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B.E./B.Tech. DEGREE EXAMINATION, November/December 2010 
Fifth Semester 

Computer Science and Engineering 
MA2265 – DISCRETE MATHEMATICS 

(Regulation 2008) 
 

Part - A 
1. When do you say that two compound propositions are equivalent? 

Answer: 

 Let A and B are the two compound propositions. 𝐴 ⇔ 𝐵 if 𝐴 ↔ 𝐵 is a tautology.  

 
2. Prove that 𝒑,𝒑 → 𝒒,𝒒 → 𝒓 ⇒ 𝒓. 
Solution: 

1. 𝑝 Rule P 
2. 𝑝 → 𝑞  Rule P 
3. 𝑞 → 𝑟 Rule P 
4. 𝑝 → 𝑟 Rule T,2,3, chain rule 
5. 𝑟 Rule T,1,4, Modus phones 

 
3. State pigeonhole principle. 
Solution: 
If 𝑘 pigeons are assigned to 𝑛 pigeonholes and 𝑛 < 𝑘 then there is at least one pigeonhole containing 
more than one pigeons.  
 
4. Find the recurrence relation satisfying the equation 𝒚𝒏 = 𝑨 𝟑 𝒏 + 𝑩 −𝟒 𝒏. 
Solution: 𝑦𝑛 = 𝐴 3 𝑛 + 𝐵 −4 𝑛 . 

𝑦𝑛+1 = 𝐴 3 𝑛+1 + 𝐵 −4 𝑛+1 = 3𝐴3𝑛 − 4𝐵 −4 𝑛  
𝑦𝑛+2 = 𝐴 3 𝑛+2 + 𝐵 −4 𝑛+2 = 9𝐴3𝑛 + 16𝐵 −4 𝑛  

𝑦𝑛+2 + 𝑦𝑛+1 − 12𝑦𝑛 = 0 
5. Define strongly connected graph. 
Answer:  
A digraph is said to be strongly connected graph, if there is a path between every pair of vertices in the 
digraph. 
 
6. State the necessary and sufficient conditions for the existence of an Eulerian path in a connected 
    graph. 
Answer: 
 A connected graph has an Euler path but not Euler circuit if and only if it has exactly two vertices of odd 
degree. 
 
7. State any two properties of a group. 
Answer:  
Identity element of a group is unique. 
Inverse element of a group is unique. 
 
8. Define a commutative ring. 
Answer: 
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A ring  𝑅, +,×  is said to be a commutative ring if it satisfies the following condition 
∀𝑎, 𝑏 ∈ 𝑅,𝑎 × 𝑏 = 𝑏 × 𝑎 

 
9. Define Boolean algebra. 
Answer: 
A complemented distributive lattice is called Boolean algebra. 
 
10. Define sub-lattice. 
Answer: 
A lattice  𝑆,≤  is called a sub-lattice of a lattice  𝐿,≤  if 𝑆 ⊆ 𝐿 and 𝑆 is a lattice. 
 
 

Part - B 
11. a)i) Prove that the premises 𝒂 →  𝒃 → 𝒄 ,𝒅 → (𝒃 ∧∼ 𝒄) and (𝒂 ∧ 𝒅) are inconsistent. 
Solution: 

1. 𝑎 →  𝑏 → 𝑐  Rule P 
2. 𝑑 → (𝑏 ∧∼ 𝑐)  Rule P 
3. (𝑎 ∧ 𝑑) Rule P 
4. 𝑎 Rule T,3, 𝑝 ∧ 𝑞 ⇒ 𝑝 
5. 𝑑 Rule T,3, 𝑝 ∧ 𝑞 ⇒ 𝑞 
6.  𝑏 → 𝑐  Rule T,1,4, Modus phones 
7. (𝑏 ∧∼ 𝑐) Rule T,2,5, Modus phones 
8. ∼ (∼ 𝑏 ∨ 𝑐) Rule T,7, Demorgan’s law 
9. ∼  𝑏 → 𝑐  Rule T,8, ∼ 𝑎 ∨ 𝑏 ⇒ 𝑎 → 𝑏 
10.  𝑏 → 𝑐 ∧∼  𝑏 → 𝑐  Rule T,9, 𝑎, 𝑏 ⇒ 𝑎 ∧ 𝑏 
11. 𝐹 Rule T,10, 𝑎 ∧∼ 𝑎 ⇒ 𝐹 

∴ The premises 𝑎 →  𝑏 → 𝑐 ,𝑑 → (𝑏 ∧∼ 𝑐) and (𝑎 ∧ 𝑑) are inconsistent. 
 
ii) Obtain the principal disjunctive normal form and principal conjunction form of the statement 

𝑷 ∨  ∼ 𝑷 →  𝑸 ∨  ∼ 𝑸 → 𝑹    

Solution: 

Let 𝑆 ⇔  𝑃 ∨  ∼ 𝑃 →  𝑄 ∨  ∼ 𝑄 → 𝑅    

𝐴:∼ 𝑃 →  𝑄 ∨  ∼ 𝑄 → 𝑅    

𝐏 𝑸 𝑹 ∼ 𝑷 ∼ 𝑸 ∼ 𝑸 → 𝑹 𝑸 ∨  ∼ 𝑸 → 𝑹  𝑨 𝐒 𝑴𝒊𝒏𝒕𝒆𝒓𝒎 𝑴𝒂𝒙𝒕𝒆𝒓𝒎 

T T T F F T T T T 𝑃 ∧ 𝑄 ∧ 𝑅  

T F T F T T T T T 𝑃 ∧∼ 𝑄 ∧ 𝑅  

F T T T F T T T T ∼ 𝑃 ∧ 𝑄 ∧ 𝑅  

F F T T T T T T T ∼ 𝑃 ∧∼ 𝑄 ∧ 𝑅  

T T F F F T T T T 𝑃 ∧ 𝑄 ∧∼ 𝑅  

T F F F T F F T T 𝑃 ∧∼ 𝑄 ∧∼ 𝑅  

F T F T F T T T T ∼ 𝑃 ∧ 𝑄 ∧∼ 𝑅  

F F F T T F F F F  P ∨ Q ∨ R 

𝑆 ⇔  𝑃 ∧ 𝑄 ∧ 𝑅 ∨  𝑃 ∧∼ 𝑄 ∧ 𝑅 ∨  ∼ 𝑃 ∧ 𝑄 ∧ 𝑅 ∨  ∼ 𝑃 ∧∼ 𝑄 ∧ 𝑅 ∨  𝑃 ∧ 𝑄 ∧∼ 𝑅  
                           ∨  𝑃 ∧∼ 𝑄 ∧∼ 𝑅 ∨  ∼ 𝑃 ∧ 𝑄 ∧∼ 𝑅   is a PDNF 
𝑆 ⇔ P ∨ Q ∨ R  is a PCNF 
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b) i) Prove that ∀𝒙 𝑷 𝒙 → 𝑸 𝒙  ,∀𝒙 𝑹 𝒙 →∼ 𝑸(𝒙) ⇒ ∀𝒙 𝑹 𝒙 →∼ 𝑷(𝒙)  

Solution: 
1. ∀𝑥 𝑃 𝑥 → 𝑄 𝑥   Rule P 

2. ∀𝑥 𝑅 𝑥 →∼ 𝑄(𝑥)  Rule P 
3. 𝑃 𝑎 → 𝑄 𝑎  Rule T,1,US 
4. 𝑅 𝑎 →∼ 𝑄(𝑎) Rule T,2,US 
5. ∼ 𝑄 𝑎 →∼ 𝑝(𝑎) Rule T,3, 𝑝 → 𝑞 ⇒∼ 𝑞 →∼ 𝑝 
6. 𝑅 𝑎 →∼ 𝑃(𝑎) Rule T,4,5, chain rule 
7. ∀𝑥 𝑅 𝑥 →∼ 𝑃(𝑥)  Rule T,6,UG 

 
ii) Without using the truth table, prove that ∼ 𝑃 →  𝑄 → 𝑅 ≡ 𝑄 →  𝑃 ∨ 𝑅 . 
Proof: 
∼ 𝑃 →  𝑄 → 𝑅  
⇔∼∼ 𝑃 ∨  𝑄 → 𝑅        𝐼𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤  
⇔ 𝑃 ∨  𝑄 → 𝑅               𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤  
⇔ 𝑃 ∨  ∼ 𝑄 ∨ 𝑅            𝐼𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤  
⇔  𝑃 ∨∼ 𝑄 ∨ 𝑅            𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑙𝑎𝑤  
⇔  ∼ 𝑄 ∨ 𝑃 ∨ 𝑅           𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
⇔∼ 𝑄 ∨  𝑃 ∨ 𝑅              𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑙𝑎𝑤       
⇔ 𝑄 →  𝑃 ∨ 𝑅                𝐼𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤  
 

12.a) i) Prove, by mathematical induction, that for all 𝒏 ≥ 𝟏,𝒏𝟑 + 𝟐𝒏 is a multiple of 3. 
Solution: 
𝐿𝑒𝑡 𝑃 𝑛 :𝑛 ≥ 1,𝑛3 + 2𝑛 is a multiple of 3.                    … (1) 
𝑃 1 : 13 + 2 1 = 1 + 2 = 3 is a multiple of 3.  
∴ 𝑃(1) is true. 
Let us assume that 𝑃(𝑛)  is true. Now we have to prove that 𝑃(𝑛 + 1) is true. 
To prove: 

𝑃 𝑛 + 1 : (𝑛 + 1)3 + 2(𝑛 + 1) is a multiple of 3 
(𝑛 + 1)3 + 2 𝑛 + 1 = 𝑛3 + 3𝑛 + 3𝑛2 + 1 + 2𝑛 + 2            

= 𝑛3 + 2𝑛 + 3𝑛 + 3𝑛2 + 3   
= 𝑛3 + 2𝑛 + 3 𝑛2 + 𝑛 + 1    

From (1)  𝑛3 + 2𝑛 is a multiple of 3 
∴ (𝑛 + 1)3 + 2 𝑛 + 1  𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3  

 
∴ 𝑃 𝑛 + 1  is true. 
∴ By induction method, 
𝑃 𝑛 :𝑛 ≥ 1,𝑛3 + 2𝑛 is a multiple of 3, is true for all positive integer n. 
 
ii) Using the generating function, solve the difference equation                                                                

𝐲𝐧+𝟐 − 𝐲𝐧+𝟏 − 𝟔𝐲𝐧 = 𝟎,𝐲𝟏 = 𝟏,𝐲𝟎 = 𝟐 
Solution:  

𝐿𝑒𝑡 𝐺 𝑥 =  𝑦𝑛𝑥
𝑛

∞

𝑛=0

… (1) where 𝐺 𝑥  is the generating function for the sequence  𝑦𝑛 . 

Given 𝑦𝑛+2 − 𝑦𝑛+1 − 6𝑦𝑛 = 0  

Multiplying by 𝑥𝑛  and summing from 0 to ∞, we have 
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 𝑦𝑛+2𝑥
𝑛

∞

𝑛=0

− 𝑦𝑛+1𝑥
𝑛

∞

𝑛=0

− 6  𝑦𝑛𝑥
𝑛

∞

𝑛=0

= 0  

1

𝑥2
 𝑦𝑛+2𝑥

𝑛+2 

∞

𝑛=0

−
1

𝑥
 𝑦𝑛+1𝑥

𝑛+1

∞

𝑛=0

− 6  𝑦𝑛𝑥
𝑛

∞

𝑛=0

= 0 

1

𝑥2
 𝐺 𝑥 − 𝑦1𝑥 − 𝑦0 −

1

𝑥
 𝐺 𝑥 − 𝑦0 − 6𝐺 𝑥 = 0            [𝑓𝑟𝑜𝑚  1 ] 

𝐺 𝑥  
1

𝑥2
−

1

𝑥
− 6 −

𝑦1

𝑥
−
𝑦0

𝑥2
+
𝑦0

𝑥
= 0 

𝐺 𝑥  
1

𝑥2
−

1

𝑥
− 6 −

1

𝑥
−

2

𝑥2
+

2

𝑥
= 0 ⇒ 𝐺 𝑥  

6𝑥2 − 𝑥 + 1

𝑥2
 =

2

𝑥2
−

1

𝑥
 

𝐺 𝑥  
1 − 𝑥 − 6𝑥2

𝑥2
 =

2 − 𝑥

𝑥2
 

𝐺 𝑥 =
2 − 𝑥

1 − 𝑥 − 6𝑥2
=

2 − 𝑥

 1 − 3𝑥  1 + 2𝑥 
 

2 − 𝑥

 1 − 3𝑥  1 + 2𝑥 
=

𝐴

 1 − 3𝑥 
+

𝐵

 1 + 2𝑥 
 

2 − 𝑥 = 𝐴 2𝑥 + 1 + 𝐵 1 − 3𝑥 …  2  

Put 𝑥 = −  
1

2
 in (2) 

2 −  −  
1

2
 = 𝐵  1 +  

3

2
 ⇒  

5

2
𝐵 =

5

2
⇒ 𝐵 = 1 

Put 𝑥 =
1

3
 in (2) 

2 −  
1

3
 = 𝐴  

2

3
+ 1 ⇒  

5

3
𝐴 =

5

3
⇒ 𝐴 = 1 

𝐺 𝑥 =
1

 1 − 3𝑥 
+

1

 1 + 2𝑥 
=

1

 1 − 3𝑥 
+

1

 1 −  −2𝑥  
 

 

 𝑦𝑛𝑥
𝑛

∞

𝑛=0

=  3𝑛𝑥𝑛
∞

𝑛=0

+   −2 𝑛𝑥𝑛
∞

𝑛=0

          ∵
1

1 − 𝑥
=  𝑥𝑛

∞

𝑛=0

  

𝑦𝑛 = Coefficient of 𝑥𝑛  in 𝐺(𝑥) 

𝑦𝑛 = 3𝑛 +  −2 𝑛  

 

b) i) How many positive integers 𝒏 can be formed using the digits 𝟑,𝟒,𝟒,𝟓,𝟓,𝟔,𝟕 if 𝒏 has to exceed 
𝟓𝟎𝟎𝟎𝟎𝟎𝟎? 
Solution: 
The positive integer 𝑛 exceeds 5000000 if the first digit is either 5 or 6 or 7. 
If the first digit is 5 then the remaining six digits are 3,4,4,5,6,7.  
Then the number of positive integers formed by six digits is  

6!

2!
= 360                [𝑆𝑖𝑛𝑐𝑒 4 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑡𝑤𝑖𝑐𝑒] 

If the first digit is 6 then the remaining six digits are 3,4,4,5,5,7.  
Then the number of positive integers formed by six digits is  
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6!

2! 2!
= 180                [𝑆𝑖𝑛𝑐𝑒 4 & 5 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑡𝑤𝑖𝑐𝑒] 

If the first digit is 7 then the remaining six digits are 3,4,4,5,6,5.  
Then the number of positive integers formed by six digits is  

6!

2! 2!
= 180                [𝑆𝑖𝑛𝑐𝑒 4 & 5 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑡𝑤𝑖𝑐𝑒] 

∴ The number of positive integers 𝑛 can be formed using the digits 3,4,4,5,5,6,7 if 𝑛 has to exceed 
5000000 is 360 + 180 + 180 = 720. 
 
ii) Find the number of integers between 1 and 250 both inclusive that are divisible by any of the 
integers 2,3,5,7. 
Solution: 
Let 𝐴,𝐵,𝐶 and 𝐷 represents the integer from 1 to 250 that are divisible by 2,3,5 and 7 respectively. 

 𝐴 =  
250

2
 = 125,  𝐵 =  

250

3
 = 83,  𝐶 =  

250

5
 = 50,  𝐷 =  

250

7
 = 35 

 𝐴 ∩ 𝐵 =  
250

2 × 3
 = 41,  𝐴 ∩ 𝐶 =  

250

2 × 5
 = 25,  𝐴 ∩ 𝐷 =  

250

2 × 7
 = 17,  𝐵 ∩ 𝐶 =  

250

3 × 5
 = 16  

 𝐵 ∩ 𝐷 =  
250

3 × 7
 = 11,  𝐶 ∩ 𝐷 =  

250

5 × 7
 = 7,  𝐴 ∩ 𝐵 ∩ 𝐶 =  

250

2 × 3 × 5
 = 8 

 𝐴 ∩ 𝐵 ∩ 𝐷 =  
250

2 × 3 × 7
 = 5,  𝐴 ∩ 𝐶 ∩ 𝐷 =  

250

2 × 5 × 7
 = 3,  𝐵 ∩ 𝐶 ∩ 𝐷 =  

250

3 × 5 × 7
 = 2 

 𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷 =  
250

2 × 3 × 5 × 7
 = 1 

∴The number of integers between 1 and 250 both inclusive that are divisible by any of the 
integers 2,3,5,7 is  
 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 =  𝐴 +  𝐵 +   𝐶 +  𝐷 −  𝐴 ∩ 𝐵 −   𝐴 ∩ 𝐶 −  𝐴 ∩ 𝐷 −  𝐵 ∩ 𝐶 −  𝐵 ∩ 𝐷  

                − 𝐶 ∩ 𝐷 +  𝐴 ∩ 𝐵 ∩ 𝐶 +  𝐴 ∩ 𝐵 ∩ 𝐷 +  𝐴 ∩ 𝐶 ∩ 𝐷 +  𝐵 ∩ 𝐶 ∩ 𝐷 −  𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷  
 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 = 125 + 83 + 50 + 35 − 41 − 25 − 17 − 16 − 11 − 7 + 8 + 5 + 3 + 2 − 1 

 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 = 193 
 
13. a) i) Draw the complete graph 𝑲𝟓 with vertices 𝑨,𝑩,𝑪,𝑫 𝐚𝐧𝐝  𝑬 . Draw all complete sub graph of 
𝑲𝟓 with 4 vertices.                                                                                                                                                          
Solution: 
A complete graph with five vertices  𝐾5  is shown below 

 
Complete sub graph of 𝐾5  with 4 vertices are 
 

𝐴 

𝐵 

𝐷 𝐸 

𝑐 
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ii) If all the vertices of an undirected graph are each of degree 𝒌, show that the number of edges of 
the graph is a multiple of 𝒌 .                                                                                                            
Solution: 
Let  𝐺(𝑉,𝐸) be a graph with 𝑛 vertices and 𝑒 edges.  
Let 𝑣1,𝑣2,… , 𝑣𝑛  be the 𝑛 vertices. 
Given that all the vertices of G are each of degree 𝑘. 

deg 𝑣1 = deg 𝑣2 = deg 𝑣3 = ⋯ = deg 𝑣𝑘 = 𝑘 
By handshaking theorem, 

 deg 𝑣𝑖 

𝑛

𝑖=1

= 2𝑒 

deg 𝑣1 + deg 𝑣2 + deg 𝑣3 + ⋯+ deg 𝑣𝑛 = 2𝑒 
𝑘 + 𝑘 + 𝑘 + ⋯𝑛𝑡𝑖𝑚𝑒𝑠 = 2𝑒 

𝑛𝑘 = 2𝑒 

𝑒 = 𝑘  
𝑛

2
  

𝐵 

𝐷 𝐸 

𝑐 

𝐴 

𝐷 𝐸 

𝑐 

𝐴 

𝐷 𝐸 

𝐵 𝐴 

𝐸 

𝑐 

𝐵 

𝐴 

𝐷 

𝑐 

𝐵 
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∴ The number of edges of the graph 𝐺 is a multiple of 𝑘 . 
 
b) i) Draw the graph with 5 vertices, 𝑨,𝑩,𝑪,𝑫,𝑬 such that 𝒅𝒆𝒈(𝑨)  =  𝟑 , 𝑩 is an odd vertex,  
     𝒅𝒆𝒈(𝑪)  =  𝟐 and 𝑫and 𝑬 are adjacent.                                                                                                      

 
ii) The adjacency matrices of two pairs of graph as given below. Examine the isomorphism of G and H  

 by finding a permutation matrix. 𝐀𝐆 =  
𝟎 𝟎 𝟏
𝟎 𝟎 𝟏
𝟏 𝟏 𝟎

 ,𝐀𝐇 =  
𝟎 𝟏 𝟏
𝟏 𝟎 𝟎
𝟏 𝟎 𝟎

                                          

Solution: 
We know that two simple graphs 𝐺1 and 𝐺2 are isomorphic iff their adjacency matrices 𝐴1 and 𝐴2 are 
related by 

𝑃𝐴1𝑃
𝑇 = 𝐴2 

[A matrix whose rows are the rows of the unit matrix, but not necessarily in their natural order, is called 
Permutation matrix.] 

AG =  
0 0 1
0 0 1
1 1 0

 , AH =  
0 1 1
1 0 0
1 0 0

           

𝑃 =  
0 0 1
0 1 0
1 0 0

  

 

𝑃𝐴𝐺𝑃
𝑇 =  

0 0 1
0 1 0
1 0 0

  
0 0 1
0 0 1
1 1 0

  
0 0 1
0 1 0
1 0 0

  

=  
1 1 0
0 0 1
0 0 1

  
0 0 1
0 1 0
1 0 0

 =  
0 1 1
1 0 0
1 0 0

 𝐴𝐻  

𝑃𝐴𝐺𝑃
𝑇 = 𝐴𝐻  

∴ The two graphs 𝐺 and 𝐻 are isomorphic. 
 

14.a) i) If  𝑮,∗ is an abelian group, show that  𝒂 ∗ 𝒃  𝟐  =  𝒂𝟐  ∗ 𝒃𝟐. 
Proof: 

 𝑎 ∗ 𝑏  2  =  𝑎 ∗ 𝑏  ∗  𝑎 ∗ 𝑏  
= 𝑎 ∗  𝑏 ∗ 𝑎 ∗ 𝑏    𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
= 𝑎 ∗  𝑎 ∗ 𝑏 ∗ 𝑏  𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
=  𝑎 ∗ 𝑎  ∗  𝑏 ∗ 𝑏   𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

 𝑎 ∗ 𝑏  2 = 𝑎2  ∗ 𝑏2   
 
ii) Show that (𝒁, +,×) is an integral domain where 𝒁 is the set of all integers. 

𝐴 𝐵 

𝐶 𝐷 
𝐸 
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Proof: 
Closure:  

∀𝑎, 𝑏 ∈ 𝑍 ⇒ 𝑎 + 𝑏 ∈ 𝑍  
∀𝑎, 𝑏 ∈ 𝑍 ⇒ 𝑎 × 𝑏 ∈ 𝑍 

∴ 𝑍 is closed under + and ×. 
Associative: 

∀𝑎, 𝑏, 𝑐 ∈ 𝑍 ⇒  𝑎 + 𝑏 + 𝑐 = 𝑎 +  𝑏 + 𝑐   
∀𝑎, 𝑏 ∈ 𝑍 ⇒  𝑎 × 𝑏 × 𝑐 = 𝑎 ×  𝑏 × 𝑐  

∴ 𝑍 is associative under + and ×. 
Identity: 
Let 𝑒 ∈ 𝑍 be the identity element. 

∀𝑎 ∈ 𝑍,𝑎 + 𝑒 = 𝑒 + 𝑎 = 𝑎 ⇒ 𝑎 + 𝑒 = 𝑎 ⇒ 𝑒 = 0 
∴ 0 ∈ 𝑍 is the identity element with respect to the binary operation +. 

∀𝑎 ∈ 𝑍,𝑎 × 𝑒 = 𝑒 × 𝑎 = 𝑎 ⇒ 𝑎 × 𝑒 = 𝑎 ⇒ 𝑒 = 1 
∴ 1 ∈ 𝑍 is the identity element with respect to the binary operation +. 
Inverse: 
Let 𝑏 ∈ 𝑍 be the inverse element of 𝑎 ∈ 𝑍. 

𝑎 + 𝑏 = 𝑏 + 𝑎 = 0 ⇒ 𝑎 + 𝑏 = 0 ⇒ 𝑏 = −𝑎 ∈ 𝑍 
−𝑎 ∈ 𝑍 is the inverse of 𝑎 ∈ 𝑍  
∴ Every element has its inverse in 𝑍 under binary operation +. 
Commutative: 

∀𝑎, 𝑏 ∈ 𝑍,𝑎 + 𝑏 = 𝑏 + 𝑎 
∀𝑎, 𝑏 ∈ 𝑍,𝑎 × 𝑏 = 𝑏 × 𝑎 

∴ 𝑍 is Commutative under + and ×. 
Distributive: 

∀𝑎, 𝑏, 𝑐 ∈ 𝑍,𝑎 ×  𝑏 + 𝑐 = 𝑎 × 𝑏 + 𝑎 × 𝑐 
∴ × is distributive over +.  

∀𝑎, 𝑏 ∈ 𝑍,𝑎 × 𝑏 = 0 ⇒ 𝑎 = 0 𝑜𝑟 𝑏 = 0 
∴ 𝑍 has no zero divisors. 
∴ (𝑍, +,×) is an integral domain. 
 
b) i) State and Prove Lagrange’s theorem. 
Statement: 
The order of a subgroup of a finite group is a divisor of the order of the group. 
Proof: 
Let 𝑎𝐻 and 𝑏𝐻 be two left cosets of the subgroup {𝐻,∗} in the group {𝐺,∗}. 
Let the two cosets 𝑎𝐻 and 𝑏𝐻 be not disjoint. 
Then let 𝑐 be an element common to 𝑎𝐻 and 𝑏𝐻 i.e., 𝑐 ∈ 𝑎𝐻 ∩  𝑏𝐻 

∵ 𝑐 ∈ 𝑎𝐻, 𝑐 = 𝑎 ∗ 1,𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 1 ∈ 𝐻… (1) 
∵ 𝑐 ∈ 𝑏𝐻, 𝑐 = 𝑏 ∗ 2,𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 2 ∈ 𝐻… (2) 

From (1) and (2), we have 
𝑎 ∗ 1 = 𝑏 ∗ 2 

𝑎 = 𝑏 ∗ 2 ∗ 1
−1 … (3) 

             Let 𝑥 be an element in 𝑎𝐻 
             𝑥 = 𝑎 ∗  3,𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 3 ∈ 𝐻 

= 𝑏 ∗ 2 ∗ 1
−1 ∗  3,𝑢𝑠𝑖𝑛𝑔 (3) 

             Since H is a subgroup, 2 ∗ 1
−1 ∗  3 ∈ 𝐻 

             Hence, (3) means 𝑥 ∈ 𝑏𝐻 
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             Thus, any element in 𝑎𝐻 is also an element in 𝑏𝐻. ∴  𝑎𝐻 ⊆ 𝑏𝐻 
              Similarly, we can prove that 𝑏𝐻 ⊆ 𝑎𝐻 
              Hence 𝑎𝐻 = 𝑏𝐻 
              Thus, if 𝑎𝐻 and 𝑏𝐻 are disjoint, they are identical. 
              The two cosets 𝑎𝐻 and 𝑏𝐻 are disjoint or identical. …(4) 
              Now every element 𝑎 ∈ 𝐺 belongs to one and only one left coset of 𝐻 in 𝐺, 
             For,  
             𝑎 = 𝑎𝑒 ∈ 𝑎𝐻, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∈ 𝐻 ⇒ 𝑎 ∈ 𝑎𝐻 

              𝑎 ∉ 𝑏𝐻, since 𝑎𝐻 and 𝑏𝐻 are disjoint i.e., 𝑎 belongs to one and only left coset of     
              𝐻 in 𝐺 i.e., 𝑎𝐻… (5) 
             From (4) and (5), we see that the set of left cosets of 𝐻 in 𝐺 form the partition of  
             𝐺. Now let the order of 𝐻 be 𝑚. 
             Let 𝐻 =  1,2,… ,𝑚  ,𝑤𝑒𝑟𝑒 𝑖 ′𝑠 are distinct 
             Then 𝑎𝐻 =  𝑎1,𝑎2,… ,𝑎𝑚   
              The elements of 𝑎𝐻  are also distinct, for, 𝑎𝑖 = 𝑎𝑗 ⇒ 𝑖 = 𝑗 , which is not  

              true. 
              Thus 𝐻 and 𝑎𝐻 have the same number of elements, namely 𝑚. 
              In fact every coset of 𝐻 in 𝐺 has exactly 𝑚 elements. 
              Now let the order of the group {𝐺,∗} be 𝑛, i.e., there are 𝑛 elements in 𝐺 
              Let the number of distinct left cosets of 𝐻 in 𝐺 be 𝑝. 
              ∴ The total number of elements of all the left cosets = 𝑝𝑚 = the total number 
              of elements of 𝐺. i.e., 𝑛 = 𝑝𝑚  
              i.e., 𝑚, the order of 𝐻 is adivisor of 𝑛, the order of 𝐺. 
 
ii) If (𝒁, +) and (𝑬, +) where 𝒁 is the set all integers and 𝑬 is the set all even integers, show 
that the two semi groups (𝒁, +) and (𝑬, +) are isomorphic. 
Proof: 
 Let 𝑓:  𝑍, + → (𝐸, +)   be the mapping between the two semi groups (𝑍, +) and  𝐸, +  defined by 

𝑓 𝑥 = 2𝑥,∀𝑥 ∈ 𝑍 
𝑓 is one to one: 

𝑓 𝑥 = 𝑓 𝑦  
⇒ 2𝑥 = 2𝑦 
⇒ 𝑥 = 𝑦 

∴ 𝑓is one to one. 
𝑓 is onto: 

Let 𝑓 𝑥 = 𝑦 ⇒ 𝑦 = 2𝑥 ⇒ 𝑥 =
𝑦

2
∈ 𝑍     ∵ 𝑦 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟  

∴ ∀𝑥 ∈ 𝐸 there is a preimage 
𝑥

2
∈ 𝑍. 

∴ 𝑓 is onto. 
𝑓 is homomorphism: 

∀𝑥,𝑦 ∈ 𝑍, 𝑓 𝑥 + 𝑦 = 2 𝑥 + 𝑦 = 2𝑥 + 2𝑦 = 𝑓 𝑥 + 𝑓(𝑦) 
𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓(𝑦) 

∴ 𝑓is homomorphism. 
∴ 𝑓is isomorphism. 
∴The two semi groups (𝑍, +) and (𝐸, +) are isomorphic. 
 
15. a) i) Show that (𝑵,≤) is a partially ordered set where 𝑵 is set of all positive integers and ≤ is 
defined by 𝒎 ≤  𝒏 iff 𝒏 −𝒎 is a non-negative integer. 
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Proof: 

Let R be the relation 𝑚 ≤ 𝑛 𝑖𝑓𝑓 𝑛 − 𝑚 is a non-negative integer. 

𝑖) ∀𝑥 ∈ 𝑁,  𝑥 − 𝑥 = 0 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ⇒  𝑥, 𝑥 ∈ 𝑅 
∴ 𝑅 is reflexive. 
𝑖𝑖)∀𝑥,𝑦 ∈ 𝑁, 
 𝑥,𝑦 ∈ 𝑅 &  𝑦, 𝑥 ∈ 𝑅 
⇒   𝑥 − 𝑦  𝑖𝑠  𝑎 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 &  𝑦 − 𝑥  𝑖𝑠  𝑎 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  
It is possible only if 𝑥 − 𝑦 = 0 ⇒ 𝑥 = 𝑦 
 𝑥,𝑦 ∈ 𝑅 &  𝑦, 𝑥 ∈ 𝑅 ⇒ 𝑥 = 𝑦 
 ∴ 𝑅 is Anti Symmetric. 
𝑖𝑖𝑖)∀𝑥,𝑦, 𝑧 ∈ 𝑁,  𝑥,𝑦 ∈ 𝑅 𝑎𝑛𝑑  𝑦, 𝑧 ∈ 𝑅 
𝑥 − 𝑧 =  𝑥 − 𝑦 +  𝑦 − 𝑧  
Since sum of two non-negative integer is also a non-negative integer. 
⇒  𝑥 − 𝑧 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ⇒  𝑥, 𝑧 ∈ 𝑅 
 𝑥,𝑦 ∈ 𝑅 𝑎𝑛𝑑  𝑦, 𝑧 ∈ 𝑅 ⇒  𝑥, 𝑧 ∈ 𝑅 
∴ 𝑅 is Transitive. 
∴ (𝑵,≤) is a partially ordered set. 
 

ii) In a Boolean algebra, prove that  𝒂 ∧ 𝒃 ′ = 𝒂′ ∨ 𝒃′.     

Solution: Let 𝑎, 𝑏 ∈ (𝐵,∧,⊕,′ , 0,1) 
To prove  𝑎 ∧ 𝑏 ′ = 𝑎′ ∨ 𝑏′ 

 𝑎 ∧ 𝑏 ∨  𝑎′ ∨ 𝑏′ =  𝑎 ∨  𝑎′ ∨ 𝑏′  ∧  𝑏 ∨  𝑎′ ∨ 𝑏′   

=  𝑎 ∨  𝑎′ ∨ 𝑏′  ∧   𝑎′ ∨ 𝑏′ ∨ 𝑏  

=   𝑎 ∨ 𝑎′ ∨ 𝑏′ ∧  𝑎′ ∨  𝑏′ ∨ 𝑏   

=  1 ∨ 𝑏′ ∧  𝑎′ ∨ 1 = 1 ∧ 1 
 𝑎 ∧ 𝑏 ∨  𝑎′ ∨ 𝑏′ = 1… (1) 

 𝑎 ∧ 𝑏 ∧  𝑎′ ∨ 𝑏′ =   𝑎 ∧ 𝑏 ∧ 𝑎′ ∨   𝑎 ∧ 𝑏 ∧ 𝑏′  

=   𝑏 ∧ 𝑎 ∧ 𝑎′ ∨   𝑎 ∧ 𝑏 ∧ 𝑏′  

=  𝑏 ∧  𝑎 ∧ 𝑎′  ∨  𝑎 ∧  𝑏 ∧ 𝑏′   

=  𝑏 ∧ 0 ∨  𝑎 ∧ 0 = 0 ∨ 0 
 𝑎 ∧ 𝑏 ∧  𝑎′ ∨ 𝑏′ = 0… (2) 

𝐹𝑟𝑜𝑚  1  𝑎𝑛𝑑  2  𝑤𝑒 𝑔𝑒𝑡, 
 𝑎 ∧ 𝑏 ′ = 𝑎′ ∨ 𝑏′ 

 
b) i) In a Lattice (𝑳,≤) , prove that 𝒙 ∨    𝒚 ∧  𝒛  ≤    𝒙 ∨  𝒚 ∧  ( 𝒙 ∨  𝒛 ). 
Proof:  
From the definition of LUB, 

  𝑥 ∨  𝑦 ≥ 𝑥 &     𝑥 ∨  𝑧  ≥ 𝑥 ⇒   𝑥 ∨  𝑦 ∧   𝑥 ∨  𝑧  ≥ 𝑥… (1) 
𝑦 ∧ 𝑧 ≤ 𝑦 ≤ 𝑥 ∨ 𝑦… 2  
𝑦 ∧ 𝑧 ≤ 𝑧 ≤ 𝑥 ∨ 𝑧…  3  

From (2) and (3), we get  
  𝑥 ∨  𝑦 ∧   𝑥 ∨  𝑧  ≥ 𝑦 ∧ 𝑧…  4  

From (1) and (4), we get 
𝑥 ∨  𝑦 ∧ 𝑧 ≤   𝑥 ∨  𝑦 ∧   𝑥 ∨  𝑧   

 
 
ii) If 𝑺𝟒𝟐 is the set all divisors of 42 and 𝑫 is the relation “divisor of” on 𝑺𝟒𝟐 , prove that  𝑺𝟒𝟐,𝑫  is a  
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     complemented Lattice.          
Solution: 
𝑆42 =  1,2,3,6,7,14,21,42          
The Hasse diagram for  𝑆42 ,𝐷  is                                                                                                                       
 

 
1 ∨ 42 = 42, 1 ∧ 42 = 1 
2 ∨ 21 = 42, 2 ∧ 21 = 1 
3 ∨ 14 = 42, 3 ∧ 14 = 1 

7 ∨ 6 = 42, 7 ∧ 6 = 1 
The complement of 1 is 42, The complement of 42 is 1, The complement of 2 is 21, The complement of 
21 is 2, The complement of 3 is 14, The complement of 14 is 3, The complement of 7 is 6, The 
complement of 6 is 7. Since all the elements in (𝑆24 ,𝐷) has a complement, 
∴ (𝑆24 ,𝐷) is a complemented lattice. 
 
 
 

2 3 7 

1 

6 14 
21 

42 


