}(4,6)$ and $F_{2}<F_{0.05}(3,6)$, we accept the null hypothesis and hence we may conclude that there is no significant difference between the rows and columns.

The calculated value of $F_{3}>F_{0.05}(3,6)$, and so we conclude that the treatments are significantly different.
13. (a). (i). Find the real positive root of $3 x-\cos x-1=0$, by Newton's method correct to 6 decimal places. Solution:

Let $f(x)=3 x-\cos x-1=0$.
Now, $f(0)=3(0)-\cos (0)-1=-2 \quad(-v e)$

$$
f(1)=3(1)-\cos (1)-1=1.459698 \quad(-v e)
$$

Therefore the root lies between 0 \& 1 .
Let us take $\boldsymbol{x}_{\mathbf{0}}=\mathbf{1}$ \{Near to zero\}.
The Newton- Raphson formula is $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$ (1).

$$
\begin{aligned}
& \text { Let } \quad f(x)=3 x-\cos x-1 \text { and } f^{1}(x)=3+\sin x \\
& x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=1-\left[\frac{f(1)}{f^{\prime}(1)}\right] . \\
& x_{1}=1-\left[\frac{3(1)-\cos (1)-1}{3+\sin (1)}\right] . \\
& \boldsymbol{x}_{\mathbf{1}}=\mathbf{0 . 6 2 0 0 2} . \\
& x_{2}=x_{1}-\left[\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right]=0.62002-\left[\frac{f(0.62002)}{f^{\prime}(0.62002)}\right] . \\
& x_{2}=0.62002-\left[\frac{3(0.62002)-\cos (0.62002)-1}{3+\sin (0.62002)}\right] . \\
& \boldsymbol{x}_{2}=\mathbf{0 . 6 0 7 1 2} . \\
& x_{3}=x_{2}-\left[\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}\right]=0.60712-\left[\frac{f(0.60712)}{f^{\prime}(0.60712)}\right] . \\
& x_{3}=0.60712-\left[\frac{3(0.60712)-\cos (0.60712)-1}{3+\sin (0.60712)}\right] . \\
& \boldsymbol{x}_{3}=\mathbf{0 . 6 0 7 1} .
\end{aligned}
$$

The root of the equation $3 x-\cos x-1=\mathbf{1 0}$ is $\mathbf{0 . 6 0 7 1 2}$.
13. (a). (ii). Solve by Gauss Siedal method, the following system $x+y+54 z=110$,
$27 x+6 y-z=85, \quad 6 x+15 y+2 z=72$ correct to three decimal places.
Solution:

$$
\begin{gathered}
6 x+y+54 z=110 \\
27 x+6 y-z=85 \\
6 x+15 y+2 z=72
\end{gathered}
$$

Since the diagonal elements are not dominant in the coefficient matrix, we rewrite the given equation as follows as follows

$$
\begin{aligned}
& 27 x+6 y-z=85 \\
& 6 x+15 y+2 z=72 \\
& 6 x+y+54 z=110
\end{aligned}
$$

From the above equation, we have

$$
\begin{aligned}
& x=\frac{1}{27}(85-6 y+z) \\
& y=\frac{1}{15}(72-6 x-2 z)
\end{aligned}
$$

$$
z=\frac{1}{54}(110-x-y)
$$

Gauss Siedal Method:

We form the Iterations in the table

Iteration	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}
1	3.14815	3.54074	1.191317
2	2.43218	3.57204	1.92585
3	2.42569	3.57294	1.92595
4	2.42459	3.57301	1.92595
5	2.42548	3.57301	1.92595
6	2.42548	3.57301	1.92595

Hence the solution is $\boldsymbol{x}=2.42548, \boldsymbol{y}=3.57301$ and $\boldsymbol{z}=1.92595$.
13. (b). (i). Gauss-Jordan method, find the inverse of $A=\left(\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right)$.

Solution:

We know that $[A, I]=\left[I, A^{-1}\right]$
Now, $[A, I]=\left[\begin{array}{ccccccc}4 & 1 & 2 & \vdots & 1 & 0 & 0 \\ 2 & 3 & -1 & \vdots & 0 & 1 & 0 \\ 1 & -2 & 2 & \vdots & 0 & 0 & 1\end{array}\right]$
Now, we need to make [A.I] as a diagonal matrix.
Fix the first row, change second and third row by using first row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
4 & 1 & 2 & \vdots & 1 & 0 & 0 \\
0 & 10 & -8 & \vdots & -2 & 4 & 0 \\
0 & -9 & 6 & \vdots & -1 & 0 & 4
\end{array}\right] \quad \begin{gathered}
R_{2} \Leftrightarrow 4 R_{2}-2 R_{1} \\
R_{3} \Leftrightarrow 4 R_{3}-1 R_{1}
\end{gathered}
$$

Fix the first row \& second row, change third row by using second row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
4 & 1 & 2 & \vdots & 1 & 0 & 0 \\
0 & 10 & -8 & \vdots & -2 & 4 & 0 \\
0 & 0 & -12 & \vdots & -28 & 36 & 40
\end{array}\right] \quad R_{3} \Leftrightarrow 10 R_{3}-(-9) R_{2}
$$

Fix the third row, change first and second row by using third row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
-48 & -12 & 0 & \vdots & 44 & -72 & -80 \\
0 & -120 & 0 & \vdots & -200 & 240 & 320 \\
0 & 0 & -12 & \vdots & -28 & 36 & 40
\end{array}\right] \quad \begin{gathered}
R_{1} \Leftrightarrow-12 R_{1}-2 R_{3} \\
R_{2} \Leftrightarrow-12 R_{2}-(-8) R_{3}
\end{gathered}
$$

Fix the second \& third row, change first by using second row.

$$
\begin{gathered}
{[A, I] \sim\left[\begin{array}{ccccccc}
5760 & 0 & 0 & \vdots & -7680 & 11520 & 13440 \\
0 & -120 & 0 & \vdots & -200 & 240 & 320 \\
0 & 0 & -12 & \vdots & -28 & 36 & 40
\end{array}\right] \quad R_{1} \Leftrightarrow-120 R_{1}-(-12) R_{2}} \\
{[A, I] \sim\left[\begin{array}{ccccccc}
1 & 0 & \vdots & \frac{-7680}{5760} & \frac{11520}{5760} & \frac{13440}{5760} \\
0 & 1 & 0 & \vdots & \frac{-200}{-120} & \frac{240}{-120} & \frac{320}{-120} \\
0 & 0 & 1 & \vdots & \frac{-28}{-12} & \frac{36}{-12} & \frac{40}{-12}
\end{array}\right] \begin{array}{c}
R_{1} \Leftrightarrow R_{1} / 960 \\
R_{2} \Leftrightarrow R_{2} /-120 \\
R_{3} \Leftrightarrow R_{3} /-12
\end{array}} \\
A^{-1}
\end{gathered}
$$

Verification :

W.k.t $A A^{-1}=I \Rightarrow\left[\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right] *\left[\begin{array}{ccc}-4 / 3 & 2 & 7 / 3 \\ 5 / 3 & -2 & -8 / 3 \\ 7 / 3 & -3 & -10 / 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
13. (b). (ii). Find numerically largest Eigen value of $A=\left(\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right)$ and the corresponding eigenvector.

Solution: Let $X_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.
Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
25 \\
1 \\
2
\end{array}\right]=25\left[\begin{array}{c}
1 \\
0.04 \\
0.08
\end{array}\right]=25 X_{2} \\
A X_{2}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1 \\
0.04 \\
0.08
\end{array}\right]=\left[\begin{array}{l}
25.2 \\
1.12 \\
1.68
\end{array}\right]=25.2\left[\begin{array}{c}
1 \\
0.0444 \\
0.0667
\end{array}\right]=25.2 X_{3} \\
A X_{3}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1 \\
0.0444 \\
0.0667
\end{array}\right]=\left[\begin{array}{c}
25.1778 \\
1.1332 \\
1.7337
\end{array}\right]=25.1778\left[\begin{array}{c}
1 \\
0.0450 \\
0.0688
\end{array}\right]=25.1778 X_{4} \\
A X_{4}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1 \\
0.0450 \\
0.0688
\end{array}\right]=\left[\begin{array}{c}
25.1826 \\
1.135 \\
1.7248
\end{array}\right]=25.1826\left[\begin{array}{c}
1 \\
0.0451 \\
0.0685
\end{array}\right]=25.1826 X_{5} \\
A X_{5}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1 \\
0.0451 \\
0.0685
\end{array}\right]=\left[\begin{array}{c}
25.1821 \\
1.1353 \\
1.7260
\end{array}\right]=25.1821\left[\begin{array}{c}
1 \\
0.0451 \\
0.0685
\end{array}\right]=25.1821 X_{6}
\end{gathered}
$$

\therefore The dominant Eigen value $=25.1821$.
Corresponding Eigen vector is $\left[\begin{array}{c}1 \\ 0.0451 \\ 0.0685\end{array}\right]$.
14. (a). (i). From the following table of half-yearly maturing at premium different ages, estimate the premium for policies maturing at age 46 and 63.

Age:	45	50	55	60	65
Premium:	114.84	96.16	83.32	74.48	68.48

Solution:

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
45	114.84	-18.68			
50	96.16	-12.84	5.84		
55	83.32	-8.84	4.00	-1.84	
60	74.48	-6.00	2.84	-1.16	0.68
65	68.48				

To find the value at $\boldsymbol{x}=46$:

$$
y(x)=y\left(x_{0}+p h\right)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\cdots \ldots \ldots
$$

where $u=\frac{x-x_{0}}{h} . h=5, \quad$ Let $\quad u=\left(\frac{46-45}{5}\right)=0.2$

$$
\begin{aligned}
& y(49)=114.84+\frac{(0.2)}{1!}(-18.68)+\frac{(0.2)[0.2-1]}{2!}(5.84)+\frac{(0.2)[0.2-1][0.2-2]}{3!}(-1.84) \\
& +\frac{(0.2)[0.2-1][0.2-2][0.2-3]}{4!}(0.68) \\
& \quad=114.84-3.736-0.4672-0.08832-0.0228 \\
& \quad y(46)=110.52568
\end{aligned}
$$

To find the value at $\boldsymbol{x}=\mathbf{6 3}$:

$$
y(x)=y\left(x_{n}+p h\right)=y_{n}+\frac{V}{1!} \nabla y_{n}+\frac{V(V+1)}{2!} \nabla^{2} y_{n}+\frac{V(V+1)(V+2)}{3!} \nabla^{3} y_{n}+\cdots \ldots \ldots
$$

where $v=\frac{x-x_{n}}{h}=\frac{63-65}{5}=-0.4$.

$$
\begin{aligned}
& y(63)= 68.48+\frac{(-0.4)}{1!}(-6)+\frac{(-0.4)[-0.4+1]}{2!}(2.84)+\frac{(-0.4)[-0.4+1][-0.4+2]}{3!}(-1.16) \\
&+\frac{(-0.4)[-0.4+1][-0.4+2][-0.4+3]}{4!}(0.68) \\
&=68.48+2.40-0.3408+0.07424-0.028288 \\
& y(63)=70.58512 .
\end{aligned}
$$

14. (b). (i). Using Newton's divided difference formula, find the values of $f(2), f(8)$ and $f(15)$ given the following table:

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

Solution:

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$	$\Delta^{4} f(x)$
4	48	$\frac{100-48}{5-4}=52$	$\frac{97-52}{7-4}=15$		
5	100	$\frac{294-100}{5-7}=97$	$\frac{21-15}{10-4}=1$	0	
7	294	$\frac{900-294}{10-7}=202$	$\frac{310-97}{10-5}=21$	$\frac{27-21}{11-5}=1$	0
10	900	$\frac{1210-900}{11-10}=310$	$\frac{33-27}{13-7}=1$		
11	1210	$\frac{2028-1210}{13-11}=409$			

13	2028				

By Newton's divided difference interpolation formula

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+ & \left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Here $x_{0}=4, x_{1}=5, x_{2}=7, x_{3}=10, x_{4}=11, x_{5}=13$ and
$f\left(x_{0}\right)=48, f\left(x_{0}, x_{1}\right)=52, f\left(x_{0}, x_{1}, x_{2}\right)=15, f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1, f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0$
$\therefore f(x)=48+(x-4)(52)+(x-4)(x-5)(15)+(x-4)(x-5)(x-7)(1)+(x-4)(x-5)(x-7)(x-11)(0)+0$
$=48+52 x-208+\left[\left(x^{2}-9 x+20\right)(15)\right]+\left[\left(x^{2}-9 x+20\right)(x-7)\right](1)$
$=48+52 x-208+15 x^{2}-135 x+300+\left[x^{3}-9 x^{2}+20 x-7 x^{2}+63 x-140\right]$
$=x^{3}+x^{2}[15-9-7]+x[52-135+20+63]+[48-208+300-140]$
$f(x)=x^{3}-x^{2}$
$\therefore \quad f(2)=2^{3}-2^{2}=4$
$f(8)=8^{3}-8^{2}=448$
$f(15)=15^{3}-15^{2}=3150$
14. (b). (i) Using Lagrange's interpolation formula, find $y(10)$ from the following table:

$x:$	5	6	9	11
$y:$	12	13	14	16

Solution: Given the data's are $\left[f\left(x_{0}\right)=y_{0}\right]$

$x:$	$5\left(x_{0}\right)$	$6\left(x_{1}\right)$	9	$\left(x_{2}\right)$	11	$\left(x_{3}\right)$	
$f(x):$	$12\left(y_{0}\right)$	13	$\left(y_{1}\right)$	14	$\left(y_{2}\right)$	16	$\left(y_{3}\right)$

Lagrange's interpolation formula, we have

$$
\begin{align*}
\begin{aligned}
y= & f(x)=
\end{aligned} & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} y_{1} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} y_{3} \\
y(10)= & \frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)}(12)+\frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)}(13) \tag{13}\\
& \quad+\frac{(10-5)(10-6)(10-15)}{(9-5)(9-6)(9-11)}(14)+\frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)}(16) \tag{16}
\end{align*}
$$

14. (b). (ii). The table below gives the velocity V of a moving particle at time t seconds. Find the distance covered by the particle in 12 seconds and also find the acceleration at $t=2$ seconds, using Simpson's rule.

$\mathrm{t}:$	0	2	4	6	8	10	12
$\mathrm{~V}:$	4	6	16	34	60	94	136

Solution:

We know $\frac{d s}{d t}=v$: and $a=\frac{d v}{d t}$.

$$
\therefore \quad S=\int v d t
$$

To get S , we integrate v.
$S=\int_{0}^{12} v d t=\frac{2}{3}[(4+136)+2(6+16+34+60+94)]$
$S=522$ meters.
Acceleration $=a=\left(\frac{d v}{d t}\right)_{t=2}$
Now we form the difference table

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$
0	4	2		
2	6	10	8	0
4	16	18	8	0
6	34	26	8	0
8	60	34	8	0
10	94	42		
12	136			

$$
\begin{aligned}
& \left(\frac{d v}{d t}\right)_{t=2}=\frac{1}{h}\left[\Delta y_{0}-\frac{\Delta^{2} y_{0}}{2}+\frac{\Delta^{3} y_{0}}{3}-\frac{\Delta^{4} y_{0}}{4}+\cdots\right] \text { when } x=x_{0} \\
& \left(\frac{d v}{d t}\right)_{t=2}=\frac{1}{h}\left[10-\frac{8}{2}+0\right]=3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

15. (a). (i). Using Modified Euler's method, find $y(0.2), y(0.1)$ given $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.

Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=x^{2}+y^{2} \quad \text { and } y(0)=1 \quad \Rightarrow x_{0}=0, y_{0}=1 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

$\therefore h=x_{1}-x_{0}=0.1-0=0.1 \quad$ [Difference]
The Modified Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right), n=0,1,2, \ldots \ldots \tag{1}
\end{equation*}
$$

To find $y(\mathbf{0 . 1})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right)
$$

We have $\quad x_{0}=0, y_{0}=1, h=0.1 \& f(x, y)=x^{2}+y^{2}$
$\therefore \quad y_{1}(0+0.1)=1+(0.1) f\left(0+\frac{0.1}{2}, 1+\frac{0.1}{2} f(0,1)\right)$

$$
\begin{aligned}
y_{1}(0.1) & =1+(0.1) f\left(0.05,1+0.05\left[0^{2}+1^{2}\right]\right) \\
& =1+(0.1) f(0.05,1+0.05[1]) \\
& =1+(0.1) f(0.05,1.05) \\
& =1+(0.1)\left[(0.05)^{2}+(1.05)^{2}\right] \\
& =1+(0.1)[1.105] \\
& =1+0.1105 \\
y_{1}(0.1)= & 1.1105
\end{aligned}
$$

$$
y_{1}(0.1)=1.1105 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.1 \& y_{1}=1.1105
$$

To find $\boldsymbol{y}(\mathbf{0 . 2)}$:
Put $n=1$, equation (1) becomes

$$
y_{2}\left(x_{1}+h\right)=y_{1}+h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{h}{2} f\left(x_{1}, y_{1}\right)\right)
$$

We have $\quad x_{1}=0.1, y_{1}=1.1105, h=0.1 \& f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
& \therefore \quad y_{2}(0.1+0.1)=1.1105+(0.1) f\left(0.1+\frac{0.1}{2}, 1.1105+\frac{0.1}{2} f(0.1,1.1105)\right) \\
& y_{2}(0.2)=1.1105+(0.1) f(0.15,1.17266) \\
& \boldsymbol{y}_{2}(\mathbf{0 . 2})=\mathbf{1} .25026
\end{aligned}
$$

15. (a). (ii) Using Runge-Kutta method of order four solve $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\frac{\boldsymbol{y}^{2}-\boldsymbol{x}^{2}}{\boldsymbol{y}^{2}+x^{2}}$, given $\boldsymbol{y}(\mathbf{0})=\mathbf{1}$ at $x=0.2$ by taking $h=0.2$.

Solution:
Given $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}=f(x, y), y(0)=1 \Rightarrow x_{0}=0, y_{0}=1$
To find h :
Given $y(0)=1 \Rightarrow y\left(x_{0}\right)=y_{0} \Rightarrow x_{0}=0, y_{0}=1$
We need to find $y(0.2) \Rightarrow y\left(x_{1}\right)=y_{1} \quad \Rightarrow x_{1}=0.2$
$\therefore \quad h=x_{1}-x_{0}=0.2-0.0=0.2$
$\therefore \boldsymbol{h}=0.2$
To find $y(0.2): \quad\left[x_{0}=0.0, y_{0}=1, h=0.2, f(x, y)=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}\right]$

$$
k_{1}=h f\left(x_{0}, y_{0}\right)=0.2 f(0,1)=0.2\left[\frac{(1)^{2}-(0)^{2}}{(1)^{2}+(0)^{2}}\right]=0.2[1]
$$

$k_{1}=0.2$

$$
\begin{aligned}
k_{2} & =h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=0.2 f\left(0+\frac{0.2}{2}, 1+\frac{0.2}{2}\right)=0.2 f(0.1,1.1) \\
k_{2} & =0.2\left[\frac{(1.1)^{2}-(0.1)^{2}}{(1.1)^{2}+(0.1)^{2}}\right] \\
\boldsymbol{k}_{\mathbf{2}}= & \mathbf{0 . 1 9 6 7 2 1 3}
\end{aligned}
$$

$$
\begin{aligned}
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)=0.2 f\left(0+\frac{0.2}{2}, 1+\frac{0.1967213}{2}\right)=0.2 f(0.1,1.0983606) \\
& k_{3}=0.2\left[\frac{(1.0983606)^{2}-(0.1)^{2}}{(1.0983606)^{2}+(0.1)^{2}}\right]
\end{aligned}
$$

$k_{3}=0.1967$

$$
k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right)=0.2 f(0+0.2,1+0.1967)=0.2\left[\frac{(0.1967)^{2}-(0.2)^{2}}{(0.1967)^{2}+(0.2)^{2}}\right]
$$

$k_{4}=0.1891$

$$
\Delta y=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)=\frac{1}{6}(0.2+2(0.1967213)+2(0.1967)+0.1891)
$$

$\Delta y=0.19598$

$$
y(x+h)=y(x)+\Delta y \quad \Rightarrow y(0.0+0.2)=y(0)+0.44321=1+0.19598
$$

$\boldsymbol{y}(0.2)=0.19598$
15. (b). (i). Using Taylor method, compute $y(0.2)$ and $y(0.4)$ correct to 4 decimal places given $\frac{d y}{d x}=1-2 x y$ and $y(0)=0$, by taking $h=0.2$.

Solution:

$$
\text { Given } \frac{d y}{d x}=y^{\prime}=1-2 x y \quad \& \quad y(0)=0 \Rightarrow x_{0}=0, \quad y_{0}=0 \quad \text { Since } \quad\left[y\left(x_{0}\right)=y_{0}\right]
$$

Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\frac{\left(x-x_{0}\right)^{5}}{5!} y_{0}^{v}+\cdots$

$y^{\prime}=1-2 x y$	$y_{0}^{\prime}=1-2 x_{0} y_{0}=1-2(0)(0)$	$y_{0}^{\prime}=1$
$y^{\prime \prime}=0-2 x y^{\prime}-2 y$	$y_{0}^{\prime \prime}=-2 x_{0} y_{0}^{\prime}-2 y_{0}$	
$=-2(0)(1)-2(0)$	$y_{0}^{\prime \prime}=0$	
$y^{\prime \prime \prime}=-2 x y^{\prime \prime}-2 y^{\prime}-2 y^{\prime}$	$y_{0}^{\prime \prime \prime}=-2 x_{0} y_{0}^{\prime \prime}-4 y_{0}^{\prime}$	
$y^{\prime \prime \prime}=-2 x y^{\prime \prime}-4 y^{\prime}$	$=-2(0)(0)-4(1)$	$y_{0}^{\prime \prime \prime}=-4$
$y^{\prime v}=-2 x y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime \prime}$		
$y^{\prime v}=-2 x y^{\prime \prime \prime}-6 y^{\prime \prime}$	$y_{0}^{\prime v}=-2 x_{0} y_{0}^{\prime \prime \prime}-6 y_{0}^{\prime \prime}$ $=-2(0)(-4)-6(0)$	
$y^{v}=-2 x y^{\prime v}-2 y^{\prime \prime \prime}-6 y^{\prime \prime \prime}$		
$y^{\prime v}=-2 x y^{\prime v}-8 y^{\prime \prime \prime}$	$y_{0}^{\prime v}=-2 x_{0} y_{0}^{\prime v}-8 y_{0}^{\prime \prime \prime}$	
$=-2(0)(0)-8(-4)$	$y_{0}^{\prime v}=0$	

Therefore equation (1) becomes,

$$
\begin{align*}
y(x) & =y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\frac{\left(x-x_{0}\right)^{5}}{5!} y_{0}^{v}+\cdots \tag{1}\\
& =0+\frac{(x-0)}{1}(1)+\frac{(x-0)^{2}}{2}(0)+\frac{(x-0)^{3}}{6}(-4)+\frac{(x-0)^{4}}{24}(0)+\frac{(x-0)^{5}}{120}(32) \ldots \\
y(x) & =x+\frac{x^{3}}{6}(-4)+\frac{x^{5}}{120}
\end{align*}
$$

To find $y(0.2)$:

$$
\begin{aligned}
& \therefore \quad y(0.2)=0.2+\frac{(0.2)^{3}}{6}(-4)+\frac{(0.2)^{5}}{120}(32)=0.2-0.005333+0.00008533 \\
& \therefore \quad \boldsymbol{y}(\mathbf{0 . 2})=\mathbf{0 . 1 9 4 7 5 2}
\end{aligned}
$$

To find $\boldsymbol{y}(\mathbf{0 . 4})$:

$$
\begin{aligned}
& \therefore \quad y(0.4)=0.4+\frac{(0.4)^{3}}{6}(-4)+\frac{(0.4)^{5}}{120}(32)=0.4-0.0426667+0.002730667 \\
& \therefore \quad \boldsymbol{y}(\mathbf{0 . 4})=\mathbf{0 . 3 6 0 0 6 3}
\end{aligned}
$$

15. (b). (ii). Using Adam's method find $y(0.4)$ given $\frac{d y}{d x}=\frac{1}{2} x y, y(0)=1, y(0.1)=1.01, y(0.2)=1.022, y(0.3)=1.023$.

Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=\frac{1}{2} x y
$$

$y(0)=1$	$x_{0}=0$	$y_{0}=1$
$y(0.1)=1.01$	$x_{1}=0.1$	$y_{1}=1.01$
$y(0.2)=1.022$	$x_{2}=0.2$	$y_{2}=1.022$
$y(0.3)=1.023$	$x_{3}=0.3$	$y_{3}=1.023$

Here $h=0.1$ and $n=3$ [Highest value of x is $x_{3} . \quad \therefore n=3$]
The Adam's Predictor formula is

$$
\begin{equation*}
y_{n+1, P}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right] \tag{1}
\end{equation*}
$$

Put $n=3$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \tag{2}
\end{equation*}
$$

Given $\quad y^{\prime}=x^{2}(1+y)$

$x_{0}=0$	$y_{0}=1$	$y_{0}^{\prime}=\left(\frac{1}{2}\right)\left(x_{0} y_{0}\right)$	$y_{1}^{\prime}=0$
$x_{1}=0.1$	$y_{1}=1.01$	$y_{1}^{\prime}=\left(\frac{1}{2}\right)(0.1 * 1.01)$	$y_{1}^{\prime}=0.0505$
$x_{2}=0.2$	$y_{2}=1.022$	$y_{2}^{\prime}=\left(\frac{1}{2}\right)(0.2 * 1.022)$	$y_{2}^{\prime}=0.1022$
$x_{3}=0.3$	$y_{3}=1.023$	$y_{3}^{\prime}=\left(\frac{1}{2}\right)(0.3 * 1.023)$	$y_{3}^{\prime}=0.15345$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}(1.3+0.1) & =1.023+\frac{0.1}{24}[55(0.15345)-59(0.1022)+37(0.0505)-9(0)] \\
\boldsymbol{y}_{\mathbf{4}, \boldsymbol{P}}(\mathbf{0 . 4}) & =\mathbf{1 . 0 4 0 8} \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{\mathbf{4}}\right)=\boldsymbol{y}_{\mathbf{4}}, \quad \boldsymbol{x}_{\mathbf{4}}=\mathbf{1} .4 \quad \& \quad \boldsymbol{y}_{\mathbf{4}}=\mathbf{2} .5721\right]
\end{aligned}
$$

The Adams's Corrector formula is

$$
\begin{equation*}
y_{n+1, C}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $n=3$ in equation (3), we have

$$
\begin{equation*}
y_{4, C}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[9 \boldsymbol{y}_{4}^{\prime}+19 y_{3}^{\prime}-5 y_{2}^{\prime}+y_{1}^{\prime}\right] \tag{4}
\end{equation*}
$$

$x_{4}=0.4$	$y_{4}=1.0408$	$y_{4}^{\prime}=\left(\frac{1}{2}\right)(0.4 * 1.0408)$	$y_{4}^{\prime}=0.20816$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(1.3+0.1) & =1.023+\frac{0.1}{24}[9(0.20816)+19(0.15345)-5(0.1022)+(0.0505)] \\
\boldsymbol{y}_{\mathbf{4}, \boldsymbol{C}}(\mathbf{0 . 4}) & =\mathbf{1 . 0 4 1 0}
\end{aligned}
$$

Result:

$$
y_{4, P}(0.4)=1.0408 \quad \& \quad y_{4, C}(0.4)=1.0410
$$

