B.E./B.Tech. DEGREE EXAMINATION, November/December 2010 Fifth Semester Computer Science and Engineering MA2265 – DISCRETE MATHEMATICS (Regulation 2008)

Part - A

1. When do you say that two compound propositions are equivalent?

Answer:

Let A and B are the two compound propositions. $A \Leftrightarrow B$ if $A \leftrightarrow B$ is a tautology.

2. Prove that $p, p \rightarrow q, q \rightarrow r \Rightarrow r$.

Solution:

1.	p	Rule P
2.	$p \rightarrow q$	Rule P
3.	$q \rightarrow r$	Rule P
4.	$p \rightarrow r$	Rule T,2,3, chain rule
5.	r	Rule T,1,4, Modus phones

3. State pigeonhole principle.

Solution:

If k pigeons are assigned to n pigeonholes and n < k then there is at least one pigeonhole containing more than one pigeons.

4. Find the recurrence relation satisfying the equation $y_n = A(3)^n + B(-4)^n$.

Solution: $y_n = A(3)^n + B(-4)^n$.

$$y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A3^n - 4B(-4)^n$$

$$y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A3^n + 16B(-4)^n$$

$$y_{n+2} + y_{n+1} - 12y_n = 0$$

5. Define strongly connected graph.

Answer:

A digraph is said to be strongly connected graph, if there is a path between every pair of vertices in the digraph.

6. State the necessary and sufficient conditions for the existence of an Eulerian path in a connected graph.

Answer:

A connected graph has an Euler path but not Euler circuit if and only if it has exactly two vertices of odd degree.

7. State any two properties of a group.

Answer:

Identity element of a group is unique. Inverse element of a group is unique.

8. Define a commutative ring.

Answer:

A ring $(R, +, \times)$ is said to be a commutative ring if it satisfies the following condition

 $\forall a, b \in R, a \times b = b \times a$

9. Define Boolean algebra.

Answer:

A complemented distributive lattice is called Boolean algebra.

10. Define sub-lattice.

Answer: A lattice (S, \leq) is called a sub-lattice of a lattice (L, \leq) if $S \subseteq L$ and S is a lattice.

Part - B

11. a)i) Prove that the premises $a \to (b \to c)$, $d \to (b \land \sim c)$ and $(a \land d)$ are inconsistent. Solution:

	1.	$a \rightarrow (b \rightarrow c)$	Rule P
	2.	$d \to (b \wedge \sim c)$	Rule P
	3.	$(a \wedge d)$	Rule P
	4.	а	Rule T,3, $p \land q \Rightarrow p$
	5.	d	Rule T,3, $p \land q \Rightarrow q$
	6.	$(b \rightarrow c)$	Rule T,1,4, Modus phones
	7.	$(b \wedge \sim c)$	Rule T,2,5, Modus phones
	8.	$\sim (\sim b \lor c)$	Rule T,7, Demorgan's law
	9.	$\sim (b \rightarrow c)$	Rule T,8, $\sim a \lor b \Rightarrow a \rightarrow b$
	10.	$(b \rightarrow c) \land \sim (b \rightarrow c)$	Rule T,9, $a, b \Rightarrow a \land b$
	11.	F	Rule T,10, $a \wedge \sim a \Rightarrow F$
(h	()	d (h h a) and (a	(d) are inconsistant

 \therefore The premises $a \rightarrow (b \rightarrow c), d \rightarrow (b \land \sim c)$ and $(a \land d)$ are inconsistent.

ii) Obtain the principal disjunctive normal form and principal conjunction form of the statement

$$P \lor \left(\sim P \to \left(Q \lor (\sim Q \to R) \right) \right)$$

Solution:

Let $S \Leftrightarrow P \lor (\sim P \to (Q \lor (\sim Q \to R)))$											
$A: \sim P \to \left(Q \lor (\sim Q \to R) \right)$											
	Р	Q	R	~ P	$\sim Q$	$\sim Q \rightarrow R$	$\boldsymbol{Q} \lor (\sim \boldsymbol{Q} \to \boldsymbol{R})$	A	S	Minterm	Maxterm
	Т	Т	Т	F	F	Т	Т	Т	Т	$P \land Q \land R$	
	Т	F	Т	F	Т	Т	Т	Т	Т	$P \wedge \sim Q \wedge R$	
	F	Т	Т	Т	F	Т	Т	Т	Т	$\sim P \wedge Q \wedge R$	
	F	F	Т	T	Т	Т	Т	Т	Т	$\sim P \wedge \sim Q \wedge R$	
	Т	Т	F	F	F	Т	Т	Т	Т	$P \land Q \land \sim R$	
	Т	F	F	F	Т	F	F	Т	Т	$P \land \sim Q \land \sim R$	
	F	Т	F	Т	F	Т	Т	Т	Т	$\sim P \land Q \land \sim R$	
	F	F	F	Т	Т	F	F	F	F		P V Q V R
$S \Leftrightarrow (P \land Q \land R) \lor (P \land \sim Q \land R) \lor (\sim P \land Q \land R) \lor (\sim P \land \sim Q \land R) \lor (P \land Q \land \sim R)$							$(Q \land \sim R)$				
$\lor (P \land \sim Q \land \sim R) \lor (\sim P \land Q \land \sim R)$ is a PDNF											

 $S \Leftrightarrow P \lor Q \lor R$ is a PCNF

b) i) Prove that $\forall x (P(x) \rightarrow Q(x)), \forall x (R(x) \rightarrow \sim Q(x)) \Rightarrow \forall x (R(x) \rightarrow \sim P(x))$ Solution:

1. $\forall x (P(x) \rightarrow Q(x))$ Rule P 2. $\forall x (R(x) \rightarrow Q(x))$ Rule P 3. $P(a) \rightarrow Q(a)$ Rule T,1,US 4. $R(a) \rightarrow Q(a)$ Rule T,2,US 5. $\sim Q(a) \rightarrow p(a)$ Rule T,3, $p \rightarrow q \Rightarrow q \rightarrow p$ 6. $R(a) \rightarrow P(a)$ Rule T,4,5, chain rule 7. $\forall x (R(x) \rightarrow P(x))$ Rule T,6,UG

ii) Without using the truth table, prove that $\sim P \rightarrow (Q \rightarrow R) \equiv Q \rightarrow (P \lor R)$. Proof:

 $\sim P \rightarrow (Q \rightarrow R)$

- (1)	
$\Leftrightarrow \sim \sim P \lor (Q \to R)$	[Implication law]
$\Leftrightarrow P \lor (Q \to R)$	[negation law]
$\Leftrightarrow P \lor (\sim Q \lor R)$	[Implication law]
$\Leftrightarrow (P \lor \sim Q) \lor R$	[Associate law]
$\Leftrightarrow (\sim Q \lor P) \lor R$	[Commutative law]
$\Leftrightarrow \sim Q \lor (P \lor R)$	[Associate law]
$\Leftrightarrow Q \to (P \lor R)$	[Implication law]

12.a) i) Prove, by mathematical induction, that for all $n \ge 1$, $n^3 + 2n$ is a multiple of 3. Solution:

...(1)

Let $P(n): n \ge 1, n^3 + 2n$ is a multiple of 3. $P(1): 1^3 + 2(1) = 1 + 2 = 3$ is a multiple of 3. $\therefore P(1)$ is true.

Let us assume that P(n) is true. Now we have to prove that P(n + 1) is true. To prove:

 $P(n + 1): (n + 1)^{3} + 2(n + 1) \text{ is a multiple of } 3$ $(n + 1)^{3} + 2(n + 1) = n^{3} + 3n + 3n^{2} + 1 + 2n + 2$ $= n^{3} + 2n + 3n + 3n^{2} + 3$ $= n^{3} + 2n + 3(n^{2} + n + 1)$ From (1) $n^{3} + 2n$ is a multiple of 3 $\therefore (n + 1)^{3} + 2(n + 1)$ is a multiple of 3

 $\therefore P(n+1)$ is true.

 \therefore By induction method,

 ∞

 $P(n): n \ge 1, n^3 + 2n$ is a multiple of 3, is true for all positive integer n.

ii) Using the generating function, solve the difference equation

 $y_{n+2} - y_{n+1} - 6y_n = 0, y_1 = 1, y_0 = 2$

Solution:

Let
$$G(x) = \sum_{n=0}^{\infty} y_n x^n \dots (1)$$
 where $G(x)$ is the generating function for the sequence $\{y_n\}$.

Given $y_{n+2} - y_{n+1} - 6y_n = 0$ Multiplying by x_n and summing from 0 to ∞ , we have

$$\begin{split} &\sum_{n=0}^{\infty} y_{n+2} x^n - \sum_{n=0}^{\infty} y_{n+1} x^n - 6 \sum_{n=0}^{\infty} y_n x^n = 0 \\ &\frac{1}{x^2} \sum_{n=0}^{\infty} y_{n+2} x^{n+2} - \frac{1}{x} \sum_{n=0}^{\infty} y_{n+1} x^{n+1} - 6 \sum_{n=0}^{\infty} y_n x^n = 0 \\ &\frac{1}{x^2} (G(x) - y_1 x - y_0) - \frac{1}{x} (G(x) - y_0) - 6G(x) = 0 \qquad [from (1)] \\ &G(x) \left(\frac{1}{x^2} - \frac{1}{x} - 6\right) - \frac{y_1}{x} - \frac{y_0}{x^2} + \frac{y_0}{x} = 0 \\ &G(x) \left(\frac{1}{x^2} - \frac{1}{x} - 6\right) - \frac{1}{x} - \frac{2}{x^2} + \frac{2}{x} = 0 \Rightarrow G(x) \left(\frac{6x^2 - x + 1}{x^2}\right) = \frac{2}{x^2} - \frac{1}{x} \\ &G(x) \left(\frac{1 - x - 6x^2}{x^2}\right) = \frac{2 - x}{x^2} \\ &G(x) \left(\frac{1 - x - 6x^2}{x^2}\right) = \frac{2 - x}{(1 - 3x)(1 + 2x)} \\ &\frac{2 - x}{(1 - 3x)(1 + 2x)} = \frac{A}{(1 - 3x)} + \frac{B}{(1 + 2x)} \\ &2 - x = A(2x + 1) + B(1 - 3x) \dots (2) \\ &Put x = -\frac{1}{2} in (2) \\ &2 - \left(-\frac{1}{2}\right) = B\left(1 + \frac{3}{2}\right) \Rightarrow \frac{5}{2}B = \frac{5}{2} \Rightarrow B = 1 \\ &Put x = \frac{1}{3} in (2) \\ &2 - \left(\frac{1}{3}\right) = A\left(\frac{2}{3} + 1\right) \Rightarrow \frac{5}{3}A = \frac{5}{3} \Rightarrow A = 1 \\ &G(x) = \frac{1}{(1 - 3x)} + \frac{1}{(1 + 2x)} = \frac{1}{(1 - 3x)} + \frac{1}{(1 - (-2x))} \\ &\sum_{n=0}^{\infty} y_n x^n = \sum_{n=0}^{\infty} 3^n x^n + \sum_{n=0}^{\infty} (-2)^n x^n \qquad \left[\because \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n \right] \\ &y_n = \text{Coefficient of } x^n \text{ in } G(x) \\ &y_n = 3^n + (-2)^n \end{split}$$

b) i) How many positive integers n can be formed using the digits 3, 4, 4, 5, 5, 6, 7 if n has to exceed 5000000?

Solution:

The positive integer n exceeds 5000000 if the first digit is either 5 or 6 or 7. If the first digit is 5 then the remaining six digits are 3,4,4,5,6,7. Then the number of positive integers formed by six digits is

$$\frac{6!}{2!} = 360 \qquad [Since 4 appears twice]$$

If the first digit is 6 then the remaining six digits are 3,4,4,5,5,7. Then the number of positive integers formed by six digits is

$$\frac{6!}{2! \, 2!} = 180 \qquad [Since \ 4 \ \& \ 5 \ appears \ twice]$$

If the first digit is 7 then the remaining six digits are 3,4,4,5,6,5.

Then the number of positive integers formed by six digits is 6!

2121

: The number of positive integers n can be formed using the digits 3,4,4,5,5,6,7 if n has to exceed 5000000 is 360 + 180 + 180 = 720.

ii) Find the number of integers between 1 and 250 both inclusive that are divisible by any of the integers 2,3,5,7.

Solution:

Let A, B, C and D represents the integer from 1 to 250 that are divisible by 2,3,5 and 7 respectively.

$$|A| = \left\lfloor \frac{250}{2} \right\rfloor = 125, |B| = \left\lfloor \frac{250}{3} \right\rfloor = 83, |C| = \left\lfloor \frac{250}{5} \right\rfloor = 50, |D| = \left\lfloor \frac{250}{7} \right\rfloor = 35$$
$$|A \cap B| = \left\lfloor \frac{250}{2 \times 3} \right\rfloor = 41, |A \cap C| = \left\lfloor \frac{250}{2 \times 5} \right\rfloor = 25, |A \cap D| = \left\lfloor \frac{250}{2 \times 7} \right\rfloor = 17, |B \cap C| = \left\lfloor \frac{250}{3 \times 5} \right\rfloor = 16$$
$$|B \cap D| = \left\lfloor \frac{250}{3 \times 7} \right\rfloor = 11, |C \cap D| = \left\lfloor \frac{250}{5 \times 7} \right\rfloor = 7, |A \cap B \cap C| = \left\lfloor \frac{250}{2 \times 3 \times 5} \right\rfloor = 8$$
$$|A \cap B \cap D| = \left\lfloor \frac{250}{2 \times 3 \times 7} \right\rfloor = 5, |A \cap C \cap D| = \left\lfloor \frac{250}{2 \times 5 \times 7} \right\rfloor = 3, |B \cap C \cap D| = \left\lfloor \frac{250}{3 \times 5 \times 7} \right\rfloor = 2$$
$$|A \cap B \cap C \cap D| = \left\lfloor \frac{250}{2 \times 3 \times 5 \times 7} \right\rfloor = 1$$

∴The number of integers between 1 and 250 both inclusive that are divisible by any of the integers 2,3,5,7 is

$$\begin{split} |A \cup B \cup C \cup D| &= |A| + |B| + |C| + |D| - |A \cap B| - |A \cap C| - |A \cap D| - |B \cap C| - |B \cap D| \\ &- |C \cap D| + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| - |A \cap B \cap C \cap D| \\ |A \cup B \cup C \cup D| &= 125 + 83 + 50 + 35 - 41 - 25 - 17 - 16 - 11 - 7 + 8 + 5 + 3 + 2 - 1 \\ &- |A \cup B \cup C \cup D| = 193 \end{split}$$

13. a) i) Draw the complete graph K_5 with vertices A, B, C, D and E. Draw all complete sub graph of K_5 with 4 vertices.

Solution:

A complete graph with five vertices K_5 is shown below

Complete sub graph of K_5 with 4 vertices are

Anna University, Chennai, November/December 2010

ii) If all the vertices of an undirected graph are each of degree k, show that the number of edges of the graph is a multiple of k.

Solution:

Let G(V, E) be a graph with n vertices and e edges.

Let $v_1, v_2, ..., v_n$ be the *n* vertices.

Given that all the vertices of G are each of degree k.

$$\deg(v_1) = \deg(v_2) = \deg(v_3) = \dots = \deg(v_k) = k$$

By handshaking theorem,

$$\sum_{i=1}^{n} \deg(v_i) = 2e$$
$$\deg(v_1) + \deg(v_2) + \deg(v_3) + \dots + \deg(v_n) = 2e$$
$$k + k + k + \dots n times = 2e$$
$$nk = 2e$$
$$e = k\left(\frac{n}{2}\right)$$

- \therefore The number of edges of the graph G is a multiple of k .
- b) i) Draw the graph with 5 vertices, A, B, C, D, E such that deg(A) = 3, B is an odd vertex, deg(C) = 2 and D and E are adjacent.

ii) The adjacency matrices of two pairs of graph as given below. Examine the isomorphism of G and H

	/0	0	1\	/0	1	1	
by finding a permutation matrix. $\mathbf{A}_{\mathbf{G}}=$	0	0	$(1), A_{\rm H} =$	1	0	0	
	\1	1	0/	\1	0	0/	

Solution:

We know that two simple graphs G_1 and G_2 are isomorphic iff their adjacency matrices A_1 and A_2 are related by

$$PA_1P^T = A_2$$

[A matrix whose rows are the rows of the unit matrix, but not necessarily in their natural order, is called Permutation matrix.]

$$A_{G} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, A_{H} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$PA_{G}P^{T} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} A_{H}$$
$$PA_{G}P^{T} = A_{H}$$

 \therefore The two graphs *G* and *H* are isomorphic.

14.a) i) If (G,*) is an abelian group, show that $(a * b)^2 = a^2 * b^2$. Proof:

$$(a * b)2 = (a * b) * (a * b)$$

= a * (b * a) * b [Associative law]
= a * (a * b) * b [Commutative law]
= (a * a) * (b * b) [Associative law]
(a * b)² = a² * b²

ii) Show that $(Z, +, \times)$ is an integral domain where Z is the set of all integers.

Proof:

Closure:

 $\forall a, b \in Z \Rightarrow a + b \in Z$ $\forall a, b \in Z \Rightarrow a \times b \in Z$

 $\therefore Z$ is closed under + and ×. Associative:

$$\forall a, b, c \in Z \Rightarrow (a + b) + c = a + (b + c) \\ \forall a, b \in Z \Rightarrow (a \times b) \times c = a \times (b \times c)$$

 \therefore Z is associative under + and ×.

Identity:

Let $e \in Z$ be the identity element.

 $\forall a \in Z, a + e = e + a = a \Rightarrow a + e = a \Rightarrow e = 0$

∴ 0 ∈ Z is the identity element with respect to the binary operation +. $\forall a \in Z, a \times e = e \times a = a \Rightarrow a \times e = a \Rightarrow e = 1$

 \therefore 1 \in *Z* is the identity element with respect to the binary operation +. Inverse:

Let $b \in Z$ be the inverse element of $a \in Z$.

$$+b = b + a = 0 \Rightarrow a + b = 0 \Rightarrow b = -a \in Z$$

 $-a \in Z$ is the inverse of $a \in Z$

 \therefore Every element has its inverse in Z under binary operation +. Commutative:

а

$$\forall a, b \in Z, a + b = b + a \forall a, b \in Z, a \times b = b \times a$$

 \therefore Z is Commutative under + and ×. Distributive:

 $\forall a, b, c \in Z, a \times (b + c) = a \times b + a \times c$

 $\therefore \times$ is distributive over +.

$$\forall a, b \in Z, a \times b = 0 \Rightarrow a = 0 \text{ or } b = 0$$

 $\therefore Z$ has no zero divisors.

 \therefore (Z, +,×) is an integral domain.

b) i) State and Prove Lagrange's theorem.

Statement:

The order of a subgroup of a finite group is a divisor of the order of the group. Proof:

Let aH and bH be two left cosets of the subgroup $\{H,*\}$ in the group $\{G,*\}$. Let the two cosets aH and bH be not disjoint.

Then let *c* be an element common to aH and bH i.e., $c \in aH \cap bH$

$$\therefore c \in aH, c = a * h_1, for some h_1 \in H \dots (1)$$

$$\therefore c \in bH, c = b * h_2, for some h_2 \in H \dots (2)$$

From (1) and (2), we have

$$a * h_1 = b * h_2$$

 $a = b * h_2 * h_1^{-1} \dots (3)$

Let x be an element in aHx = a * h_3 , for some $h_3 \in H$

 $= b * h_2 * h_1^{-1} * h_3, using (3)$ Since H is a subgroup, $h_2 * h_1^{-1} * h_3 \in H$ Hence, (3) means $x \in bH$

Thus, any element in aH is also an element in bH. $\therefore aH \subseteq bH$ Similarly, we can prove that $bH \subseteq aH$ Hence aH = bHThus, if aH and bH are disjoint, they are identical. The two cosets aH and bH are disjoint or identical. ...(4) Now every element $a \in G$ belongs to one and only one left coset of H in G, For, $a = ae \in aH$, since $e \in H \Rightarrow a \in aH$ $a \notin bH$, since aH and bH are disjoint i.e., a belongs to one and only left coset of *H* in *G* i.e., *aH* ... (5) From (4) and (5), we see that the set of left cosets of H in G form the partition of G. Now let the order of H be m. Let $H = \{h_1, h_2, ..., h_m\}$, where h_i 's are distinct Then $aH = \{ah_1, ah_2, ..., ah_m\}$ The elements of aH are also distinct, for, $ah_i = ah_i \Rightarrow h_i = h_i$, which is not true. Thus *H* and aH have the same number of elements, namely *m*. In fact every coset of *H* in *G* has exactly *m* elements. Now let the order of the group $\{G,*\}$ be *n*, i.e., there are *n* elements in *G* Let the number of distinct left cosets of *H* in *G* be *p*. \therefore The total number of elements of all the left cosets = pm = the total number of elements of G. i.e., n = pmi.e., *m*, the order of *H* is adivisor of *n*, the order of *G*.

ii) If (Z, +) and (E, +) where Z is the set all integers and E is the set all even integers, show that the two semi groups (Z, +) and (E, +) are isomorphic. Proof:

Let $f: (Z, +) \to (E, +)$ be the mapping between the two semi groups (Z, +) and (E, +) defined by $f(x) = 2x, \forall x \in Z$

f is one to one:

$$f(x) = f(y)$$

$$\Rightarrow 2x = 2y$$

$$\Rightarrow x = y$$

 \therefore *f* is one to one.

f is onto: Let $f(x) = y \Rightarrow y = 2x \Rightarrow x = \frac{y}{2} \in Z$ [: *y* is an even number] $\therefore \forall x \in E$ there is a preimage $\frac{x}{2} \in Z$.

 $\therefore f$ is onto.

f is homomorphism:

$$\forall x, y \in Z, f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y)$$
$$f(x + y) = f(x) + f(y)$$

 \therefore *f* is homomorphism.

 \therefore *f* is isomorphism.

:. The two semi groups (Z, +) and (E, +) are isomorphic.

15. a) i) Show that (N, \leq) is a partially ordered set where N is set of all positive integers and \leq is defined by $m \leq n$ iff n - m is a non-negative integer.

Proof:

Let R be the relation $m \le n$ if f - m is a non-negative integer. i) $\forall x \in N, (x - x) = 0$ is also a non negative integer $\Rightarrow (x, x) \in R$ \therefore *R* is reflexive. ii) $\forall x, y \in N$, $(x, y) \in R \& (y, x) \in R$ \Rightarrow (x - y) is a non negative integer & (y - x) is a non negative integer It is possible only if $x - y = 0 \Rightarrow x = y$ $(x, y) \in R \& (y, x) \in R \Rightarrow x = y$ \therefore *R* is Anti Symmetric. iii) $\forall x, y, z \in N, (x, y) \in R and (y, z) \in R$ x - z = (x - y) + (y - z)Since sum of two non-negative integer is also a non-negative integer. \Rightarrow (x - z)is also a non – negative integer \Rightarrow (x, z) \in R $(x, y) \in R \text{ and } (y, z) \in R \Rightarrow (x, z) \in R$ $\therefore R$ is Transitive. \therefore (*N*, \leq) is a partially ordered set.

ii) In a Boolean algebra, prove that $(a \land b)' = a' \lor b'$.

Solution: Let
$$a, b \in (B, \land, \bigoplus, ', 0, 1)$$

To prove $(a \land b)' = a' \lor b'$
 $(a \land b) \lor (a' \lor b') = (a \lor (a' \lor b')) \land (b \lor (a' \lor b'))$
 $= (a \lor (a' \lor b')) \land ((a' \lor b') \lor b)$
 $= ((a \lor a') \lor b') \land (a' \lor (b' \lor b))$
 $= (1 \lor b') \land (a' \lor b') = 1 \land 1$
 $(a \land b) \lor (a' \lor b') = ((a \land b) \land a') \lor ((a \land b) \land b')$
 $= ((b \land a) \land a') \lor ((a \land b) \land b')$
 $= (b \land (a \land a')) \lor (a \land (b \land b'))$
 $= (b \land 0) \lor (a \land 0) = 0 \lor 0$
 $(a \land b) \land (a' \lor b') = 0 \dots (2)$
From (1) and (2) we get,
 $(a \land b)' = a' \lor b'$

b) i) In a Lattice (L, \leq) , prove that $x \lor (y \land z) \leq (x \lor y) \land (x \lor z)$. Proof:

From the definition of LUB, $(x \lor y) \ge x \And (x \lor z) \ge x \Rightarrow (x \lor y) \land (x \lor z) \ge x \dots (1)$ $y \land z \le y \le x \lor y \dots (2)$ $y \land z \le z \le x \lor z \dots (3)$ From (2) and (3), we get $(x \lor y) \land (x \lor z) \ge y \land z \dots (4)$ From (1) and (4), we get $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$

ii) If S_{42} is the set all divisors of 42 and D is the relation "divisor of" on S_{42} , prove that (S_{42}, D) is a

complemented Lattice.

Solution: $S_{42} = \{1,2,3,6,7,14,21,42\}$ The Hasse diagram for (S_{42}, D) is

The complement of 1 is 42, The complement of 42 is 1, The complement of 2 is 21, The complement of 21 is 2, The complement of 3 is 14, The complement of 14 is 3, The complement of 7 is 6, The complement of 6 is 7. Since all the elements in (S_{24}, D) has a complement, $\therefore (S_{24}, D)$ is a complemented lattice.