ANNA UNIVERSITY CHENNAI
 MATHEMATICS III
 NOVEMBER / DECEMBER 2011

 Part-A

 Part-A}

1. State the dirichlet's conditions for the existence of the Fourier expansion of $f(x)$, in the intreval (0, 2 $\boldsymbol{\pi}$).

Ans:
A function $f(x)$ is defined in $0 \leq x \leq 2 \pi$, it can be expanded as a Fourier series of the form
$\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, the following conditions should be satisfied
i. $\quad f(x)$ is a single valued and finite in $(0,2 \pi)$.
ii. $\quad f(x)$ is continuous or piece wise continuous with finite number of finite discontinuities in ($0,2 \pi$).
iii. $\quad f(x)$ has a finite number of maxima or minima in $(0,2 \pi)$.
2. Find the root mean square value of the function $f(x)=x$ in $(0, l)$. Ans:

$$
\begin{aligned}
& \text { R.M.S }=\sqrt{\frac{\int_{a}^{b}[f(x)]^{2} d x}{b-a}}=\sqrt{\frac{\int_{0}^{l}[x]^{2} d x}{l-0}}=\sqrt{\frac{\left(\frac{x^{3}}{3}\right)_{0}^{l}}{l}} \\
& \text { R.M.S }=\sqrt{\frac{\frac{l^{3}}{3}}{l}}=\sqrt{\frac{l^{3}}{3 l}}=\sqrt{\frac{l^{2}}{3}}=\frac{l}{\sqrt{3}}
\end{aligned}
$$

3. Write the Fourier Transform Pair

Ans: \quad The Fourier Transform of $f(x)$ is

$$
F(s)=F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d
$$

The Inverse Fourier Transform of $f(x)$ is

$$
f(x)=[F(s)] \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(s) e^{-i s x} d s
$$

4. State Parseval's identity on Fourier transform.

Ans:

$$
\int_{0}^{\infty}|f(x)|^{2} d x=\int_{0}^{\infty}|F(s)|^{2} d s \quad \text { or } \quad \int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|F(s)|^{2} d s
$$

5. Find the P.D.E of the family of spheres having their centres on the Z-axis.

Ans:
The equation of the sphere is

$$
(x-a)^{2}+(y-a)^{2}+(z-a)^{2}=r^{2}
$$

partially differentiating with respect to ' x ' and ' y^{\prime}, we get

$$
\begin{gathered}
2(x-a)+2(z-a) p=0 \\
(x-a)+(z-a) p=0 \\
x-a+z p-a p=0 \\
x+z p-a(1+p)=0 \\
a=\frac{x+\boldsymbol{z} p}{1+p}---(1)
\end{gathered}
$$

And

$$
\begin{gathered}
2(y-a)+2(z-a) q=0 \\
(y-a)+(z-a) q=0 \\
y-a+z q-a q=0 \\
y+z q-a(1+q)=9 \\
a=\frac{x+z p}{1+p}-(2)
\end{gathered}
$$

From (1) and (2), we have

$$
\begin{gathered}
\frac{\boldsymbol{x}+\mathbf{z} \boldsymbol{p}}{1+\boldsymbol{p}}=\frac{\boldsymbol{x}+\mathbf{z p}}{1+\boldsymbol{p}} \\
(x+z p)(1+q)=(1+p)(y+z q) \\
x+q x+z p+z p q=y+z q+p y+p q z \\
p(z-y)+\boldsymbol{q}(\boldsymbol{x}-\mathbf{z})=\boldsymbol{y}-\boldsymbol{x}
\end{gathered}
$$

which is the required P.D.E.
6. Solve the equation $\left(D-D^{\prime}\right)^{3} Z=0$.

Ans:
The auxiliary equation is $\quad(m-1)^{3}=0 \quad \Rightarrow \quad m=1,1,1$

$$
\therefore \quad z=f_{1}(y+x)+x f_{2}(y+x)+x^{2} f_{3}(y+x)
$$

7. In the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$, what does stands for?

Ans:

$$
c^{2}=\frac{T}{m}=\frac{\text { Tension }}{\text { mass per unit length of the string }}
$$

8. A plate is bounded by the lines $x=0, y=0, x=l$ and $y=l$. Its faces are insulated. The edge coinciding with x-axis is kept at $100^{\circ} C$. The edge coinciding with y-axis is kept at $50^{\circ} c$. The other
two edges are kept at $0^{\circ} \mathrm{C}$. Write the boundary conditions that are needed for solving two dimensional heat flow equation.

Ans:
i. $u(0, y)=50$
ii. $u(l, 0)=100$
ii. $\quad u(l, y)=0^{0} C$
iii. $u(x, y)=0^{\circ} C$
9. Find z-transform of $\frac{1}{n!}$.

Ans:

$$
\text { W.k.t } \begin{aligned}
Z\{x(n)\} & =\sum_{n=0}^{\infty} x(n) z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{n!}\right) *\left(\frac{1}{z}\right)^{n} \\
& =\frac{1}{0!}\left(\frac{1}{z}\right)^{0}+\frac{1}{1!}\left(\frac{1}{z}\right)^{1}+\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots \\
& =1+\frac{1}{1!}\left(\frac{1}{z}\right)^{1}+\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots \\
Z\left\{\frac{1}{n!}\right\} & =e^{\left(\frac{1}{z}\right)} \quad\left[\because e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right]
\end{aligned}
$$

10. Form a difference equation by eliminating arbitrary constants from $U_{n}=A \mathbf{2}^{\boldsymbol{n + 1}}$. Ans:

$$
\begin{aligned}
& U_{n}=A 2^{n+1} \\
& U_{n+1}=A 2^{n+2}=A 2^{n+1}+2=2 U_{n} \\
& \text { i.e., } U_{n+1}-2 U_{n}=0
\end{aligned}
$$

Part B

11. (a). (i). Find the Fourier series of periodicity 3 for $f(x)=2 x-x^{2}$ in $0<x<3$.

Ans:

$$
\text { Given } 2 l=3 \Rightarrow l=\frac{\mathbf{3}}{\mathbf{2}}
$$

The Fourier series for the function $f(x)$ in $(0,2 l)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{l}\right)+b_{n} \sin \left(\frac{n \pi x}{l}\right)\right)
$$

$$
\begin{aligned}
& a_{0}=\frac{1}{l} \int_{0}^{2 l} f(x) d x=\frac{1}{l} \int_{0}^{2 l}\left(2 x-x^{2}\right) d x \\
& =\frac{1}{l}\left[\frac{2 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2 l}=\frac{1}{l}\left[4 l^{2}-\frac{8 l^{3}}{3}\right] \\
& \text { Put } l=\frac{3}{2} \text {, we get } \\
& =\frac{2}{3}\left[4\left(\frac{9}{4}\right)-\frac{8\left(\frac{27}{8}\right)}{3}\right] \\
& a_{0}=0 \\
& a_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x \\
& a_{n}=\frac{1}{l} \int_{0}^{2 l}\left(2 x-x^{2}\right) \cos \left(\frac{n \pi x}{l}\right) d x \\
& =\frac{1}{l}\left[\left(2 x-x^{2}\right)\left(\frac{\sin \frac{n \pi x}{l}}{n \pi}\right)-(2 f 2 x)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)+(-2)\left(\frac{\sin \frac{n \pi x}{l}}{\frac{n^{3} \pi^{3}}{l^{3}}}\right)\right]_{0}^{2 l} \\
& \left.=\frac{1}{l}\left[(2-2 x)\left(\frac{\cos \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)\right]\right]_{0}^{2 l}=\frac{1}{l}\left[(2-4 l)(\cos 2 n \pi)\left(\frac{l^{2}}{n^{2} \pi^{2}}\right)-(2-0)(\cos 0)\left(\frac{l^{2}}{n^{2} \pi^{2}}\right)\right] \\
& =\frac{1}{l}\left[(2-4 l)\left(\frac{l^{2}}{n^{2} \pi^{2}}\right)-2\left(\frac{l^{2}}{n^{2} \pi^{2}}\right)\right]=\frac{1}{l}\left(\frac{l^{2}}{n^{2} \pi^{2}}\right)[2-4 l-2] \\
& a_{n}=\frac{-4 l^{2}}{n^{2} \pi^{2}}
\end{aligned}
$$

Put $l=\frac{3}{2}$, we get $\quad a_{n}=\frac{-4\left(\frac{9}{4}\right)}{n^{2} \pi^{2}}=\frac{-9}{n^{2} \pi^{2}}$

$$
\begin{aligned}
& b_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x \\
& b_{n}=\frac{2}{l} \int_{0}^{2 l}\left(2 x-x^{2}\right) \sin \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{l}\left[\left(2 x-x^{2}\right)\left(\frac{-\cos \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)-(2-2 x)\left(\frac{-\sin \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)+(-2)\left(\frac{\cos \frac{n \pi x}{l}}{\frac{n^{3} \pi^{3}}{l^{3}}}\right)\right]_{0}^{2 l} \\
& =\frac{-1}{l}\left[\left(2 x-x^{2}\right)\left(\frac{\cos \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right)+2\left(\frac{\cos \frac{n \pi x}{l}}{\frac{n^{3} \pi^{3}}{l^{3}}}\right)\right]_{0}^{2 l} \\
& =\frac{-1}{l}\left[\left(\left(4 l-4 l^{2}\right)(\cos 2 n \pi)\left(\frac{l}{n \pi}\right)+2 \cos 2 n \pi\left(\frac{l^{3}}{n^{3} \pi^{3}}\right)\right)-\left(0+2\left(\frac{l^{3}}{n^{3} \pi^{3}}\right)\right)\right] \\
& =\frac{-1}{l}\left[\left(4 l-4 l^{2}\right)\left(\frac{l}{n \pi}\right)+\frac{2 l^{3}}{n^{3} \pi^{3}}-\frac{2 l^{3}}{n^{3} \pi^{3}}\right] \\
& =\left(l-l^{2}\right)\left(\frac{-4}{n \pi}\right) \\
& \text { Put } l=\frac{3}{2}, w e ~ g e t \quad b_{n}=\left(\frac{3}{2}-\frac{9}{4}\right)\left(\frac{-4}{n \pi}\right) \\
& b_{n}=\frac{3}{n \pi} \\
& f(x)=\sum_{n=1}^{\infty}\left(\left(\frac{-9}{n^{2} \pi^{2}}\right) \cos \left(\frac{2 n \pi x}{3}\right)+\left(\frac{3}{n \pi}\right) \sin \left(\frac{2 n \pi x}{3}\right)\right)
\end{aligned}
$$

11. (a). (ii). Obtain the Fourier series of $f(x)=x \sin x$ in $(-\pi, \pi)$.

Ans:

$$
f(x)=x \sin x, f(-x)=-x \sin (-x)=x \sin x
$$

$\therefore f(x)=f(-x), f(x)$ is even function
The Fourier series of $f(x)$ in $(-\pi, \pi)$ is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x----(1)
$$

To find a_{0} :

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{+\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{+\pi} x \sin x d x=\frac{2}{\pi}[x(-\cos x)-(-\sin x)]_{0}^{\pi} \\
& =\frac{2}{\pi}[\pi \cos \pi-0]=\frac{2}{\pi}[\pi]=2 \\
a_{0} & =2
\end{aligned}
$$

To find a_{n} :

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{+\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{+\pi} x \sin x \cos n x d x=\frac{2}{\pi} \int_{0}^{+\pi} x \cos n x \sin x d x \\
& =\frac{2}{\pi} \int_{0}^{+\pi} x\left(\frac{\sin (n+1) x-\sin (n-1) x}{2}\right) d x=\frac{1}{\pi} \int_{0}^{+\pi} x[\sin (n+1) x-\sin (n-1) x] d x \\
& =\frac{1}{\pi}\left[\left(x\left(\frac{-\cos (n+1) x}{n+1}\right)-\left(\frac{-\sin (n+1) x}{(n+1)^{2}}\right)\right)-\left(x\left(\frac{-\cos (n-1) x}{n-1}\right)-\left(\frac{-\sin (n-1) x}{(n-1)^{2}}\right)\right)\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[x\left(\frac{-\cos (n+1) x}{n+1}\right)-x\left(\frac{-\cos (n-1) x}{n-1}\right)\right]_{0}^{\pi}=\frac{1}{\pi}\left[\pi\left(\frac{-\cos (n+1) \pi}{n+1}\right)+\pi\left(\frac{\cos (n-1) \pi}{n-1}\right)\right] \\
& =\frac{\pi}{\pi}\left[\frac{-(-1)^{n+1}}{n+1}+\frac{(-1)^{n+1}}{n-1}\right] \quad\left\langle\because \cos (n+1) \pi=\cos (n-1) \pi=(-1)^{n}\right\rangle \\
& =(-1)^{n+1}\left[\frac{-1}{n+1}+\frac{1}{n-1}\right]=(-1)^{n+1}\left[\frac{-n+1+n+1}{n^{2}-1}\right]=(-1)^{n+1}\left[\frac{2}{n^{2}-1}\right] \\
a_{n} & =(-1)^{n+1}\left[\frac{2}{n^{2}-1}\right] \quad \text { if } n \neq 1
\end{aligned}
$$

When $n=1$, we have

$$
\begin{aligned}
& a_{1}=\frac{2}{\pi} \int_{0}^{+\pi} x \sin x \cos x d x=\frac{2}{\pi} \int_{0}^{+\pi} \int^{-\pi} \frac{\sin 2 x}{2} d x=\frac{1}{\pi} \int_{0}^{+\pi} x \sin 2 x d x \\
& \begin{array}{l}
=\frac{1}{\pi}\left[x\left(\frac{-\cos 2 x}{2}\right)-\left(\frac{-\sin 2 x}{4}\right)\right]_{0}^{\pi}=\frac{1}{\pi}\left[\pi\left(\frac{-\cos 2 \pi}{2}\right)-0\right]=-\frac{1}{2} \\
=-\frac{1}{2}
\end{array} \\
& \therefore \quad x \sin x=1-\frac{1}{2} \cos x+\sum_{n=2}^{\infty}\left((-1)^{n+1}\left[\frac{2}{n^{2}-1}\right] \cos n x\right)
\end{aligned}
$$

11. (b). (i). Obtain the Fourier cosine series expansion of $x \sin x$ in $(0, \pi)$ and hence find the value of $1+\frac{2}{1.3}-\frac{2}{3.5}+\frac{2}{5.7}+\cdots$

Ans: The half range Fourier cosine series of $f(x)$ in $(0, \pi)$ is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x----(1)
$$

To find a_{0} :

$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{+\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{+\pi} x \sin x d x=\frac{2}{\pi}[x(-\cos x)-(-\sin x)]_{0}^{\pi} \\
& a_{0}=\frac{2}{\pi}[\pi \cos \pi-0]=\frac{2}{\pi}[\pi]=2
\end{aligned}
$$

To find $\boldsymbol{a}_{\boldsymbol{n}}$:

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{+\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{+\pi} x \sin x \cos n x d x=\frac{2}{\pi} \int_{0}^{+\pi} x \cos n x \sin x d x \\
& =\frac{2}{\pi} \int_{0}^{+\pi} x\left(\frac{\sin (n+1) x-\sin (n-1) x}{2}\right) d x=\frac{1}{\pi} \int_{0}^{+\pi} x[\sin (n+1) x-\sin (n-1) x] d x \\
& =\frac{1}{\pi}\left[\left(x\left(\frac{-\cos (n+1) x}{n+1}\right)-\left(\frac{-\sin (n+1) x}{(n+1)^{2}}\right)\right)-\left(x\left(\frac{-\cos (n-1) x}{n-1}\right)-\left(\frac{-\sin (n-1) x}{(n-1)^{2}}\right)\right)\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[x\left(\frac{-\cos (n+1) x}{n+1}\right)-x\left(\frac{-\cos (n-1) x}{n-1}\right)\right]_{0}^{\pi}=\frac{1}{\pi}\left[\pi\left(\frac{-\cos (n+1) \pi}{n+1}\right)+\pi\left(\frac{\cos (n-1) \pi}{n-1}\right)\right] \\
& =\frac{\pi}{\pi}\left[\frac{-(-1)^{n+1}}{n+1}+\frac{(-1)^{n+1}}{n-1}\right] \quad\left\langle\because \cos (n+1) \pi=\cos (n-1) \pi=(-1)^{n}\right\rangle \\
& =(-1)^{n+1}\left[\frac{-1}{n+1}+\frac{1}{n-1}\right]=(-1)^{n+1}\left[\frac{-n+1}{n^{2}-1^{2}}\right]=(-1)^{n+1}\left[\frac{2}{n^{2}-1}\right] \\
a_{n} & =(-1)^{n+1}\left[\frac{2}{n^{2}-1}\right] \text { if } n \neq 1
\end{aligned}
$$

When $n=1$, we have

$$
\begin{aligned}
& a_{1}=\frac{2}{\pi} \int_{0}^{+\pi} x \sin x \cos x d x=\frac{2}{\pi} \int_{0}^{+\pi} x \frac{\sin 2 x}{2} d x=\frac{1}{\pi} \int_{0}^{+\pi} x \sin 2 x d x \\
& a_{1}=\frac{1}{\pi}\left[x\left(\frac{-\cos 2 x}{2}\right)-\left(\frac{-\sin 2 x}{4}\right)\right]_{0}^{\pi}=\frac{1}{\pi}\left[\pi\left(\frac{-\cos 2 \pi}{2}\right)-0\right]=-\frac{1}{2} \\
& \therefore \quad x \sin x=1-\frac{1}{2} \cos x+\sum_{n=2}^{\infty}\left((-1)^{n+1}\left[\frac{2}{n^{2}-1}\right] \cos n x\right)
\end{aligned}
$$

Deduction: Put $x=\frac{\pi}{2}$, a point of continuity, we get

$$
\begin{aligned}
& \therefore \frac{\pi}{2} \sin \frac{\pi}{2}=1-\frac{1}{2} \cos \frac{\pi}{2}+\sum_{n=2}^{\infty}\left((-1)^{n}(-1)\left[\frac{2}{n^{2}-1}\right] \cos \frac{n \pi}{2}\right) \\
& \quad \frac{\pi}{2}=1-\sum_{n=2}^{\infty}\left((-1)^{n}\left[\frac{2}{(n+1)(n-1)}\right] \cos \frac{n \pi}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{2}=1-\left[\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots\right] \\
& {\left[\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots\right]=1-\frac{\pi}{2}=\frac{2-\pi}{2}}
\end{aligned}
$$

11. (b). (ii). The following table gives the variations of a periodic function over a period T

$x:$	0	$\frac{T}{6}$	$\frac{T}{3}$	$\frac{T}{2}$	$\frac{2 T}{3}$	$\frac{5 T}{6}$	T
$f(x):$	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98

Find the fundamental and first harmonics of $f(x)$ to express $f(x)$ in a Fourier series in the form $f(x)=\frac{a_{0}}{2}+a_{1} \cos \theta+b_{1} \sin \theta$, where $\theta=\frac{2 \pi x}{T}$.

Solution: Here $n=6$.

$$
\text { Given } \quad \theta=\frac{2 \pi x}{T}---(1)
$$

By using (1), θ takes the values $0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \int \frac{4 \pi}{3}, \sqrt{\frac{5 \pi}{3}}$.

θ	y	$\cos \theta$	$\sin \theta$	$\mathrm{y} \cos \theta$	$\mathrm{y} \sin \theta$
0^{0}	1.98	1	0	1.98	0
$\frac{\pi}{3}$	1.3	0.5	0.866	0.65	1.1258
$\frac{2 \pi}{3}$	1.05	-0.5	0.866	-0.525	0.9093
π	1.3	-10	0	-1.3	0
$\frac{4 \pi}{3}$	-0.88	-0.5	-0.866	0.44	0.762
$\frac{5 \pi}{3}$	-0.25	0.5	-0.866	-0.125	0.2165
	4.5			1.12	3.013

The Fourier series takes the form
$f(x)=\frac{a_{0}}{2}+a_{1} \cos \theta+b_{1} \sin \theta$
Where

$$
\begin{aligned}
& a_{0}=2\left(\frac{\sum y}{n}\right)=2\left(\frac{4.5}{6}\right)=1.5, \quad a_{1}=2\left(\frac{\sum y \cos \theta}{n}\right)=2\left(\frac{1.12}{6}\right)=0.37 \\
& b_{1}=2\left(\frac{\sum y \sin \theta}{n}\right)=2\left(\frac{3.013}{6}\right)=1.00456
\end{aligned}
$$

$$
\therefore f(x)=\frac{1.5}{2}+0.37 \cos \theta+1.0045 \sin \theta
$$

12. (a). (i). Show that $\mathrm{e}^{-\frac{x^{2}}{2}}$ is a self reciprocal with respect to Fourier transform.

Ans: \quad The Fourier transform of $f(x)$ is

$$
\begin{aligned}
& F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x \\
& F\left[e^{-a^{2} x^{2}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[e^{-a^{2} x^{2}}\right] e^{i s x} d x \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a^{2} x^{2}+i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(a^{2} x^{2}-i s x\right)} d \overrightarrow{d x} \\
&\left.\left.\left.\begin{array}{rl}
a^{2} x^{2}-i s x & \left.=A^{2}-2 A B \Rightarrow A=a x \& 2 A B=i s x\right) 2(a x) B=i s x \Rightarrow B=\frac{i s}{2 a} \\
(A-B)^{2}= & \left(a x-\frac{i s}{2 a}\right)^{2}=a^{2} x^{2}-i s x+\left(\frac{i s}{2 a}\right)^{2} \Rightarrow a^{2} x^{2}-i s x=\left(a x-\frac{i s}{2 a}\right)^{2}-\left(\frac{i s}{2 a}\right)^{2} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{2} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(t a x-\frac{i s}{2 a}\right)^{2}} e^{\left(\frac{i s}{2 a}\right)^{2}} d x \\
2 a
\end{array}\right)^{2}-\left(\frac{i s}{2 a}\right)^{2}\right]\right\rangle d x \\
&=\frac{1}{\sqrt{2 \pi}} e^{\left(\frac{-s^{2}}{4 a^{2}}\right)} \int_{-\infty}^{\infty} e^{-\left(a x-\frac{i s}{2 a}\right)^{2}} d x
\end{aligned}
$$

Put $\quad t=a x-\frac{i s}{2 a} \quad d t=a d x \Rightarrow d x=\frac{d t}{a}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} e^{\left(\frac{-s^{2}}{4 a^{2}}\right)} \int_{-\infty}^{\infty} e^{-t^{2}} \frac{d t}{a}=\frac{1}{\sqrt{2 \pi}} \frac{e^{\left(\frac{-s^{2}}{4 a^{2}}\right)}}{a} \int_{-\infty}^{\infty} e^{-t^{2}} d t \\
& \quad=\frac{1}{a \sqrt{2 \pi}} e^{\left(\frac{-s^{2}}{4 a^{2}}\right)} \sqrt{\pi} \quad\left[\because \int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}\right]
\end{aligned}
$$

$$
F\left[e^{-a^{2} x^{2}}\right]=\frac{1}{a \sqrt{2}} e^{\left(\frac{-s^{2}}{4 a^{2}}\right)}
$$

Deduction:

We have to find $F\left[e^{-\frac{x^{2}}{2}}\right]$, use $a^{2}=\frac{1}{2}, a=\frac{1}{\sqrt{2}}$, we get

$$
\boldsymbol{F}\left[\boldsymbol{e}^{-\frac{x^{2}}{2}}\right]=\frac{1}{\left(\frac{1}{\sqrt{2}}\right) \sqrt{2}} e^{\left(\frac{-s^{2}}{4\left(\frac{1}{2}\right)}\right)}=e^{-\frac{s^{2}}{2}}
$$

Hence the proof.
12. (a). (ii). Find the Fourier Transform of the function

$$
f(x)=\left\{\begin{array}{rr}
1-|x|, & |x|<1 \\
0, & |x|>1
\end{array} \quad \text { and hence find the value of } \int_{0}^{\infty}\left(\frac{\sin ^{4} t}{\mathbf{t}^{4}}\right) d t=\frac{\pi}{3} .\right.
$$

Solution:

Take $f(x)=\left\{\begin{array}{c}a-|x|,-a<x<+a \\ 0,|x|>a\end{array}\right\}$
The Fourier transform of $f(x)$ is

$$
\begin{aligned}
F[f(x)] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-a}^{+a}(a-\partial x \mid)[\cos s x+i \sin s x] d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-a}^{+a}(a-|x|) \cos s x d x+\frac{i}{\sqrt{2 \pi}} \int_{-a}^{+a}(a-|x|) \sin s x d x \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{+a}(a-x) \cos s x d x+0[o d d f n] \\
& =\sqrt{\frac{2}{\pi}}\left[(a-x)\left(\frac{\sin s x}{s}\right)-(-1)\left(\frac{-\cos s x}{s^{2}}\right)\right]_{0}^{a} \\
& =\sqrt{\frac{2}{\pi}}\left[(a-x)\left(\frac{\sin s x}{s}\right)-\left(\frac{\cos s x}{s^{2}}\right)\right]_{0}^{a}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2}{\pi}}\left[\left(0-\frac{\cos s a}{s^{2}}\right)-\left(0-\frac{1}{s^{2}}\right)\right] \\
F[f(x)] & =\sqrt{\frac{2}{\pi}}\left[\frac{1-\cos s a}{s^{2}}\right]
\end{aligned}
$$

Deduction:

By definition of Parseval's identity, we have

$$
\begin{aligned}
& \int_{0}^{\infty}|f(x)|^{2} d x=\int_{0}^{\infty}|F(s)|^{2} d s \\
& \int_{0}^{a}(a-x)^{2} d x=\int_{0}^{\infty}\left(\sqrt{\frac{2}{\pi}}\left[\frac{1-\cos s a}{s^{2}}\right]\right)^{2} d s \\
& \frac{2}{\pi} \int_{0}^{\infty}\left(\frac{2 \sin ^{2} \frac{s a}{2}}{s^{2}}\right)^{2} d s=\left[\frac{(a-x)^{3}}{3(-1)}\right]_{0}^{a}=\left[\frac{0-a^{3}}{-3}\right] \\
& \int_{0}^{\infty} 4\left(\frac{\sin ^{2} \frac{s a}{2}}{s^{2}}\right)^{2} d s=\frac{a^{3}}{3} \frac{\pi}{2}
\end{aligned}
$$

Put $a=1, \quad \frac{s}{2}=t \Rightarrow s=2 t, \quad d s=2 d t \quad$ weget

$$
\begin{aligned}
& \int_{0}^{\infty} 4\left(\frac{\sin ^{2} t}{(2 t)^{2}}\right)^{2} 2 d t+\frac{\pi}{2} \\
& \int_{0}^{\infty} 4\left(\frac{\sin ^{2} t}{t^{2}}\right)^{2}\left(\frac{1}{16}\right) 2 d t=\frac{1}{3} \frac{\pi}{2} \\
& \int_{0}^{\infty}\left(\frac{\sin ^{2} t}{t^{2}}\right)^{2}\left(\frac{8}{16}\right) d t=\frac{1}{3} \frac{\pi}{2} \\
& \int_{0}^{\infty}\left(\frac{\sin ^{2} t}{t^{2}}\right)^{2} d t=\frac{\pi}{3} \\
& \int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t=\frac{\pi}{3}
\end{aligned}
$$

12. (b). (i). Find the Fourier sine transform of $e^{-a x}$ and hence evaluate Fourier cosine transform of $x e^{a x}$ and $x e^{a x} \sin a x$.

Ans:

$$
F_{s}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \sin s x d x=\sqrt{\frac{2}{\pi}}\left[\frac{s}{a^{2}+s^{2}}\right]
$$

Deduction (i):

$$
\begin{aligned}
F_{c}[x f(x)]= & \frac{d}{d s} F_{s}[f(x)] \quad[\text { By Property }] \\
F_{c}\left[x e^{-a x}\right]= & \frac{d}{d s} F_{s}\left[e^{-a x}\right]=\frac{d}{d s}\left[\sqrt{\left.\frac{2}{\pi}\left(\frac{s}{a^{2}+s^{2}}\right)\right]}\right. \\
& =\sqrt{\frac{2}{\pi}}\left[\frac{\left(a^{2}+s^{2}\right)-s(2 s)}{\left(a^{2}+s^{2}\right)^{2}}\right]=\sqrt{\frac{2}{\pi}}\left[\frac{\left(a^{2}+s^{2}\right)-2 s^{2}}{\left(a^{2}+s^{2}\right)^{2}}\right] \\
F_{c}\left[x e^{-a x}\right] & =\sqrt{\frac{2}{\pi}}\left[\frac{a^{2}-s^{2}}{\left(a^{2}+s^{2}\right)^{2}}\right]
\end{aligned}
$$

Deduction (ii):

$$
\begin{aligned}
& \boldsymbol{F}_{\boldsymbol{c}}\left[\boldsymbol{e}^{-a x} \sin a x\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \sin a x \cos s x d x \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \frac{[\sin (s+a) x-\sin (s-a) x]}{2} d x \\
& =\frac{1}{2} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \sin (s+a) x d x-\frac{1}{2} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \sin (s-a) x d x \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{s+a}{a^{2}+(s+a)^{2}}-\frac{s-a}{a^{2}+(s-a)^{2}}\right] \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{s+a}{a^{2}+s^{2}+a^{2}+2 s a}-\frac{s-a}{a^{2}+s^{2}+a^{2}-2 s a}\right] \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{s+a}{2 a^{2}+s^{2}+2 s a}-\frac{s-a}{2 a^{2}+s^{2}-2 s a}\right] \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{\left(2 a^{2}+s^{2}-2 s a\right)(s+a)-\left(2 a^{2}+s^{2}+2 s a\right)(s-a)}{\left(2 a^{2}+s^{2}+2 s a\right)\left(2 a^{2}+s^{2}-2 s a\right)}\right] \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{\left(2 a^{2} s+s^{3}-2 s^{2} a+2 a^{3}+a s^{2}-2 s a^{2}\right)-\left(2 a^{2} s+s^{3}+2 s^{2} a-2 a^{3}-a s^{2}-2 s a^{2}\right)}{\left(2 a^{2}+s^{2}\right)^{2}-(2 s a)^{2}}\right] \\
& \\
& =
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{\sqrt{2 \pi}}\left[\frac{4 a^{3}-a s^{2}}{4 a^{4}+s^{4}+2\left(2 a^{2} s^{2}\right)-4 s^{2} a^{2}}\right] \\
\boldsymbol{F}_{c}\left[\boldsymbol{e}^{-a x} \sin a x\right] & =\frac{1}{\sqrt{2 \pi}}\left[\frac{4 a^{3}-a s^{2}}{4 a^{4}+s^{4}}\right]
\end{aligned}
$$

12. (b). (ii) State and prove convolution theorem of Fourier transforms.

Ans:
Statement: If (s) and $G(s)$ are the functions of $f(x)$ and $g(x)$ respectively then the Fourier transform of the convolution of $f(x)$ and $g(x)$ is the product of their Fourier transform

$$
F[(f * g) x]=F(s) \cdot G(s)
$$

Proof:

$$
\begin{aligned}
& \boldsymbol{F} {[(\boldsymbol{f} * \boldsymbol{g}) \boldsymbol{x}]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(f * g) x e^{i s x} d } \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) \cdot g(x-t) d t\right] e^{\iota s x} d x \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) g(x-t) d t\right] e^{i s x} d x \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t)\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \cdot g(x-t) e^{i s x} d x\right] d t \quad\left[\begin{array}{l}
\text { on interchanging the } \\
\text { order of integration }
\end{array}\right] \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t)(F[g(x-t)]) d t \quad[\text { Defn of } F . T] \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i t s} G(s) d t \quad\left[\because f(x-a)=e^{i a s} F(s)\right] \\
&=G(s) \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i t s} d t \\
& \boldsymbol{F}[(\boldsymbol{f} * \boldsymbol{g}) \boldsymbol{x}]=\boldsymbol{G}(\boldsymbol{s}) * \boldsymbol{F}(\boldsymbol{s})
\end{aligned}
$$

Hence the proof.

13. (a).(i). Find the singular integral of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.

Ans:

$$
\text { Given } z=p x+q y+\sqrt{1+p^{2}+q^{2}} \quad---(1)
$$

The complete solution is

$$
z=a x+b y+\sqrt{1+a^{2}+b^{2}}---(2)
$$

Diff (2) partially w.r.t ' a ' and ' b^{\prime}, we get

$$
\begin{aligned}
& 0=x+\frac{1}{2 \sqrt{1+a^{2}+b^{2}}}(2 a) \Rightarrow x=\frac{-a}{\sqrt{1+a^{2}+b^{2}}} \Rightarrow a=-x \sqrt{1+a^{2}+b^{2}}--(3 \\
& 0=y+\frac{1}{2 \sqrt{1+a^{2}+b^{2}}}(2 b) \Rightarrow y=\frac{-b}{\sqrt{1+a^{2}+b^{2}}} \Rightarrow \boldsymbol{b}=-\boldsymbol{y} \sqrt{1+a^{2}+b^{2}}---(4)
\end{aligned}
$$

$$
\text { From (3), } \quad x^{2}=\frac{a^{2}}{1+a^{2}+b^{2}} \text { and From (4), } \quad y^{2}=\frac{b^{2}}{1+a^{2}+b^{2}}-- \text { (5) }
$$

From the above equations, we have

$$
\begin{aligned}
& x^{2}+y^{2}=\frac{a^{2}+b^{2}}{1+a^{2}+b^{2}} \\
& 1-\left(x^{2}+y^{2}\right)=1-\left(\frac{a^{2}+b^{2}}{1+a^{2}+b^{2}}\right) \\
& 1-\left(x^{2}+y^{2}\right)=\left(\frac{1+a^{2}+b^{2}+a^{2}-b^{2}}{1+a^{2}+b^{2}}\right) \\
& 1-x^{2}-y^{2}=\frac{1}{1)+a^{2}+b^{2}} \Rightarrow 1+a^{2}+b^{2}=\frac{1}{1-x^{2}-y^{2}} \\
& \sqrt{1+a^{2}+b^{2}}=\frac{1}{\sqrt{1-x^{2}-y^{2}}}---(6)
\end{aligned}
$$

Using the value (6) in equation (3) and (4), we get

$$
a=\frac{-x}{\sqrt{1-x^{2}-y^{2}}} \quad \text { and } b=\frac{-y}{\sqrt{1-x^{2}-y^{2}}} \quad---(7)
$$

Using the value (7) in equation (2), we get

$$
\begin{aligned}
& z=\frac{-x^{2}}{\sqrt{1-x^{2}-y^{2}}}+\frac{-y^{2}}{\sqrt{1-x^{2}-y^{2}}}+\frac{1}{\sqrt{1-x^{2}-y^{2}}} \\
& z=\frac{1-x^{2}-y^{2}}{\sqrt{1-x^{2}-y^{2}}}=\sqrt{1-x^{2}-y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& z^{2}=1-x^{2}-y^{2} \\
& \boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\mathbf{z}^{2}=\mathbf{1}
\end{aligned}
$$

This is the required singular integral.
13. (a). (ii). Solve the partial differential equation $x(y-z) p+y(z-x) q=z(x-y)$.

Ans:

The subsidiary equations are

$$
\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}
$$

Using the multipliers 1, 1, 1 we get

$$
\frac{d x+d y+d z}{x y-x z+y z-y x+z x-z y}=\frac{d x+d y+d z}{0}
$$

$$
\text { i.e., } d x+d y+d z=0 \quad[\because N r=0]
$$

Integrating, we get

$$
\begin{aligned}
& x+y+z=c_{1} \\
& \text { i.e., } \quad \boldsymbol{u}=\boldsymbol{x}+\boldsymbol{y}+\mathbf{z}=\boldsymbol{c}_{\mathbf{1}}
\end{aligned}
$$

Using the multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ we get

$$
\begin{aligned}
& \frac{\left.\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z\right)^{n}}{(y-z)+(z-x)+(x-y)}=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0} \\
& \text { i.e., } \frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z=0 \quad[\because N r=0]
\end{aligned}
$$

Integrating, we get

$$
\begin{aligned}
& \log x+\log y+\log z=\log c_{2} \\
& \log (x y z)=\log c_{2} \\
& \text { i.e., } \quad v=x y z=c_{2}
\end{aligned}
$$

The solution of given equation is $\Phi(u, v)=0$.

$$
\text { i.e., } \quad \Phi(x+y+z, x y z)=0
$$

13. (b). (i). Solve $\left(D^{3}-2 D^{2} D^{\prime}\right) z=2 e^{2 x}+3 x^{2} y$.

Ans:
The auxiliary equation is $m^{3}-2 m^{2}=0$

$$
m^{2}(m-2)=0,
$$

The roots are $m=0,0,2$.
The complementary function is

$$
C . F=f_{1}(y)+x f_{2}(y)+f_{3}(y+2 x)
$$

To find Particular Integral:

$$
\begin{aligned}
P . I & =\frac{1}{D^{3}-2 D^{2} D^{\prime}}\left[2 e^{2 x}+x^{2} y\right] \\
& =\left[\frac{1}{D^{3}-2 D^{2} D^{\prime}} 2\left(e^{2 x}\right)\right]+\left[\frac{1}{D^{3}-2 D^{2} D^{\prime}}\left(3 x^{2} y\right)\right] \\
& =2\left[e^{2 x} \frac{1}{2^{3}-2\left(2^{2}\right)(0)}\right]+3\left[\frac{1}{D^{3}\left(1-\frac{2 D}{D}\right)} \int\left(x^{2} y\right)\right] \\
& =2\left[e^{2 x} \frac{1}{8}\right]+3\left[\frac{1}{D^{3}}\left(1-\frac{2 D^{\prime}}{D}\right)^{-1}\right. \\
& =\frac{e^{2 x}}{4}+3 \frac{1}{D^{3}}\left[1-\frac{2 D^{\prime}}{D}+\left(\frac{2 D^{\prime}}{D}\right)^{2}-\left(\frac{2 D^{\prime}}{D}\right)^{3}+\cdots\right] x^{2} y \\
& =\frac{e^{2 x}}{4}+3 \frac{1}{D^{3}}\left[1+\frac{2 D^{\prime}}{D}+\frac{4 D^{\prime 2}}{D^{2}}+\frac{8 D^{\prime 3}}{D^{3}}+\cdots\right] x^{2} y \\
& =\frac{e^{2 x}}{4}+3\left[\frac{1}{D^{3}}\left(x^{2} y\right)+\frac{1}{D^{3}} \frac{2 D^{\prime}}{D}\left(x^{2} y\right)+\frac{1}{D^{3}} \frac{4 D^{\prime 2}}{D^{2}}\left(x^{2} y\right)\right] \\
& =\frac{e^{2 x}}{4}+3\left[\frac{x^{5} y}{60}+2 \frac{x^{6}}{360}\right]
\end{aligned}
$$

The complete solution is $\mathbf{z}=\boldsymbol{C} . \boldsymbol{F}+\boldsymbol{P} . \boldsymbol{I}$

$$
z=f_{1}(y)++x f_{2}(y)+f_{3}(y+2 x)+\frac{e^{2 x}}{4}+3\left[\frac{x^{5} y}{60}+2 \frac{x^{6}}{360}\right]
$$

13. (b). (ii). Solve $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}-3 D+3 D^{\prime}+2\right) z=e^{2 x-y}$.

Ans:
The given equation can be written as

$$
\left\{\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right)\right\} \mathbf{z}=\boldsymbol{e}^{2 x-y} .
$$

We know that the complementary function of $\left\{\left(\boldsymbol{D}-\boldsymbol{m}_{\mathbf{1}} \boldsymbol{D}^{\prime}-\alpha_{\mathbf{1}}\right)\left(\boldsymbol{D}-\boldsymbol{m}_{\mathbf{2}} \boldsymbol{D}^{\prime}-\propto_{\mathbf{1}}\right)\right\} Z=0$ IS

$$
\begin{aligned}
& \quad z=e^{\alpha_{1} x} f_{1}\left(y+m_{1} x\right)+e^{\alpha_{2} x} f_{2}\left(y+m_{2} x\right) \\
& \text { Here } m_{1}=1, m_{2}=1, \alpha_{1}=1 \text { and } \alpha_{2}=2 \\
& \therefore \quad z=e^{x} f_{1}(y+x)+e^{2 x} f_{2}(y+x)
\end{aligned}
$$

To find Particular Integral:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{\left\{\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right)\right\}}\left[e^{2 x-y}\right] \\
& =\left[e^{2 x-y}\right] \frac{1}{\{(2-(-1)-1)(2-(-1)-2)\}} \\
& =e^{2 x-y} \frac{1}{2}
\end{aligned}
$$

The complete solution is $\mathbf{z}=\boldsymbol{C} . \boldsymbol{F}+\boldsymbol{P} . \boldsymbol{I}$

$$
z=e^{x} f_{1}(y+x)+e^{2 x} f_{2}(y+x)+\frac{e^{2 x-y}}{2}
$$

14. (a). (i). A tightly stretched string of length ' l ' is initially at rest in its equiliburium position and each of its points is given the velocity $V_{0} \sin ^{3}\left(\frac{\pi}{\pi}\right)$. Find the displacement $y(x, t)$.
Ans:

The one dimensional wave equation is

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

The suitable solution of one dimensional wave equation is

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right)\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \tag{1}
\end{equation*}
$$

The initial and boundary conditions of $y(x, t)$ are
i. $\quad y(0, t)=0$, for all $t>0$
ii. $\quad y(l, t)=0$, for all $t>0$
iii. $\quad \frac{\partial y}{\partial t}(x, 0)=0,0<x<l$
iv. $\quad y(x, 0)=V_{0} \sin ^{3}\left(\frac{\pi x}{l}\right), 0<x<l$

Applying the boundary condition (1), we get

$$
\begin{aligned}
& y(0, t)=\left(c_{1}+0\right)\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \\
& 0=c_{1}\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \\
& \boldsymbol{c}_{1}=0, \quad \because\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \neq 0
\end{aligned}
$$

Equation (1), becomes

$$
\begin{equation*}
y(x, t)=c_{2} \sin \lambda x\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \tag{2}
\end{equation*}
$$

Applying the boundary condition (2), we get

$$
\begin{gathered}
y(l, t)=c_{2} \sin \lambda l\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \\
0=c_{2} \sin \lambda l\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \\
c_{2} \sin \lambda l=0, \quad \because\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \neq 0
\end{gathered}
$$

If $c_{2}=0$, we get a trivial solution, therefore

Equation (2), becomes

$$
\begin{equation*}
\sin \lambda l=0=n \pi \quad \Rightarrow \quad \lambda=\frac{n \pi}{l} \tag{3}
\end{equation*}
$$

Differentiating partially with respect to ' t ' on both sides, we get

$$
\frac{\partial y}{\partial t}=c_{2} \sin \left(\frac{n \pi x}{l}\right)\left[-c_{3} \sin \left(\frac{n \pi a t}{l}\right)\left(\frac{n \pi a}{l}\right)+c_{4} \cos \left(\frac{n \pi a t}{l}\right)\left(\frac{n \pi a}{l}\right)\right]
$$

Applying the boundary condition (3). we get

$$
\begin{gathered}
\left(\frac{\partial y}{\partial t}\right)_{(x, 0)}=c_{2} \sin \left(\frac{n \pi x}{l}\right)\left[c_{4}\left(\frac{n \pi a}{l}\right)\right] \\
0=c_{2} \sin \left(\frac{n \pi x}{l}\right)\left[c_{4}\left(\frac{n \pi a}{l}\right)\right] \\
\boldsymbol{c}_{4}=0
\end{gathered}
$$

Equation (3), becomes

$$
\begin{gathered}
y(x, t)=c_{2} \sin \left(\frac{n \pi x}{l}\right)\left(c_{3} \cos \left(\frac{n \pi a t}{l}\right)\right) \\
y(x, t)=c_{2} c_{3} \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi a t}{l}\right) \\
y(x, t)=b \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi a t}{l}\right) \ldots .(4) \text { where } b=c_{2} c_{3}
\end{gathered}
$$

The most general solution is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi a t}{l}\right) \tag{4}
\end{equation*}
$$

Applying the initial condition (4), we get

$$
\begin{aligned}
& y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \cos 0 \\
& V_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right)
\end{aligned}
$$

14. (b). A Square plate is bounded by the lines $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}, \boldsymbol{x}=20 \& y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $\boldsymbol{u}(\boldsymbol{x}, 20)=\boldsymbol{x}(20-x), 0<x, 20$ while the other edges are kept at $0^{0} \mathrm{C}$. Find the steady state temperature distribution in the plane.

Ans:
Let us take the sides of the plate be $l=20$.
Let $u(x, y)$ be the temperature at any point (x, y).
Then $u(x, y)$ satisfies the Laplace's equation.

From the given problems we have the following boundary conditions.
i. $\quad u(0, y)=0$, for $0<x<l^{\text {I }}$
ii. $\quad y(l, y)=0$, for $0<y<l t>0$
iii. $u(x, 0)=0$, for $0<x<l$
iv. $u(x, l)=x(l-x)$, for $0<x<l$

The possible solution of this equation is

$$
\begin{equation*}
u(x, y)=\left(c_{5} \cos p x+c_{6} \sin p x\right)\left(c_{7} e^{p y}+c_{8} e^{-p y}\right) \tag{1}
\end{equation*}
$$

Applying the boundary condition (i), we get

$$
\begin{gathered}
u(0, y)=c_{5}\left(c_{7} e^{p y}+c_{8} e^{-p y}\right)=0 \\
C_{5}=0
\end{gathered}
$$

Equation (1), becomes

$$
u(x, y)=c_{6} \sin p x\left(c_{7} e^{p y}+c_{8} e^{-p y}\right)
$$

Applying the boundary condition (2), we get

$$
\begin{gathered}
u(l, y)=c_{6} \sin p l\left(c_{7} e^{p y}+c_{8} e^{-p y}\right)=0 \\
0=c_{6} \sin p l\left(c_{7} e^{p y}+c_{8} e^{-p y}\right) \\
c_{6} \sin p l=0, \quad \because\left(c_{7} e^{p y}+c_{8} e^{-p y}\right) \neq 0
\end{gathered}
$$

If $c_{6}=0$, we get a trivial solution, therefore

$$
\sin p l=0=n \pi \quad \Rightarrow \quad p=\frac{n \pi}{l}
$$

Equation (2), becomes

$$
\begin{equation*}
u(x, y)=c_{6} \sin \left(\frac{n x \pi}{l}\right)\left(c_{7} e^{\left(\frac{n \pi}{l}\right) y}+c_{8} e^{-\left(\frac{n \pi}{l}\right) y}\right) . \tag{3}
\end{equation*}
$$

Applying the boundary condition (3), we get

Equation (3), becomes

$$
\begin{gathered}
u(x, o)=c_{6} \sin \left(\frac{n x \pi}{l}\right)\left(c_{7}+c_{8}\right) \\
c_{7}+c_{8}=\text { or } c_{8}=-c_{7}
\end{gathered}
$$

$$
\begin{gathered}
u(x, y)=c_{6} \sin \left(\frac{n x \pi}{l}\right)\left(c_{7} e^{\left(\frac{n \pi}{l}\right) y}-c_{7} e^{-\left(\frac{n \pi}{l}\right) y}\right) \\
u(x, y)=c_{6} c_{7} \sin \left(\frac{n x \pi}{l}\right)\left(e^{\left(\frac{n \pi}{l}\right) y}-e^{-\left(\frac{n \pi}{l}\right) y}\right) \\
u(x, y)=c_{n} \sin \left(\frac{n x \pi}{l}\right) \sin h\left(\frac{n \pi}{l}\right) y \quad \ldots .(4) \quad \text { where } c_{n}=2 c_{6} c_{7}
\end{gathered}
$$

The most general solution is

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n x \pi}{l}\right) \sin h\left(\frac{n \pi}{l}\right) y \tag{4}
\end{equation*}
$$

Applying the initial condition (4), we get

$$
\begin{equation*}
u(x, l)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n x \pi}{l}\right) \sin h n \pi=x(l-x) \tag{5}
\end{equation*}
$$

To find c_{n}, expand $x(l-x)$ in a half range Fourier sine series in the interval $0<x<l$.

$$
\begin{equation*}
x(l-x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n x \pi}{l}\right) \tag{6}
\end{equation*}
$$

From (9) and (10), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n x \pi}{l}\right) \sin h n \pi=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n x \pi}{l}\right) \tag{7}
\end{equation*}
$$

Equating like co-efficient, we have

$$
\begin{aligned}
& c_{n} \sin h n \pi=b_{n} \quad \text { or } \quad c_{n}=\frac{b_{n}}{\sin h n \pi} \\
& \text { Now, } \quad b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x \\
& b_{n}=\frac{2}{l} \int_{0}^{l} x(l-x) \sin \left(\frac{n \pi x}{l}\right) d x=\frac{2}{l} \int_{0}^{l}\left(l x-x^{2}\right) \sin \left(\frac{n \pi x}{l}\right) d x \\
& =\frac{2}{l}\left[\left(l x-x^{2}\right)\left(\frac{-\cos \left(\frac{n \pi x}{l}\right)}{\frac{n \pi}{l}}\right)-(l-2 x)\left(\frac{-\sin \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)+(-2)\left(\frac{\cos \frac{n \pi x}{l}}{\frac{n^{3} \pi^{3}}{l^{3}}}\right)\right]_{0}^{l} \\
& =\frac{-2}{l}\left[\left(l x-x^{2}\right) \cos \left(\frac{n \pi x}{l}\right)\left(\frac{l}{n \pi}\right)+2 \cos \left(\frac{n \pi x}{l}\right)\left(\frac{l^{3}}{n^{3} \pi^{3}}\right)\right]_{0}^{l} \\
& =\frac{-2}{l}\left[\left(0+2 \cos n \pi\left(\frac{n^{3}}{n^{3} \pi^{3}}\right)\right)-\left(0+2 \cos 0\left(\frac{l^{3}}{n^{3} \pi^{3}}\right)\right)\right] \\
& =\frac{-2}{l}\left(\frac{2 l^{3}}{n^{3} \pi^{3}}\right)[\cos n \pi-1]=\frac{-4 k l^{2}}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right] \\
& b_{n}=\left\{\begin{array}{l}
0, \quad \text { if } n \text { is even } \\
\frac{8 l^{2}}{n^{3} \pi^{3}}, \text { if } n \text { is odd }
\end{array}\right. \\
& \therefore \quad c_{n}=\frac{\mathbf{8} \boldsymbol{l}^{2}}{\boldsymbol{n}^{3} \boldsymbol{\pi}^{3}} * \frac{\mathbf{1}}{\sin h n \pi}
\end{aligned}
$$

Equation (4), becomes

$$
u(x, y)=\sum_{n=1}^{\infty}\left[\frac{8 l^{2}}{\mathbf{n}^{3} \pi^{3}} * \frac{1}{\sin h n \pi}\right] \sin \left(\frac{n x \pi}{l}\right) \sin h\left(\frac{n \pi}{l}\right) y
$$

15. (a). (i). If $Z[f(n)]=F(Z)$, find $Z[f(n-k)]$ and $Z[f(n+k)]$.

Ans:

$$
\begin{aligned}
Z\left[f_{n-k}\right] & =\sum_{n=0}^{\infty} f_{n-k} z^{-n}=\sum_{n=0}^{\infty} f_{n-k} z^{-n} z^{k} z^{-k} \\
& =z^{-k} \sum_{n=0}^{\infty} f_{n-k} z^{-(n-k)} \\
& =z^{-k}\left[f_{0-k} z^{-(0-k)}+f_{1-k} z^{-(1-k)}+f_{2-k} z^{-(2-k)}+\cdots\right]
\end{aligned}
$$

Put $k=-n$, we get

$$
=z^{-k}\left[f_{n} z^{-n}+f_{1+n} z^{-(1+n)}+f_{2+n^{2}} z^{-(2+n)}+\cdots\right]
$$

Put $n=0$, we get

$$
\begin{aligned}
& =z^{-k}\left[f_{0}+f_{1} z^{-1}+f_{2} z^{-2}+\cdots\right] \\
Z\left[f_{n-k}\right] & =z^{-k} \sum_{n=0}^{\infty} f_{n} z^{-n} \\
Z\left[f_{n+k}\right] & =\sum_{n=0}^{\infty} f_{n+k} z^{-n}=\sum_{n=0}^{\infty} f_{n+k} z^{-n} z^{k} z^{-k} \\
& \left.=z^{k} \sum_{n=0}^{\infty} f_{n+k} z G^{(n+k)}\right)^{\infty} \\
& =z^{k}\left[f_{k-2}^{-k}+f_{k+1}^{\left.-1_{1} z^{-(k+1)}+f_{k+2} z^{-(k+2)}+\cdots\right]}\right. \\
& =z^{k}\left[\sum_{n=0}^{\infty} f_{n} z^{-n}-\sum_{n=0}^{k-1} f_{n} z^{-n}\right] \\
& =z^{k}\left[F(z)-f_{0}-f_{1} z^{-1}-f_{2} z^{-2}-\cdots\right]
\end{aligned}
$$

15. (a). (ii). Evaluate $Z^{-1}\left[(z-5)^{-3}\right]$ for $|Z|>5$.

Ans:

$$
\begin{aligned}
& \text { Let } X(z)=\frac{1}{(z-5)^{3}} \\
& X(z) z^{n-1}=\frac{1}{(z-5)^{3}} z^{n-1}
\end{aligned}
$$

Residue of $F[z]$

$$
(z-5)^{3}=0
$$

$z=5$ is a simple pole of order 3

$$
\begin{aligned}
\operatorname{Res} \text { of } F[z] & =\lim _{z \rightarrow 5} \frac{1}{2!} \frac{d^{2}}{d z^{2}}(z-5)^{3} \frac{z^{n-1}}{(z-5)^{3}} \\
& =\lim _{z \rightarrow 5} \frac{1}{2} \frac{d^{2}}{d z^{2}}\left[z^{n-1}\right] \\
& =\lim _{z \rightarrow 5} \frac{1}{2} \frac{d}{d z}\left[(n-1) z^{n-2}\right] \\
& =\lim _{z \rightarrow 5} \frac{1}{2}\left[(n-1)(n-2) z^{n-3}\right]
\end{aligned}
$$

Res of $F[z]=\frac{1}{2}\left[(n-1)(n-2)(5)^{n-3}\right]$

$$
\therefore \quad x(n)=\frac{(n-1)(n-2)(5)^{n-3}}{2}
$$

15. (b). (i). Solve: $y_{n+2}+4 y_{n+1}+3 y_{n}=3^{n}$, given that $y_{0}=0$ and $y_{1}=1$.

Ans:
Given $y_{n+2}+4 y_{n+1}+3 y_{n}=3^{n}$ also $y_{0}=0$ and $y_{1}=1$
Taking z-transform on both sides, we get

$$
\begin{aligned}
& z\left[y_{n+2}\right]+4 z\left[y_{n+1}\right]+3 z+z=3 \\
& \left(z^{2} y(z)-z^{2} y(0)-z y(1)\right)+4(z y(n)-z y(0))+3 y(z)=\frac{z}{z-3} \\
& \left(z^{2} y(z)-z\right)+4(z y(z))+3 y(z)=\frac{z}{z-3} \\
& y(z)\left[z^{2}+4 z+3\right]-z=\frac{z}{z-3} \\
& y(z)[(z+3)(z+1)]=\frac{z}{z-3}+z \\
& y(z)=\frac{z}{(z-3)(z+3)(z+1)}+\frac{z}{(z+3)(z+1)} \\
& y(n)=z^{-1}\left[\frac{z}{(z+1)(z+3)(z-3)}\right]+z^{-1}\left[\frac{z}{(z+3)(z+1)}\right]
\end{aligned}
$$

Method of Partial Fraction:

$$
\begin{equation*}
\frac{X(z)}{z}=\left[\frac{z}{(z+1)(z+3)(z-3)}\right]+\left[\frac{z}{(z+3)(z+1)}\right] \tag{1}
\end{equation*}
$$

$$
\frac{X(z)}{z}=\left\{\frac{A}{(z+1)}+\frac{B}{(z+3)}+\frac{C}{(z-3)}\right\}+\left\{\frac{A}{(z+1)}+\frac{B}{(z+3)}\right\}
$$

$$
\begin{aligned}
& \frac{X(z)}{z}=\frac{z}{(z+1)(z+3)(z-3)} \\
& \frac{X(z)}{z}=\frac{A}{(z+1)}+\frac{B}{(z+3)}+\frac{C}{(z-3)}
\end{aligned}
$$

$$
z=A(z+3)(z-3)+B(z+1)(z-3)+C(z+1)(z+3)
$$

If $z=3$, then $3=24 C \Rightarrow C=\frac{1}{8}$
If $z=-3$, then $-3=12 B \Rightarrow B=-\frac{1}{4}$
Equating Co. eff of z^{2}, we get $0=A+B+C$
$0=\mathrm{A}-\frac{1}{4}+\frac{1}{8} \quad \Rightarrow \quad A=\frac{1}{8}$

$$
\begin{gathered}
\frac{X(z)}{z}=\left\{\frac{\frac{1}{8}}{(z+1)}+\frac{-\frac{1}{4}}{(z+3)}+\frac{\frac{1}{8}}{(z-3)}\right\}+\left\{\frac{-\frac{1}{2}}{(z+1)}+\frac{\frac{3}{2}}{(z+3)}\right\} \\
=\left\{\frac{1}{8} z^{-1}\left(\frac{1}{(z+1)}\right)-\frac{1}{4} z^{-1}\left(\frac{1}{(z+3)}\right)+\frac{1}{8} z^{-1}\left(\frac{1}{(z-3)}\right)\right\}+\left\{-\frac{1}{2} z^{-1}\left(\frac{1}{(z+1)}\right)+\frac{3}{2} z^{-1}\left(\frac{1}{(z+3)}\right)\right\} \\
y(n)=\left\{\frac{1}{8}\left[(-1)^{n-1}\right]-\frac{1}{4}\left[(-3)^{n-1}\right]+\frac{1}{8}(3)^{n-1}\right\}+\left\{-\frac{1}{2}\left[(-1)^{n-1}\right]+\frac{3}{2}(3)^{n-1}\right\}
\end{gathered}
$$

15. (b). (ii). Form the difference equation of second order by eliminating the constants A and B from

$$
y_{n}=A(-2)^{n}+B n .
$$

Ans:

$$
\begin{aligned}
& y_{n}= A(-2)^{n}+B n \\
& \begin{aligned}
y_{+1 n} & =A(-2)^{n+1}+B(n+1) \\
& =A(-2)^{n}(-2)+B(n+1) \\
& =-2 A(-2)^{n}+B(n+1) \\
y_{n+2} & =A(-2)^{n+2}+B(n+2) \\
& =A(-2)^{n}(-2)^{2}+B(n+2) \\
& =4 A(-2)^{n}+B(n+2)
\end{aligned}
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
y_{n} & 1 & n \\
y_{n+1} & -2 & n+1 \\
y_{n+2} & 4 & n+2
\end{array}\right|=0
$$

$$
\begin{aligned}
& y_{n}[-2(n+2)-4(n+1)]-1\left(y_{n+1}(n+2)-y_{n+2}(n+1)\right)+n\left(4 y_{n+1}+2 y_{n+2}\right)=0 \\
& y_{n}[-2 n-4-4 n-4]-1\left(n y_{n+1}+2 y_{n+1}-n y_{n+2}-y_{n+2}\right)+4 n y_{n+1}+2 n y_{n+2}=0 \\
& y_{n}[-6 n-8]-n y_{n+1}-2 y_{n+1}+n y_{n+2}+y_{n+2}+4 n y_{n+1}+2 n y_{n+2}=0 \\
& -y_{n}(6 n+8)+y_{n+1}(-n-2+4 n)+y_{n+2}(n+1+2 n)=0 \\
& -\boldsymbol{y}_{n}(6 n+8)+\boldsymbol{y}_{n+1}(-3 n+2)+y_{n+2}(3 n+1)=0
\end{aligned}
$$

This is the required difference equation.

ANNA UNIVERSITY CHENNAI
 MATHEMATICS III
 NOVEMBER / DECEMBER 2010

1. Find the constant term in the expansion for $\cos ^{2} x$ as a Fourierseries in the interval $(-\pi, \pi)$.

Ans:

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{+\pi} \cos ^{2} x d x=\frac{1}{\pi} \int_{-\pi}^{+\pi}\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{1}{2 \pi}\left[x+\frac{\sin 2 x}{2}\right]_{-\pi}^{\pi} \\
a_{0}=\frac{1}{2 \pi}[x]_{-\pi}^{\pi}=\frac{1}{2 \pi}[\pi-(-\pi)]=1
\end{gathered}
$$

2. Find the root mean square value of the function $f(x)=x^{2}$ in $(0, l)$.

Ans:

$$
\begin{aligned}
& \text { R.M.S }=\sqrt{\frac{\int_{\int_{b}^{b}[(x)]^{2} d x}^{b-a}}{b}}=\sqrt{\frac{\int_{0}^{l}\left[x^{2}\right]^{2} d x}{l-0}}=\sqrt{\frac{\left(\frac{x^{5}}{5}\right)_{0}^{l}}{l}} \\
& \text { R.M.S }=\sqrt{\frac{l^{5}}{5}}=\sqrt{\frac{l^{5}}{5 l}}=\sqrt{\frac{l^{4}}{5}}=\frac{l^{2}}{\sqrt{5}}
\end{aligned}
$$

3. Write the Fourier Transform Pair

Ans: \quad The Fourier Transform of $f(x)$ is

$$
F(s)=F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d
$$

The Inverse Fourier Transform of $f(x)$ is

$$
f(x)=[F(s)] \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(s) e^{-i s x} d s
$$

4. Find the Fourier sine transform of $e^{-a x}, \mathbf{a}>0$.

Ans:

$$
F_{s}[f(x)]=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \sin s x d x=\sqrt{\frac{2}{\pi}}\left[\frac{s}{a^{2}+s^{2}}\right]
$$

5. Form the P.D.E by eliminating the arbitrary constants from $z^{2}-x y=f\left(\frac{x}{z}\right)$.

Solution:

This is a P.D.E of first order

$$
\text { Let } \quad z^{2}-x y=f\left(\frac{x}{z}\right)---(1)
$$

Diff partially w. r. t ' x ' \& ' y^{\prime}, we get

$$
\begin{align*}
& 2 z p-y=f^{\prime}\left(\frac{x}{z}\right) *\left(\frac{z-x \cdot p}{z^{2}}\right)---(2) \tag{2}\\
& 2 z q-x=f^{\prime}\left(\frac{x}{z}\right) *\left(\frac{0-x \cdot q}{z^{2}}\right)--(3) \tag{3}\\
& \text { (2) becomes } \quad f^{\prime}\left(\frac{x}{z}\right)=z^{2}\left(\frac{2 z p-y}{z-x p}\right)- \tag{4}
\end{align*}
$$

Using (4) in (3), we have

$$
\begin{aligned}
& 2 z q-x=z^{2}\left(\frac{2 z p-y}{z-x p} q\left(-\frac{x q}{z^{2}}\right)\right. \\
& (2 z q-x)(z-x p)=x q(2 z p-y) \\
& 2 z^{2} q-2 x z p q-z x+x^{2} p=-2 x z p q+x y q \\
& x^{2} p+q\left(2 z^{2}-x y\right)=z x
\end{aligned}
$$

6. Find the particular integral of $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) \mathbf{z}=e^{x-y}$.

Ans:

$$
\begin{aligned}
& \text { P. } I=\frac{1}{\left(\mathrm{D}^{2}-2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime 2}\right)} \mathrm{e}^{\mathrm{x}-\mathrm{y}} \\
& \text { P. } I=\frac{1}{\left(1^{2}+1(-1)-6(-1)^{2}\right)} e^{x-y} \\
& \text { P.I }=\frac{\mathrm{e}^{\mathrm{x}-\mathrm{y}}}{4}
\end{aligned}
$$

7. Write down the possible solution of one dimensional heat equation.

Ans:

$$
\begin{array}{ll}
\text { i. } & u(x, t)=\left(c_{1} x+c_{2}\right) \\
\text { ii. } & u(x, t)=e^{\alpha^{2} p^{2} t}\left(c_{3} e^{p x}+c_{4} e^{-p x}\right) \\
\text { iii. } & u(x, t)=e^{-\alpha^{2} p^{2} t}\left(c_{5} \cos p x+c_{6} \sin p x\right)
\end{array}
$$

8. Write down possible solutions of the Laplace equation.

Ans:
i. $\quad \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{c}_{1} e^{p x}+c_{2} e^{-p x}\right)\left(c_{3} \cos p y+c_{4} \sin p y\right)$
ii. $\quad \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{c}_{5} \boldsymbol{\operatorname { c o s }} \boldsymbol{p x}+\boldsymbol{c}_{6} \sin p x\right)\left(c_{7} e^{p y}+c_{8} e^{-p y}\right)$
iii. $\quad \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{c}_{9} x+c_{10}\right)\left(c_{11} y+c_{12}\right)$
9. Define unit step sequence. Write its \boldsymbol{Z}-ttransform.

Ans: A discrete unit step function is defined as

$$
\begin{aligned}
& u(k)= \begin{cases}1, & k \geq 0 \\
0, & k<0\end{cases} \\
& \text { Hence } Z[u(k)]=\sum_{k=0}^{\infty} u(k) z^{-k}=\sum_{k=0}^{\infty} z^{-k}=\sum_{k=0}^{\infty} \frac{1}{z^{k}}+1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots \\
& Z[u(k)]=\left(1-\frac{1}{z}\right)^{-1}=\left(\frac{z-1}{z}\right)^{-1}=\frac{z}{z-1}
\end{aligned}
$$

10. Form a difference equation by eliminating arbitrary constants A from $y_{n}=A 3^{n}$.

Ans:

$$
\begin{aligned}
& y_{n}=A 3^{n} \\
& y_{n+1}=A 3^{n+1}=A 3^{n} 3=3 A 3^{n}=3 y_{n} \\
& \text { i.e., } y_{n+1}-3 y_{n}=0
\end{aligned}
$$

Part - B
11. (a). (i). Find the Fourier series expansion $f(x)=\left\{\begin{array}{ccc}x & \text { for } 0<x<\pi \\ 2 \pi-x & \text { for } & \pi<x<2 \pi\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{8}$.

Ans:
The Fourier series of $f(x)$ in $(0,2 \pi)$ is

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

To find a_{0} :

$$
\begin{aligned}
& \begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{\pi}\left[\int_{0}^{\pi} x d x+\int_{\pi}^{2 \pi}(2 \pi-x) d x\right]=\frac{1}{\pi}\left[\left(\frac{x^{2}}{2}\right)_{0}^{\pi}+\left(\frac{(2 \pi-x)^{2}}{-2}\right)_{\pi}^{2 \pi}\right] \\
& =\frac{1}{\pi}\left[\left(\frac{\pi^{2}}{2}-0\right)+\left(0-\left(\frac{\pi^{2}}{-2}\right)\right)\right]=\frac{1}{\pi}\left[\frac{\pi^{2}}{2}+\frac{\pi^{2}}{2}\right] \\
a_{0}= & \pi
\end{aligned}
\end{aligned}
$$

To find a_{n} :

$$
\begin{aligned}
a_{n}= & \frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x=\frac{1}{\pi}\left[\int_{0}^{\pi} x \cos n x d x+\int_{\pi}^{2 \pi}(2 \pi-x) \cos n x d x\right] \\
= & \frac{1}{\pi}\left\{\left[x\left(\frac{\sin n x}{n}\right)-\left(\frac{-\cos n x}{n^{2}}\right)\right]_{0}^{\pi}+\left[(2 \pi-x)\left(\frac{\sin n x}{n}\right)-(-1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{\pi}^{2 \pi}\right\} \\
& =\frac{1}{\pi}\left\{\left[\frac{\cos n x}{n^{2}}\right]_{0}^{\pi}-\left[\frac{\cos n x}{n^{2}}\right]_{\pi}^{2 \pi}\right\} \\
& =\frac{1}{\pi} \frac{1}{n^{2}}\{(\cos n \pi-\cos 0)-(\cos 2 n \pi-\cos n \pi)\} \\
& =\frac{1}{\pi} \frac{1}{n^{2}}\left\{\left((-1)^{n}-1\right)-\left(1-(-1)^{n}\right)\right\} \\
a_{n}= & \frac{2}{\pi n^{2}}\left[1-(-1)^{n}\right]
\end{aligned}
$$

To find b_{n} :

$$
\begin{aligned}
b_{n}=\frac{1}{\pi} & \int_{0}^{2 \pi} f(x) \sin n x d x=\frac{-4}{\pi}\left[\int_{0}^{\pi} x \sin n x d x+\int_{\pi}^{2 \pi}(2 \pi-x) \sin n x d x\right] \\
& =\frac{1}{\pi}\left\{\left[x\left(\frac{-\cos n x}{n}\right)-\left(\frac{-\sin n x}{n^{2}}\right)\right]_{0}^{\pi}+\left[(2 \pi-x)\left(\frac{-\cos n x}{n}\right)-(-1)\left(\frac{-\sin n x}{n^{2}}\right)\right]_{\pi}^{2 \pi}\right\} \\
& =\frac{1}{\pi}\left\{\left[x\left(\frac{-\cos n x}{n}\right)\right]_{0}^{\pi}+\left[(2 \pi-x)\left(\frac{-\cos n x}{n}\right)\right]_{\pi}^{2 \pi}\right\}=\frac{1}{n \pi}[-(\pi \cos n \pi-0)-(0-\pi \cos n \pi)]
\end{aligned}
$$

$$
b_{n}=0
$$

The required Fourier series is $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$

$$
f(x)=\frac{\pi}{2}+\sum_{n=1,3,5}^{\infty}\left(\frac{2}{\pi n^{2}}\left[1-(-1)^{n}\right]\right) \cos n x
$$

Deduction:

$$
f(x)=\left\{\begin{array}{cll}
x & \text { for } & 0<x<\pi \\
2 \pi-x & \text { for } & \pi<x<2 \pi
\end{array}\right.
$$

$$
\text { Put } \mathrm{x}=0 \text {, a point of discontinuity } \quad \therefore \frac{f(0)+f(2 \pi)}{2}=0
$$

$$
\therefore \quad 0=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1,3,5}^{\infty}\left(\frac{-2}{n^{2}}\right) \cos n 0
$$

$$
\therefore \quad 0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1,3,5}^{\infty}\left(\frac{1}{n^{2}}\right)
$$

$$
\therefore \frac{\pi^{2}}{8}=\left[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+. .\right]
$$

11. (a). (ii). Find the Fourier series expansion of $f(x)=1-x^{2}$ in ($-1,1$).

Ans:
Given $f(x)=1-x^{2}$ in $(-1,1)$
The given function is even function.
Here $l=1$, The Fourier series for the function $f(x)$ in $(-l, l)$ is given by

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right) \\
& a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x=\frac{2}{1} \int_{0}^{1}\left(1-x^{2}\right) d x=2\left[1-\frac{x^{3}}{3}\right]_{0}^{1}=2\left[\left(1-\frac{1}{3}\right)-(1-0)\right]
\end{aligned}
$$

Put $l=1$

$$
\begin{aligned}
& a_{0}=-[-1] \\
& \begin{aligned}
& a_{n}= \frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x \\
& \begin{aligned}
a_{n}= & \frac{2}{1} \int_{0}^{1}\left(1-x^{2}\right) \cos n \pi x d x \\
& =2\left[\left(1-x^{2}\right)\left(\frac{\sin n \pi x}{n \pi}\right)-(-2 x)\left(\frac{-\cos n \pi x}{n^{2} \pi^{2}}\right)+(-2)\left(\frac{\sin n \pi x}{n^{3} \pi^{3}}\right)\right]_{0}^{1} \\
& =-2\left[2 x\left(\frac{\cos n \pi x}{n^{2} \pi^{2}}\right)\right]_{0}^{1}=-4\left[(\cos n \pi)\left(\frac{1}{n^{2} \pi^{2}}\right)-0\right]
\end{aligned}
\end{aligned} .
\end{aligned}
$$

$$
a_{n}=\frac{-4(-1)^{n}}{n^{2} \pi^{2}}
$$

The required Fourier series is

$$
\therefore \quad 1-x^{2}=\frac{2}{3}-\sum_{n=1}^{\infty}\left(\frac{4(-1)^{n}}{n^{2} \pi^{2}} \cos n \pi x\right)
$$

11. (b). (i). Obtain the half range cosine series for $f(x)=x$ in $(0, \pi)$.

Ans:
The half range cosine series for the function $f(x)$ is given by

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} b_{n} \sin n x, \\
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x d x=\frac{2}{\pi}\left[\frac{x^{2}}{2}\right]_{0}^{\pi}=\frac{2}{\pi}\left[\frac{\pi^{2}}{2}-0\right] \\
& \boldsymbol{a}_{0}=\pi \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& \left.b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x=\frac{2}{\pi}\left(x^{2}\right)\left(\frac{\sin n x}{n}\right)-(2 x)\left(\frac{-\cos n x}{n^{2}}\right)+(2)\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{-2}{\pi}\left[2 x\left(\frac{\cos n x}{n^{2}}\right)\right]_{0}^{\pi}=\frac{-2}{\pi}\left[2 \pi\left(\frac{\cos n \pi}{n^{2}}\right)-0\right] \\
& \boldsymbol{a}_{n}=-\frac{\mathbf{4}(-1)^{n}}{n^{2}} \\
& \therefore \quad \boldsymbol{x}^{2}=\frac{\pi}{2}+\sum_{n=1}^{\infty}\left(-\frac{\mathbf{4}(-\mathbf{1})^{n}}{n^{2}}\right) \cos n \boldsymbol{x}
\end{aligned}
$$

11. (b). (ii). Find the Fourier series as for as the second harmonic to represent the function $f(x)$ with period 6, given the following table.

$x:$	0	1	2	3	4	5
$f(x):$	9	18	24	28	26	20

Ans:

Here $n=5, \quad 2 l=6, \quad l=3$

The Fourier series takes the form

$$
y=\frac{a_{0}}{2}+a_{1} \cos \frac{\pi x}{3}+a_{2} \cos \frac{2 \pi x}{3}+b_{1} \sin \frac{\pi x}{3}+b_{2} \sin \frac{2 \pi x}{3}--(1)
$$

x	$\frac{\pi x}{3}$	$\frac{2 \pi x}{3}$	y	$y \cos \frac{\pi x}{3}$	$y \sin \frac{\pi x}{3}$	$y \cos \frac{2 \pi x}{3}$	$y \sin \frac{2 \pi x}{3}$
0	0	0	0	9	0	9	0
1	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	18	9	15.7	-9	15.6
2	$\frac{2 \pi}{3}$	$\frac{4 \pi}{3}$	24	-12	20.9	-24	0
3	π	2π	28	-28	0	28	0
4	$\frac{4 \pi}{3}$	$\frac{8 \pi}{3}$	26	-13	-22.6	-133	22.6
5	$\frac{5 \pi}{3}$	$\frac{10 \pi}{3}$	10	10	-17.4	-10	-17.4
-19			125	-25	-3.4	-19	20.8

$$
\begin{aligned}
& a_{0}=2\left(\frac{\sum y}{n}\right)=2\left(\frac{125}{6}\right)=41.66, \quad \begin{array}{l}
a_{1}=2\left(\frac{\sum y \cos \frac{\pi x}{3}}{6}\right)=2\left(\frac{-25}{6}\right)=-8.33 \\
b_{1}=2\left(\frac{\sum y \sin \frac{\pi x}{3}}{6}\right)=2\left(\frac{-34}{6}\right)=-1.336 \quad a_{2}=2\left(\frac{\sum y \cos \frac{2 \pi x}{3}}{6}\right)=-6.33
\end{array},=\frac{1}{2}
\end{aligned}
$$

$$
b_{2}=2\left(\frac{\sum y \sin \frac{2 \pi x}{3}}{6}\right)=6.9
$$

$$
\therefore \quad y=\frac{41.66}{2}-8.33 \cos \frac{\pi x}{3}-6.33 \cos \frac{2 \pi x}{3}-1.336 \sin \frac{\pi x}{3} 6.9 \sin \frac{2 \pi x}{3}
$$

12. (a). (i). Derive Parseval's identity for the Fourier Transforms.

Statement:

If $f(x)$ is a given function defined in $(-\infty,+\infty)$ then it satisfy the identity

$$
\int_{0}^{\infty}|f(x)|^{2} d x=\int_{0}^{\infty}|F(s)|^{2} d s \quad \text { or } \quad \int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|F(s)|^{2} d s
$$

Proof:

We know that

$$
\begin{aligned}
& F[f * g]=F(s) * G(s) \\
& F^{-1}[F(s) * G(s)]=f * g \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(s) * G(s) e^{-i s x} d s=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) * g(x-t) d t
\end{aligned}
$$

Putting $x=0$, we get

$$
\begin{equation*}
\int_{-\infty}^{\infty} F(s) * G(s) d s=\int_{-\infty}^{\infty} f(t) * g(-t) d t \tag{1}
\end{equation*}
$$

Let $g(-t)=\overline{f(t)}$

$$
\begin{equation*}
g(t)=\overline{\overline{f(-t)}} \tag{2}
\end{equation*}
$$

$\therefore \quad G(s)=\overline{F[f(-x)]}=\overline{F(s)}$
i.e., $\quad G(s)=\overline{F(s)}$

Using the value (2) in (4), we get

$$
\begin{aligned}
& \int_{-\infty}^{\infty} F(s) * \overline{F(s)} d s=\int_{-\infty}^{\infty} f(t) * f(t) d t \\
& \int_{-\infty}^{\infty}|\boldsymbol{F}(s)|^{2} d s=\int_{-\infty}^{\infty}|\boldsymbol{f}(t)|^{2} d \boldsymbol{t} \\
& \text { or } \quad \int_{0}^{\infty}|\boldsymbol{F}(\boldsymbol{s})|^{2} \boldsymbol{d} \boldsymbol{s}=\int_{0}^{\infty}|\boldsymbol{f}(\boldsymbol{x})|^{2} d \boldsymbol{x}
\end{aligned}
$$

12. (a). (ii). Find the Fourier integral representation of $f(x)$ defined as $f(x)= \begin{cases}0, & \text { for } x<0 \\ \frac{1}{2}, & \text { for } x=0 \\ e^{-x} & \text { for } x>0\end{cases}$ Ans:

The Fourier integral of $f(x)$ is

$$
\begin{align*}
f(x) & =\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \lambda(t-x) d t d \lambda \tag{1}\\
& =\frac{1}{\pi} \int_{0}^{\infty}\left[\int_{-\infty}^{0} f(t) \cos \lambda(t-x) d t d \lambda+\int_{0}^{\infty} f(t) \cos \lambda(t-x) d t d \lambda\right]
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{\infty}\left[\int_{-\infty}^{0} 0 \cos \lambda(t-x) d t d \lambda+\int_{0}^{\infty} e^{-t} \cos \lambda(t-x) d t d \lambda\right] \\
& =\frac{1}{\pi} \int_{0}^{\infty}\left[0+\int_{0}^{\infty} e^{-t} \cos \lambda(t-x) d t d \lambda\right] \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left[\frac{e^{-t}}{\lambda^{2}+1}(-1 * \cos \lambda(t-x)+\lambda \sin \lambda(t-x))\right]_{0}^{\infty} d \lambda \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left[0-\frac{1}{\lambda^{2}+1}(-1 * \cos \lambda x+\lambda \sin \lambda(-x))\right] d \lambda \\
= & \frac{1}{\pi} \int_{0}^{\infty}\left[-\frac{1}{\lambda^{2}+1}(-\cos \lambda x-\lambda \sin \lambda x)\right] d \lambda \\
f(x)= & \frac{1}{\pi} \int_{0}^{\infty}\left[\frac{1}{\lambda^{2}+1}(\cos \lambda x+\lambda \sin \lambda x)\right] d \lambda
\end{aligned}
$$

12 (b). (i). Find the Fourier sine transform of $f(x)=\left\{\begin{array}{cc}x, & 0<x<1 \\ 2-x, & 1<x<2 \\ 0, & x>2\end{array}\right.$
Ans:

$$
\begin{aligned}
F_{s}[f(x)] & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x \\
& \left.=\sqrt{\frac{2}{\pi}}\left[\int_{0}^{1} x \sin s x\right] d x+\int_{1}^{2}(2-x) \cos s x d x+\int_{2}^{\infty} 0 \sin s x d x\right] \\
& =\sqrt{\frac{2}{\pi}}\left[\left[x\left(-\frac{\cos s x}{s}\right)-\left(-\frac{\sin s x}{s^{2}}\right)\right]_{0}^{1}+\left[(2-x)\left(-\frac{\cos s x}{s}\right)-(-1)\left(-\frac{\sin s x}{s^{2}}\right)\right]_{1}^{2}+0\right] \\
& =\sqrt{\frac{2}{\pi}}\left[\left[-\frac{\cos s}{s}+\frac{\sin s}{s^{2}}\right]+\left[0-\frac{\sin 2 s}{s^{2}}+\left(\frac{\cos s}{s}\right)+\left(\frac{\sin s}{s^{2}}\right)\right]\right] \\
& =\sqrt{\frac{2}{\pi}}\left[2 \frac{\sin s}{s^{2}}-\frac{\sin 2 s}{s^{2}}\right] \\
& =\sqrt{\frac{2}{\pi}} \frac{1}{s^{2}}[2 \sin s-\sin 2 s]=\sqrt{\frac{2}{\pi}} \frac{1}{s^{2}}[2 \sin s-2 \sin s \cos s]
\end{aligned}
$$

$$
F_{s}[f(x)]=2 \sin s \sqrt{\frac{2}{\pi}} \frac{1}{s^{2}}[1-\cos s]
$$

12. (b). (ii). Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ using Fourier cosine transforms of $\mathrm{e}^{-\mathrm{ax}}$ and $\mathrm{e}^{-\mathrm{bx}}$.

Ans:
Let us take $f(x)=e^{-a x}$ and $g(x)=e^{-b x}$.
The Fourier cosine transforms of $f(x)=e^{-a x}$ and $g(x)=e^{-b x}$ is given by

$$
\begin{aligned}
& F_{c}[f(x)]=F_{c}\left[e^{-a x}\right]=\sqrt{\frac{2}{\pi}}\left(\frac{a}{s^{2}+a^{2}}\right) \text { and } F_{c}[g(x)]=F_{c}\left[e^{-b x}\right]=\sqrt{\frac{2}{\pi}}\left(\frac{b}{s^{2}+b^{2}}\right) \\
& \text { We know that } \int_{0}^{\infty} F_{c}[f(x)] * F_{c}[g(x)] d s=\int_{0}^{\infty} f(x) * g(x) d x \\
& \text { i.e., } \int_{0}^{\infty}\left(\sqrt{\frac{2}{\pi}}\left(\frac{a}{s^{2}+a^{2}}\right)\right)\left(\sqrt{\frac{2}{\pi}}\left(\frac{b}{s^{2}+b^{2}}\right)\right) d s=\int_{0}^{\infty} e^{-a x} * e^{-b x} d x \\
& \text { i.e., } \frac{2}{\pi} \int_{0}^{\infty} \frac{a b}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)} d s=\int_{0}^{\infty} e^{-(a+b)} d x=\left[\frac{e^{-(a+b) x}}{-(a+b)}\right]_{0}^{\infty} \\
& \left.\frac{2}{-(a+b)}\left(e^{-\infty}-e^{0}\right)\right]=\left[\frac{1}{-(a+b)}(0-1)\right] \\
& \int_{0}^{\infty} \frac{a b}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)} d s=\left(\frac{1}{a+b}\right) \\
& \int_{0}^{\infty} \frac{1}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)} d x=\frac{\pi}{2 a b}\left(\frac{1}{a+b}\right)
\end{aligned}
$$

13. (a). (i). Form the P.D.E by eliminating the function from $\Phi\left(x^{2}+y^{2}+z^{2}, a x+b y+c z\right)=0$.

Ans:

$$
\Phi\left(x^{2}+y^{2}+z^{2}, a x+b y+c z\right)=0---(1)
$$

This equation is of the form $\boldsymbol{\Phi}(\boldsymbol{u}, \boldsymbol{v})=\mathbf{0}$.
Here $u=x^{2}+y^{2}+z^{2}, \quad v=a x+b y+c z$

$$
\frac{\partial u}{\partial x}=2 x+2 z \frac{\partial z}{\partial x}=2 x+2 z p \quad \frac{\partial v}{\partial x}=a+c \frac{\partial z}{\partial x}=a+c p
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=2 y+2 z \frac{\partial z}{\partial y}=2 y+2 z q \quad \frac{\partial v}{\partial y}=b+c \frac{\partial z}{\partial y}=b+c q \\
& {\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y}
\end{array}\right]=0 \Rightarrow\left|\begin{array}{ll}
2 x+2 z p & a+c p \\
2 y+2 z q & b+c q
\end{array}\right|=0} \\
& (2 x+2 z p)(b+c q)-(2 y+2 z q)(a+c p)=0
\end{aligned}
$$

which is the required P.D.E.
13. (a). (ii). Solve the partial differential equation $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.

Ans:
The subsidiary equations are

$$
\frac{d x}{x^{2}(y-z)}=\frac{d y}{y^{2}(z-x)}=\frac{d z}{z^{2}(x-y)}
$$

Using the multipliers $\frac{1}{x^{2}}, \frac{1}{y^{2}}, \frac{1}{z^{2}}$ we get

$$
\begin{aligned}
& \frac{\frac{1}{x^{2}} d x+\frac{1}{y^{2}} d y+\frac{1}{z^{2}} d z}{(y-z)+(z-x)+(x-y)}=\frac{\frac{1}{x^{2}} d x+\frac{1}{\hat{y}^{2}} d y+\frac{1}{z^{2}} d z}{0} \\
& \text { i.e., } \frac{1}{x^{2}} d x+\frac{1}{y^{2}} d y+\frac{1}{z^{2}} d z=0 \quad[\because N r=0] \\
& \text { i.e., } x^{-2} d x+y y^{-2} d y+z^{-2} d z=0
\end{aligned}
$$

Integrating, we get

$$
\begin{gathered}
\left(\frac{x^{-2+1}}{-2+1}\right)+\left(\frac{y^{-2+1}}{-2+1}\right)+\left(\frac{z^{-2+1}}{-2+1}\right)=c_{1} \\
\left(\frac{x^{-1}}{-1}\right)+\left(\frac{y^{-1}}{-1}\right)+\left(\frac{z^{-1}}{-1}\right)=c_{1}
\end{gathered}
$$

$$
-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=c_{1}
$$

$$
\text { i.e., } \quad u=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=c_{1}
$$

Using the multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ we get

$$
\begin{aligned}
& \frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{x(y-z)+y(z-x)+z(x-y)}=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0} \\
& \text { i.e., } \frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z=0 \quad[\because N r=0]
\end{aligned}
$$

Integrating, we get

$$
\begin{aligned}
& \log x+\log y+\log z=\log c_{2} \\
& \log (x y z)=\log c_{2} \\
& \text { i.e., } \quad v=x y z=c_{2}
\end{aligned}
$$

The solution of given equation is $\Phi(u, v)=0$.

$$
\text { i.e., } \quad \Phi\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, x y z\right)=0
$$

13. (b). (i). Solve the eqaution $\left(D^{3}+D^{2} D^{\prime}+4 D D^{\prime 2}+4 D^{\prime 3}\right) z=\cos (2 x+y)$.

Ans:
The auxiliary equation is $m^{3}+m^{2}+4 m+4=0$
The roots are $m=-1,+2 i,-2 i$.
$\therefore \quad C . F=f_{1}(y-x)+f_{2}(y+3 i x)+f_{3}(y-2 i x)$
To find Particular Integral:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{\left(\mathrm{D}^{3}+\mathrm{D}^{2} \mathrm{D}^{\prime}+4 \mathrm{DD}^{\prime 2}+4 \mathrm{D}^{\prime 3}\right)}[\cos (2 \mathrm{x}+\mathrm{y})] \\
& =\frac{1}{\left(\mathrm{D}^{2} \mathrm{D}+\mathrm{D}^{2} \mathrm{D}^{\prime}+4 \mathrm{DD}^{\prime 2}+4 \mathrm{D}^{\prime 2} \mathrm{D}^{\prime}\right)} \cos (2 \mathrm{x}+\mathrm{y})
\end{aligned}
$$

Replace $\mathrm{D}^{2} \rightarrow-(2)^{2}, \mathrm{D}^{\prime 2} \rightarrow-(\mathbf{1})^{2}$ \& and $\mathrm{DD}^{\prime} \rightarrow-(2 * 1)=-2$

$$
\begin{aligned}
& =\frac{1}{\left(-4 \mathrm{D}+(-4) \mathrm{D}^{\prime}+4 \mathrm{D}(-1)+4(-1) \mathrm{D}^{\prime}\right)} \cos (2 \mathrm{x}+\mathrm{y}) \\
& =\frac{1}{\left(-4 \mathrm{D}-4 \mathrm{D}^{\prime}-4 \mathrm{D}-4 \mathrm{D}^{\prime}\right)} \cos (2 \mathrm{x}+\mathrm{y}) \\
& =\frac{1}{-8\left(\mathrm{D}+\mathrm{D}^{\prime}\right)} \cos (2 \mathrm{x}+\mathrm{y}) \\
& =-\frac{1}{8}\left[\frac{1}{\left(\mathrm{D}+\mathrm{D}^{\prime}\right)} * \frac{D-D^{\prime}}{D-D^{\prime}}\right] \cos (2 \mathrm{x}+\mathrm{y})
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{8}\left[\frac{D-D^{\prime}}{D^{2}-D^{\prime 2}}\right] \cos (2 \mathrm{x}+\mathrm{y}) \\
& =-\frac{1}{8}\left[\frac{D-D^{\prime}}{-4-(-1)}\right] \cos (2 \mathrm{x}+\mathrm{y}) \\
& =-\frac{1}{8}\left[\frac{1}{-3}\right]\left(\mathrm{D}-\mathrm{D}^{\prime}\right) \cos (2 \mathrm{x}+\mathrm{y}) \\
& =-\frac{1}{8}\left[\frac{1}{-3}\right][-\sin (2 \mathrm{x}+\mathrm{y}) 2-(-\sin (2 \mathrm{x}+\mathrm{y})] \\
\text { P.I } & =\frac{1}{24}[-\sin (2 \mathrm{x}+\mathrm{y})]
\end{aligned}
$$

The complete solution is $\mathbf{z}=\boldsymbol{C} . \boldsymbol{F}+\boldsymbol{P} . \boldsymbol{I}$

$$
z=f_{1}(y-x)+f_{2}(y+2 i x)+f_{3}(y-2 i x)-\frac{\sin (2 x+y)}{24}
$$

14. (a). A tightly stretched string of length $2 l$ is fastened at both ends. The midpoint of the string is displaced by a distance ' \boldsymbol{b} ' transversely and the string is released from rest in this position. Find an expression for the transverse displacement of the string at any time during the subsequent motion.

Ans: The one dimensional wave equation is

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

The equation of a string $\boldsymbol{O A}$ is $(0,0)$ and $\left(\frac{l}{2}, b\right)$

$$
\begin{aligned}
& \frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \Rightarrow \frac{y-0}{b-0}=\frac{x-0}{\frac{l}{2}-0} \\
& \Rightarrow \frac{y}{b}=\frac{2 x}{l} \Rightarrow y=\frac{2 b x}{l}
\end{aligned}
$$

The equation of a string $\boldsymbol{A B}$ is $\left(\frac{l}{2}, b\right)$ and $(l, 0)$

$$
\begin{aligned}
& \frac{y-b}{0-b}=\frac{x-l / 2}{l-l / 2} \quad \Rightarrow \quad \frac{y-b}{-b}=\frac{x-l / 2}{l / 2} \\
& y-b=\frac{b l-2 b x}{l} \quad \Rightarrow \quad y=\frac{b l-2 b x}{l}+b \quad \Rightarrow \quad y=\frac{2 b}{l}(l-x)
\end{aligned}
$$

The initial displacement of the string is in the form

$$
y(x, 0)= \begin{cases}\frac{2 b x}{l}, & 0<x<\frac{l}{2} \\ \frac{2 b}{l}(l-x), & \frac{l}{2}<x<l\end{cases}
$$

The suitable solution of one dimensional wave equation is

$$
\begin{equation*}
y(x, t)=\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right)\left(c_{3} \cos \lambda a t+c_{4} \sin \lambda a t\right) \tag{1}
\end{equation*}
$$

The initial and boundary conditions of $y(x, t)$ are
i. $\quad y(0, t)=0$, for all $t>0$
ii. $\quad y(l, t)=0$, for all $t>0$
iii. $\frac{\partial y}{\partial t}(x, 0)=0,0<x<l$
iv. $\quad y(x, 0)=\left\{\begin{array}{c}\frac{2 b x}{l}, \quad 0<x<\frac{l}{2} \\ \frac{2 b}{l}(l-x), \frac{l}{2}<x<l\end{array}\right.$

Applying the boundary condition (i), (ii), (iii) we get

$$
y(x, t)=b_{n} \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi a t}{l}\right) \ldots(4) \text { where } b_{n}=c_{2} c_{3}
$$

The most general solution is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{2} \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi a t}{l}\right) \tag{4}
\end{equation*}
$$

Applying the initial condition (4) get

$$
\begin{aligned}
& \text { where } f(x)=\left\{\begin{array}{c}
\frac{2 b x}{l}, \quad 0<x<\frac{l}{2} \\
\frac{2 b}{l}(l-x), \frac{l}{2}<x<l
\end{array}\right. \\
& b_{n}=\frac{2}{l} \int_{0}^{\frac{l}{2}} f(x) \sin \left(\frac{n \pi x}{l}\right) d x=\frac{2}{l} \int_{0}^{\frac{l}{2}}\left(\frac{2 b x}{l}\right) \sin \left(\frac{n \pi x}{l}\right)=f(x) \\
& =\frac{2}{l}\left(\frac{2 b}{l}\right) \int_{0}^{\frac{l}{2}} x \sin \left(\frac{n \pi x}{l}\right) d x+\frac{2}{l} \int_{\frac{l}{2}}^{l} \frac{2 b}{l}\left(\frac{2 b}{l}\right) \int_{\frac{l}{2}}^{l}(l-x) \sin \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{4 b}{l^{2}}\right)\left[x\left(\frac{-\cos \left(\frac{n \pi x}{l}\right)}{\frac{n \pi}{l}}\right)-\left(\frac{-\sin \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)\right]_{0}^{\frac{l}{2}}+\left(\frac{4 b}{l^{2}}\right)\left[(l-x)\left(\frac{-\cos \left(\frac{n \pi x}{l}\right)}{\frac{n \pi}{l}}\right)-(-1)\left(\frac{-\sin \frac{n \pi x}{l}}{\frac{n^{2} \pi^{2}}{l^{2}}}\right)\right]_{\frac{l}{2}}^{l} \\
& =\left(\frac{4 b}{l^{2}}\right)\left[\frac{l}{2}\left(-\cos \frac{n \pi}{2}\right)\left(\frac{l}{n \pi}\right)-\left(-\sin \frac{n \pi}{2}\right)\left(\frac{l^{2}}{n^{2} \pi^{2}}\right)\right] \\
& \quad \quad+\left(\frac{4 b}{l^{2}}\right)\left[0-\left(l-\frac{l}{2}\right)\left(-\cos \frac{n \pi}{2}\right)\left(\frac{l}{n \pi}\right)-\left(-\sin \frac{n \pi}{2}\right)\left(\frac{n^{2} \pi^{2}}{l^{2}}\right)\right] \\
& =\left(\frac{4 b}{l^{2}}\right)\left[\frac{-l^{2}}{2 n \pi}\left(\cos \frac{n \pi}{2}\right)+\frac{l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{2}\right)\right]+\left(\frac{4 b}{l^{2}}\right)\left[\left(\cos \frac{n \pi}{2}\right)\left(\frac{l^{2}}{n \pi}\right)+\frac{l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{2}\right)\right] \\
& =\left(\frac{4 b}{l^{2}}\right)\left[\frac{l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{2}\right)+\frac{l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{2}\right)\right] \\
& =\left(\frac{8 b}{l^{2}}\right)\left[\frac{l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{2}\right)\right] \\
& \boldsymbol{b}_{\boldsymbol{n}}=\frac{8 \boldsymbol{b}}{\boldsymbol{n}^{2} \boldsymbol{\pi}^{2}}\left(\sin \frac{n \pi}{2}\right)
\end{aligned}
$$

Equation (4), becomes

$$
y(x, t)=\sum_{n=o d d}^{\infty} \frac{8 b}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{2}\right) \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi a t}{l}\right)
$$

14. (b) A Square plate is bounded by the lines $x=0, y=0, x=20 \& y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $\boldsymbol{u}(\boldsymbol{x}, 20)=\boldsymbol{x}(20-x), 0<x, 20$ while the other edges are kept at $0^{0} C$. Find the steady state temperature distribution in the plane.

Ans: Refer Previous Question Paper
15. (a). (i). Find the z-transforms of $\cos n \theta$ and $\sin n \theta$. Hence deduce that the

$$
\text { z-transforms of } \cos (n+1) \theta \text { and } a^{n} \sin n \theta .
$$

Ans:

$$
\begin{aligned}
& \cos n \theta+i \sin n \theta=e^{i n \theta} \\
& z\left[e^{i n \theta}\right]=\sum_{n=0}^{\infty}\left(e^{i n \theta}\right) z^{-n} \\
& z\left[\left(e^{i \theta}\right)^{n}\right]=\frac{z}{z-e^{i \theta}}
\end{aligned}
$$

$$
\begin{aligned}
z\left[\left(e^{i \theta}\right)^{n}\right] & =\frac{z}{z-[\cos n \theta+i \sin n \theta]} \\
& =\frac{z}{(z-\cos n \theta)-i \sin n \theta} \\
& =\frac{z}{(z-\cos n \theta)-i \sin n \theta} * \frac{(z-\cos n \theta)+i \sin n \theta}{(z-\cos n \theta)+i \sin n \theta} \\
& =\frac{z[(z-\cos n \theta)+i \sin n \theta]}{(z-\cos n \theta)^{2}-i^{2} \sin ^{2} n \theta} \\
& =\frac{z[(z-\cos n \theta)+i \sin n \theta]}{z^{2}+\cos ^{2} n \theta-2 z \cos n \theta+\sin ^{2} n \theta} \\
z\left[e^{i n \theta}\right] & =\frac{z[(z-\cos n \theta)+i \sin n \theta]}{z^{2}-2 z \cos n \theta+1} \\
z[\cos n \theta+i \sin n \theta] & =\left(\frac{z(z-\cos n \theta)}{z^{2}-2 z \cos n \theta+1}\right)+i\left(\frac{z \sin n \theta}{z^{2}-2 z \cos n \theta+1}\right)
\end{aligned}
$$

Equating real and imaginary parts, we have

$$
\begin{aligned}
& z[\cos n \theta]=\frac{z^{2}-z \cos n \theta}{z^{2}-2 z \cos n \theta+1} \\
& z[\sin n \theta]=\frac{z \sin n \theta}{z^{2}-2 z \cos n \theta+1}
\end{aligned}
$$

By shifting theorem, we have

$$
\begin{aligned}
& z[\cos (n+1) \theta]+z\left(\frac{z(z-\cos \theta)}{z^{2}-2 z \cos n \theta+1}-\cos 0\right) \\
& z[\cos (n+1) \theta]=z\left(\frac{z(z-\cos \theta)}{z^{2}-2 z \cos n \theta+1}-1\right) \\
& z\left[a^{n} \sin n \theta\right]=z[\sin n \theta]_{z \rightarrow \frac{z}{a}} \\
& =\left(\frac{\mathbf{z} \sin n \theta}{z^{2}-2 z \cos n \theta+1}\right)_{z \rightarrow \frac{z}{a}}=\left(\frac{\frac{\mathbf{z}}{\boldsymbol{a}} \sin n \theta}{\frac{\mathbf{z}^{2}}{a^{2}}-\frac{2 z}{a} \cos n \theta+1}\right) \\
& =\left(\frac{\mathbf{z} \sin n \theta}{z^{2}-2 \boldsymbol{z a} \cos n \theta+\boldsymbol{a}^{2}}\right)
\end{aligned}
$$

15. (a). (ii). Find the inverse z-transform of $\frac{z(z+1)}{(z-1)^{3}}$ by residue method.

Ans:

Let $X(z)=\frac{z(z+1)}{(z-1)^{3}}$

$$
\begin{aligned}
& X(z) z^{n-1}=\frac{z(z+1)}{(z-1)^{3}} z^{n-1} \\
& X(z) z^{n-1}=\frac{z^{n}(z+1)}{(z-1)^{3}}
\end{aligned}
$$

Residue of $F[z]$

$$
(z-1)^{3}=0
$$

$z=1$ is a simple pole of order 3

$$
\begin{aligned}
\operatorname{Res} \text { of } F[z] & =\lim _{z \rightarrow 1} \frac{1}{2!} \frac{d^{2}}{d z^{2}}(z-1)^{3} \frac{z^{n}(z+1)}{(z-1)^{3}} \\
& =\lim _{z \rightarrow 1} \frac{1}{2} \frac{d^{2}}{d z^{2}}\left[z^{n}(z+1)\right] \\
& =\lim _{z \rightarrow 1} \frac{1}{2} \frac{d}{d z}\left[z^{n}+(z+1) n z^{n-1}\right] \\
& =\lim _{z \rightarrow 1} \frac{1}{2}\left[n z^{n-1}+n(z+1)(n-1) z^{n-2}+n z^{n-1}\right] \\
& =\frac{1}{2}[n+n(2)(n-1)+n] \frac{1}{2}\left[2 n+2 n^{2}-2 n\right] \\
\text { Res of } F[z] & =n^{2}
\end{aligned}
$$

$$
\therefore \quad x(n)=n^{2}
$$

15. (b). (i). Form the difference equation form the relation $y_{n}=a+b 3^{n}$.

Ans:

$$
\begin{gathered}
y_{n}=a+b 3^{n} \\
y_{n+1}=a+b 3^{n+1} \\
y_{n+2}=a+b 3^{n+2} \\
\left|\begin{array}{ccc}
y_{n} & 1 & 1 \\
y_{n+1} & 1 & 3 \\
y_{n+2} & 1 & 9
\end{array}\right|=0 \\
y_{n}(9-3)-1\left(9 y_{n+1}-3 y_{n+2}\right)+1\left(y_{n+1}-y_{n+2}\right)=0 \\
6 y_{n}-9 y_{n+1}+3 y_{n+2}+y_{n+1}-y_{n+2}=0 \\
\mathbf{6 y} \boldsymbol{y}_{n}-\mathbf{8} \boldsymbol{y}_{n+1}+\mathbf{2} \boldsymbol{y}_{n+2}=\mathbf{0}
\end{gathered}
$$

15. (b). (ii). Solve $y_{n+2}+4 y_{n+1}+3 y_{n}=2^{n}$, with $y_{0}=0$ and $y_{1}=1$, using $z-$ transform. Ans:

$$
\text { Given } y_{n+2}+4 y_{n+1}+3 y_{n}=2^{n} \text { also } y_{0}=0 \& y_{1}=1
$$

Taking z-transform on both sides, we get

$$
\begin{aligned}
& z\left[y_{n+2}\right]+4 z\left[y_{n+1}\right]+3 z\left[y_{n}\right]=z\left[2^{n}\right] \\
& \left(z^{2} y(z)-z^{2} y(0)-z y(1)\right)+4(z y(z)-z y(0))+3 y(z)=\frac{z}{z-2} \\
& \left(z^{2} y(z)-z\right)+4(z y(z))+3 y(z)=\frac{z}{z-2} \\
& y(z)\left[z^{2}+4 z+3\right]-z=\frac{z}{z-2} \\
& y(z)\left[z^{2}+4 z+3\right]=\frac{z}{z-2}+z \\
& y(z)=\frac{z}{\left(z^{2}+6 z+9\right)(z-2)}=\frac{z}{\left.(z+3)(z+3)(z-)^{2}\right)} \\
& y(z)=\frac{z}{(z+3)^{2}(z-2)}
\end{aligned}
$$

Method of Cauchy Residue theorem:

$$
\begin{aligned}
& \text { chy Residue theorem: } \\
& x(z)=\frac{z}{(z+3)^{2}(z-2)} \\
& X(z) z^{n-1}=\frac{1 z}{(z+3)^{2}(z-2)} z^{n-1} \\
& X(z) z^{n-1}=\frac{z^{n}}{(z+3)^{2}(z-2)}
\end{aligned}
$$

Residue of $\boldsymbol{F}[\mathbf{z}]$

$$
(z+3)^{2}=0
$$

$z=-3$ is a simple pole of order 2

$$
\begin{aligned}
\text { Res of } F[z] & =\lim _{z \rightarrow-3} \frac{1}{1!} \frac{d^{1}}{d z^{1}}(z+1)^{2} \frac{z^{n}}{(z+3)^{2}(z-2)} \\
& =\lim _{z \rightarrow-3} \frac{d}{d z}\left[\frac{z^{n}}{(z-2)}\right] \\
& =\lim _{z \rightarrow-3}\left[\frac{(z-2)\left(n z^{n-1}\right)-z^{n}}{(z-2)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{(-3-2)\left(n(-3)^{n-1}\right)-(-3)^{n}}{(-3-2)^{2}}\right] \\
R_{1} & =\left[\frac{-5 n(-3)^{n-1}-(-3)^{n}}{25}\right]
\end{aligned}
$$

$z=2$ is a simple pole

$$
\begin{aligned}
& \operatorname{Res} \text { of } F[z]=\lim _{z \rightarrow 2}(z-2) \frac{z^{n}}{(z+3)^{2}(z-2)} \\
&=\lim _{z \rightarrow 2}\left[\frac{z^{n}}{(z+3)^{2}}\right]=\left[\frac{2^{n}}{5^{2}}\right]=\frac{2^{n}}{25} \\
& R_{2}=\frac{2^{n}}{25} \\
& \therefore \quad x(n)=\frac{2^{n}}{25}-\frac{5 n(-3)^{n-1}+(-3)^{n}}{25}
\end{aligned}
$$

