B.E./B.Tech. DEGREE EXAMINATION, November/December 2010
 Fifth Semester
 Computer Science and Engineering
 MA2265 - DISCRETE MATHEMATICS
 (Regulation 2008)

Part - A

1. When do you say that two compound propositions are equivalent?

Answer:
Let A and B are the two compound propositions. $A \Leftrightarrow B$ if $A \leftrightarrow B$ is a tautology.
2. Prove that $p, p \rightarrow q, q \rightarrow r \Rightarrow r$.

Solution:

1. $p \quad$ Rule P
2. $p \rightarrow q$ Rule P
3. $q \rightarrow r$ Rule P
4. $p \rightarrow r$ Rule T, 2,3 , chain rule
5. r Rule T,1,4, Modus phones

3. State pigeonhole principle.

Solution:
If k pigeons are assigned to n pigeonholes and $n<k$ then there is at least one pigeonhole containing more than one pigeons.
4. Find the recurrence relation satisfying the equation $y_{n}=A(3)^{n}+B(-4)^{n}$.

Solution: $y_{n}=A(3)^{n}+B(-4)^{n}$.

$$
\begin{gathered}
y_{n+1}=A(3)^{n+1}+B(-4)^{n+1}=3 A 3^{n}-4 B(-4)^{n} \\
y_{n+2}=A(3)^{n+2}+B(-4)^{n+2}=9 A 3^{n}+16 B(-4)^{n} \\
y_{n+2}+y_{n+1}-12 y_{n}=0
\end{gathered}
$$

5. Define strongly connected graph.

Answer:
A digraph is said to be strongly connected graph, if there is a path between every pair of vertices in the digraph.
6. State the necessary and sufficient conditions for the existence of an Eulerian path in a connected graph.
Answer:
A connected graph has an Euler path but not Euler circuit if and only if it has exactly two vertices of odd degree.

7. State any two properties of a group.

Answer:
Identity element of a group is unique.
Inverse element of a group is unique.

8. Define a commutative ring.

Answer:

A ring $(R,+, \times)$ is said to be commutative ring if it satisfies the following condition

$$
\forall a, b \in R, a \times b=b \times a
$$

9. Define Boolean algebra.

Answer:
A complemented distributive lattice is called Boolean algebra.

10. Define sub-lattice.

Answer:
A lattice (S, \leq) is called a sub-lattice of a lattice (L, \leq) if $S \subseteq L$ and S is a lattice.

Part - B
11. a)i) Prove that the premises $a \rightarrow(b \rightarrow c), d \rightarrow(b \wedge \sim c)$ and $(a \wedge d)$ are inconsistent. Solution:

1. $a \rightarrow(b \rightarrow c)$
2. $d \rightarrow(b \wedge \sim c)$
3. $(a \wedge d)$
4. a
5. d
6. $(b \rightarrow c)$
7. $(b \wedge \sim c)$
8. $\sim(\sim b \vee c)$
9. $\sim(b \rightarrow c) \quad$ Rul T8, $\sim a \vee b \rightarrow a \rightarrow b$
10. $(b \rightarrow c) \wedge \sim(b \rightarrow c)$
11. F

Rule P
Rule P
Rule P
Rule T,3, $p \wedge q \Rightarrow p$
Rule T,3, $p \wedge q \Rightarrow q$
Rule T,1,4, Modus phones
Rule T,2,5, Modus phones
Rule T,7, Demorgan's law
Rule T, $8, \sim a \vee b \Rightarrow a \rightarrow b$
Rule T, $9, a, b \Rightarrow a \wedge b$
Rule T,10, $a \wedge \sim a \Rightarrow F$
\therefore The premises $a \rightarrow(b \rightarrow c), d \rightarrow(b \wedge \sim c)$ and $(a \wedge d)$ are inconsistent.
ii) Obtain the principal disjunctive normal form and principal conjunction form of the statement

$$
\boldsymbol{P} \vee(\sim \boldsymbol{P} \rightarrow(\boldsymbol{Q} \vee(\sim \boldsymbol{Q} \rightarrow \boldsymbol{R})))
$$

Solution:
Let $S \Leftrightarrow P \vee(\sim P \rightarrow(Q \vee(\sim Q \rightarrow R)))$
$A: \sim P \rightarrow(Q \vee(\sim Q \rightarrow R))$

\mathbf{P}	\boldsymbol{Q}	\boldsymbol{R}	$\sim \boldsymbol{P}$	$\sim \boldsymbol{Q}$	$\sim \boldsymbol{Q} \rightarrow \boldsymbol{R}$	$\boldsymbol{Q} \vee(\sim \boldsymbol{Q} \rightarrow \boldsymbol{R})$	\boldsymbol{A}	S	Minterm	Maxterm
T	T	T	F	F	T	T	T	T	$P \wedge Q \wedge R$	
T	F	T	F	T	T	T	T	T	$P \wedge \sim Q \wedge R$	
F	T	T	T	F	T	T	T	T	$\sim P \wedge Q \wedge R$	
F	F	T	T	T	T	T	T	T	$\sim P \wedge \sim Q \wedge R$	
T	T	F	F	F	T	T	T	T	$P \wedge Q \wedge \sim R$	
T	F	F	F	T	F	F	T	T	$P \wedge \sim Q \wedge \sim R$	
F	T	F	T	F	T	T	T	T	$\sim P \wedge Q \wedge \sim R$	
F	F	F	T	T	F	F	F	F		$\mathrm{P} \vee \mathrm{Q} \vee \mathrm{R}$

$S \Leftrightarrow(P \wedge Q \wedge R) \vee(P \wedge \sim Q \wedge R) \vee(\sim P \wedge Q \wedge R) \vee(\sim P \wedge \sim Q \wedge R) \vee(P \wedge Q \wedge \sim R)$
$\vee(P \wedge \sim Q \wedge \sim R) \vee(\sim P \wedge Q \wedge \sim R)$ is a PDNF
$S \Leftrightarrow \mathrm{P} \vee \mathrm{Q} \vee \mathrm{R}$ is a PCNF
b) i) Prove that $\forall x(P(x) \rightarrow Q(x)), \forall x(R(x) \rightarrow \sim Q(x)) \Rightarrow \forall x(R(x) \rightarrow \sim P(x))$

Solution:

1. $\forall x(P(x) \rightarrow Q(x)) \quad$ Rule P
2. $\forall x(R(x) \rightarrow \sim Q(x)) \quad$ Rule P
3. $\quad P(a) \rightarrow Q(a) \quad$ Rule T, $1, \mathrm{US}$
4. $R(a) \rightarrow \sim Q(a) \quad$ Rule T, $2, \mathrm{US}$
5. $\sim Q(a) \rightarrow \sim p(a) \quad$ Rule $T, 3, p \rightarrow q \Rightarrow \sim q \rightarrow \sim p$
6. $R(a) \rightarrow \sim P(a) \quad$ Rule T $, 4,5$, chain rule
7. $\forall x(R(x) \rightarrow \sim P(x)) \quad$ Rule $\mathrm{T}, 6, \mathrm{UG}$
ii) Without using the truth table, prove that $\sim P \rightarrow(Q \rightarrow R) \equiv Q \rightarrow(P \vee R)$.

Proof:
$\sim P \rightarrow(Q \rightarrow R)$
$\Leftrightarrow \sim \sim P \vee(Q \rightarrow R) \quad$ [Implication law]
$\Leftrightarrow P \vee(Q \rightarrow R) \quad$ [negation law]
$\Leftrightarrow P \vee(\sim Q \vee R) \quad$ [Implication law]
$\Leftrightarrow(P \vee \sim Q) \vee R \quad$ [Associate law]
$\Leftrightarrow(\sim Q \vee P) \vee R \quad$ [Commutative law]
$\Leftrightarrow \sim Q \vee(P \vee R) \quad$ [Associate law]
$\Leftrightarrow Q \rightarrow(P \vee R) \quad$ [Implication law]
12.a) i) Prove, by mathematical induction, that for all $n \geq 1, n^{3}+2 n$ is a multiple of 3 .

Solution:
Let $P(n): n \geq 1, n^{3}+2 n$ is a multiple of 3 .
$P(1): 1^{3}+2(1)=1+2=3$ is a multiple of 3 .
$\therefore P(1)$ is true.
Let us assume that $P(n)$ is true. Now we have to prove that $P(n+1)$ is true.
To prove:

$$
P(n+1):(n+1)^{3}+2(n+1) \text { is a multiple of } 3
$$

$(n+1)^{3}+2(n+1)=n^{3}+3 n+3 n^{2}+1+2 n+2$

$$
=n^{3}+2 n+3 n+3 n^{2}+3
$$

$$
=n^{3}+2 n+3\left(n^{2}+n+1\right)
$$

From (1) $n^{3}+2 n$ is a multiple of 3

$$
\therefore(n+1)^{3}+2(n+1) \text { is a multiple of } 3
$$

$\therefore P(n+1)$ is true.
\therefore By induction method,
$P(n): n \geq 1, n^{3}+2 n$ is a multiple of 3 , is true for all positive integer n .
ii) Using the generating function, solve the difference equation

$$
y_{n+2}-y_{n+1}-6 y_{n}=0, y_{1}=1, y_{0}=2
$$

Solution:
Let $G(x)=\sum_{n=0}^{\infty} y_{n} x^{n} \ldots$ (1) where $G(x)$ is the generating function for the sequence $\left\{y_{n}\right\}$.
Given $y_{n+2}-y_{n+1}-6 y_{n}=0$
Multiplying by x_{n} and summing from 0 to ∞, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} y_{n+2} x^{n}-\sum_{n=0}^{\infty} y_{n+1} x^{n}-6 \sum_{n=0}^{\infty} y_{n} x^{n}=0 \\
& \frac{1}{x^{2}} \sum_{n=0}^{\infty} y_{n+2} x^{n+2}-\frac{1}{x} \sum_{n=0}^{\infty} y_{n+1} x^{n+1}-6 \sum_{n=0}^{\infty} y_{n} x^{n}=0 \\
& \frac{1}{x^{2}}\left(G(x)-y_{1} x-y_{0}\right)-\frac{1}{x}\left(G(x)-y_{0}\right)-6 G(x)=0 \quad \text { [from (1)] } \\
& G(x)\left(\frac{1}{x^{2}}-\frac{1}{x}-6\right)-\frac{y_{1}}{x}-\frac{y_{0}}{x^{2}}+\frac{y_{0}}{x}=0 \\
& G(x)\left(\frac{1}{x^{2}}-\frac{1}{x}-6\right)-\frac{1}{x}-\frac{2}{x^{2}}+\frac{2}{x}=0 \Rightarrow G(x)\left(\frac{6 x^{2}-x+1}{x^{2}}\right)=\frac{2}{x^{2}}-\frac{1}{x} \\
& G(x)\left(\frac{1-x-6 x^{2}}{x^{2}}\right)=\frac{2-x}{x^{2}} \\
& G(x)=\frac{2-x}{1-x-6 x^{2}}=\frac{2-x}{(1-3 x)(1+2 x)} \\
& \frac{2-x}{(1-3 x)(1+2 x)}=\frac{A}{(1-3 x)}+\frac{B}{(1+2 x)} \\
& 2-x=A(2 x+1)+B(1-3 x) \ldots \text { (2) } \\
& \text { Put } x=-\frac{1}{2} \text { in (2) } \\
& 2-\left(-\frac{1}{2}\right)=B\left(1+\frac{3}{2}\right) \Rightarrow \frac{5}{2} B=\frac{5}{2} \Rightarrow B=1 \\
& \text { Put } x=\frac{1}{3} \text { in (2) } \\
& 2-\left(\frac{1}{3}\right)=A\left(\frac{2}{3}+1\right) \Rightarrow \frac{5}{3} A=\frac{5}{3} \Rightarrow A=1 \\
& G(x)=\frac{1}{(1-3 x)}+\frac{1}{(1+2 x)}=\frac{1}{(1-3 x)}+\frac{1}{(1-(-2 x))} \\
& \sum_{n=0}^{\infty} y_{n} x^{n}=\sum_{n=0}^{\infty} 3^{n} x^{n}+\sum_{n=0}^{\infty}(-2)^{n} x^{n} \quad\left[\because \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}\right] \\
& y_{n}=\text { Coefficient of } x^{n} \text { in } G(x) \\
& y_{n}=3^{n}+(-2)^{n}
\end{aligned}
$$

b) i) How many positive integers \boldsymbol{n} can be formed using the digits $3,4,4,5,5,6,7$ if \boldsymbol{n} has to exceed 5000000?

Solution:

The positive integer n exceeds 5000000 if the first digit is either 5 or 6 or 7 .
If the first digit is 5 then the remaining six digits are 3, 4, 4, 5, 6,7.
Then the number of positive integers formed by six digits is

$$
\frac{6!}{2!}=360 \quad[\text { Since } 4 \text { appears twice }]
$$

If the first digit is 6 then the remaining six digits are $3,4,4,5,5,7$.
Then the number of positive integers formed by six digits is

$$
\frac{6!}{2!2!}=180 \quad[\text { Since } 4 \& 5 \text { appears twice }]
$$

If the first digit is 7 then the remaining six digits are $3,4,4,5,6,5$.
Then the number of positive integers formed by six digits is

$$
\frac{6!}{2!2!}=180 \quad[\text { Since } 4 \& 5 \text { appears twice }]
$$

\therefore The number of positive integers n can be formed using the digits $3,4,4,5,5,6,7$ if n has to exceed 5000000 is $360+180+180=720$.
ii) Find the number of integers between 1 and 250 both inclusive that are divisible by any of the integers 2,3,5,7.
Solution:
Let A, B, C and D represents the integer from 1 to 250 that are divisible by $2,3,5$ and 7 respectively.

$$
\begin{gathered}
|A|=\left\lfloor\frac { 2 5 0 } { 2 } \left|=125,|B|=\left\lfloor\frac{250}{3}\right\rfloor=83,|C|=\left\lfloor\frac { 2 5 0 } { 5 } \left|=50,|D|=\left|\frac{250}{7}\right|=35\right.\right.\right.\right. \\
|A \cap B|=\left|\frac{250}{2 \times 3}\right|=41,|A \cap C|=\left\lfloor\frac { 2 5 0 } { 2 \times 5 } \left|=25,|A \cap D|=\left\lfloor\frac { 2 5 0 } { 2 \times 7 } \left|=17,|B \cap C|=\left\lfloor\left.\frac{250}{3 \times 5} \right\rvert\,=16\right.\right.\right.\right.\right. \\
\left.|B \cap D|=\left\lvert\, \frac{250}{3 \times 7}\right.\right\rfloor=11,|C \cap D|=\left|\frac{250}{5 \times 7}\right|=7,|A \cap B \cap C|=\left|\frac{250}{2 \times 3 \times 5}\right|=8 \\
|A \cap B \cap D|=\left|\frac{250}{2 \times 3 \times 7}\right|=5,|A \cap C \cap D|=\left|\frac{250}{2 \times 5 \times 7}\right|=3,|B \cap C \cap D|=\left|\frac{250}{3 \times 5 \times 7}\right|=2 \\
|A \cap B \cap C \cap D|=\left\lfloor\left.\frac{250}{2 \times 3 \times 5 \times 7} \right\rvert\,=1\right.
\end{gathered}
$$

\therefore The number of integers between 1 and 250 both inclusive that are divisible by any of the integers $2,3,5,7$ is
$|A \cup B \cup C \cup D|=|A|+|B|+|C|+|D|-|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C|-|B \cap D|$

$$
\begin{array}{r}
-|C \cap D|+|A \cap B \cap C|+|A \cap B \cap D|+|A \cap C \cap D|+|B \cap C \cap D|-|A \cap B \cap C \cap D| \\
|A \cup B \cup C \cup D|=125+83+50+35-41-25-17-16-11-7+8+5+3+2-1
\end{array}
$$

$$
|A \cup B \cup C \cup D|=193
$$

13. a) i) Draw the complete graph K_{5} with vertices A, B, C, D and E. Draw all complete sub graph of K_{5} with 4 vertices.
Solution:
A complete graph with five vertices K_{5} is shown below

Complete sub graph of K_{5} with 4 vertices are

ii) If all the vertices of an undirected graph are each of degree \boldsymbol{k}, show that the number of edges of the graph is a multiple of \boldsymbol{k}.
Solution:
Let $G(V, E)$ be a graph with n vertices and e edges.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices.
Given that all the vertices of G are each of degree k.

$$
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right)=\cdots=\operatorname{deg}\left(v_{k}\right)=k
$$

By handshaking theorem,

$$
\begin{gathered}
\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 e \\
\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{3}\right)+\cdots+\operatorname{deg}\left(v_{n}\right)=2 e \\
k+k+k+\cdots \text { ntimes }=2 e \\
n k=2 e \\
e=k\left(\frac{n}{2}\right)
\end{gathered}
$$

\therefore The number of edges of the graph G is a multiple of k.
b) i) Draw the graph with 5 vertices, A, B, C, D, E such that $\operatorname{deg}(A)=3, B$ is an odd vertex, $\operatorname{deg}(C)=2$ and D and E are adjacent.

ii) The adjacency matrices of two pairs of graph as given below. Examine the isomorphism of \boldsymbol{G} and \boldsymbol{H} by finding a permutation matrix. $A_{G}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right), A_{H}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
Solution:
We know that two simple graphs G_{1} and G_{2} are isomorphic iff their adjacency matrices A_{1} and A_{2} are related by

$$
P A_{1} P^{T}=A_{2}
$$

[A matrix whose rows are the rows of the unit matrix, but not necessarily in their natural order, is called Permutation matrix.]

$$
\begin{gathered}
\mathrm{A}_{\mathrm{G}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \mathrm{A}_{\mathrm{H}}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1
\end{array}\right) \\
P=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
P A_{G} P^{T}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) A_{H} \\
P A_{G} P^{T}=A_{H}
\end{gathered}
$$

\therefore The two graphs G and H are isomorphic.
14.a) i) If $(G, *)$ is an abelian group, show that $(a * b)^{2}=a^{2} * b^{2}$.

Proof:

$$
\begin{aligned}
& (a * b)^{2}=(a * b) *(a * b) \\
= & a *(b * a) * b \quad[\text { Associative law }] \\
= & a *(a * b) * b[\text { Commutative law }] \\
= & (a * a) *(b * b)[\text { Associative law }] \\
& (a * b)^{2}=a^{2} * b^{2}
\end{aligned}
$$

ii) Show that $(Z,+, \times)$ is an integral domain where Z is the set of all integers.

Proof:
Closure:

$$
\begin{aligned}
& \forall a, b \in Z \Rightarrow a+b \in Z \\
& \forall a, b \in Z \Rightarrow a \times b \in Z
\end{aligned}
$$

$\therefore Z$ is closed under + and \times.
Associative:

$$
\begin{gathered}
\forall a, b, c \in Z \Rightarrow(a+b)+c=a+(b+c) \\
\forall a, b \in Z \Rightarrow(a \times b) \times c=a \times(b \times c)
\end{gathered}
$$

$\therefore Z$ is associative under + and \times.
Identity:
Let $e \in Z$ be the identity element.

$$
\forall a \in Z, a+e=e+a=a \Rightarrow a+e=a \Rightarrow e=0
$$

$\therefore 0 \in Z$ is the identity element with respect to the binary operation + .

$$
\forall a \in Z, a \times e=e \times a=a \Rightarrow a \times e=a \Rightarrow e=1
$$

$\therefore 1 \in Z$ is the identity element with respect to the binary operation + .
Inverse:
Let $b \in Z$ be the inverse element of $a \in Z$.

$$
a+b=b+a=0 \Rightarrow a+b=0 \Rightarrow b=-a \in Z
$$

$-a \in Z$ is the inverse of $a \in Z$
\therefore Every element has its inverse in Z under binary operation + .
Commutative:

$$
\begin{aligned}
& \forall a, b \in Z, a+b=b+a \\
& \forall a, b \in Z, a \times b=b \times a
\end{aligned}
$$

$\therefore Z$ is Commutative under + and \times.
Distributive:

$$
\forall a, b, c \in Z, a \times(b+c)=a \times b+a \times c
$$

$\therefore \times$ is distributive over + .

$$
\forall a, b \in Z, a \times b=0 \Rightarrow a=0 \text { or } b=0
$$

$\therefore Z$ has no zero divisors.
$\therefore(Z,+, \times)$ is an integral domain.

b) i) State and Prove Lagrange's theorem.

Statement:
The order of a subgroup of a finite group is a divisor of the order of the group.
Proof:
Let $a H$ and $b H$ be two left cosets of the subgroup $\{H, *\}$ in the group $\{G, *\}$.
Let the two cosets $a H$ and $b H$ be not disjoint.
Then let c be an element common to $a H$ and $b H$ i.e., $c \in a H \cap b H$

$$
\begin{aligned}
& \because c \in a H, c=a * h_{1}, \text { for some } h_{1} \in H \ldots \text { (1) } \\
& \because c \in b H, c=b * h_{2}, \text { for some } h_{2} \in H \ldots \text { (2) }
\end{aligned}
$$

From (1) and (2), we have

$$
\begin{array}{r}
a * h_{1}=b * h_{2} \\
a=b * h_{2} * h_{1}^{-1} \ldots \tag{3}
\end{array}
$$

Let x be an element in $a H$
$x=a * h_{3}$, for some $h_{3} \in H$

$$
=b * h_{2} * h_{1}^{-1} * h_{3}, u \operatorname{sing}(3)
$$

Since H is a subgroup, $h_{2} * h_{1}^{-1} * h_{3} \in H$
Hence, (3) means $x \in b H$

Thus, any element in $a H$ is also an element in $b H . \therefore a H \subseteq b H$
Similarly, we can prove that $b H \subseteq a H$
Hence $a H=b H$
Thus, if $a H$ and $b H$ are disjoint, they are identical.
The two cosets $a H$ and $b H$ are disjoint or identical. ...(4)
Now every element $a \in G$ belongs to one and only one left coset of H in G,
For,
$a=a e \in a H$, since $e \in H \Rightarrow a \in a H$
$a \notin b H$, since $a H$ and $b H$ are disjoint i.e., a belongs to one and only left coset of H in G i.e., $a H$... (5)
From (4) and (5), we see that the set of left cosets of H in G form the partition of G. Now let the order of H be m.
Let $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, where h_{i} 's are distinct
Then $a H=\left\{a h_{1}, a h_{2}, \ldots, a h_{m}\right\}$
The elements of $a H$ are also distinct, for, $a h_{i}=a h_{j} \Rightarrow h_{i}=h_{j}$, which is not true.
Thus H and $a H$ have the same number of elements, namely m.
In fact every coset of H in G has exactly m elements.
Now let the order of the group $\{G, *\}$ be n, i.e., there are n elements in G
Let the number of distinct left cosets of H in G be p.
\therefore The total number of elements of all the left cosets $=p m=$ the total number
of elements of G.i.e., $n=p m$
i.e., m, the order of H is adivisor of n, the order of G.
ii) If $(Z,+)$ and $(E,+)$ where Z is the set all integers and E is the set all even integers, show that the two semi groups $(Z,+)$ and $(E,+)$ are isomorphic.
Proof:
Let $f:(Z,+) \rightarrow(E,+)$ be the mapping between the two semi groups $(Z,+)$ and $(E,+)$ defined by

$$
f(x)=2 x, \forall x \in Z
$$

f is one to one:

$$
\begin{gathered}
f(x)=f(y) \\
\Rightarrow 2 x=2 y \\
\Rightarrow x=y
\end{gathered}
$$

$\therefore f$ is one to one.
f is onto:
Let $f(x)=y \Rightarrow y=2 x \Rightarrow x=\frac{y}{2} \in Z \quad[\because y$ is an even number $]$
$\therefore \forall x \in E$ there is a preimage $\frac{x}{2} \in Z$.
$\therefore f$ is onto.
f is homomorphism:

$$
\begin{gathered}
\forall x, y \in Z, f(x+y)=2(x+y)=2 x+2 y=f(x)+f(y) \\
f(x+y)=f(x)+f(y)
\end{gathered}
$$

$\therefore f$ is homomorphism.
$\therefore f$ is isomorphism.
\therefore The two semi groups $(Z,+)$ and $(E,+)$ are isomorphic.
15. a) i) Show that (N, \leq) is a partially ordered set where N is set of all positive integers and \leq is defined by $\boldsymbol{m} \leq \boldsymbol{n}$ iff $\boldsymbol{n}-\boldsymbol{m}$ is a non-negative integer.

Proof:
Let R be the relation $m \leq n$ iff $n-m$ is a non-negative integer.
i) $\forall x \in N,(x-x)=0$ is also a non negative integer $\Rightarrow(x, x) \in R$
$\therefore R$ is reflexive.
ii) $\forall x, y \in N$,
$(x, y) \in R \&(y, x) \in R$
$\Rightarrow(x-y)$ is a non negative integer $\&(y-x)$ is a non negative integer
It is possible only if $x-y=0 \Rightarrow x=y$
$(x, y) \in R \&(y, x) \in R \Rightarrow x=y$
$\therefore R$ is Anti Symmetric.
iii) $\forall x, y, z \in N,(x, y) \in R$ and $(y, z) \in R$
$x-z=(x-y)+(y-z)$
Since sum of two non-negative integer is also a non-negative integer.
$\Rightarrow(x-z)$ is also a non - negative integer $\Rightarrow(x, z) \in R$
$(x, y) \in R$ and $(y, z) \in R \Rightarrow(x, z) \in R$
$\therefore R$ is Transitive.
$\therefore(N, \leq)$ is a partially ordered set.
ii) In a Boolean algebra, prove that $(\boldsymbol{a} \wedge \boldsymbol{b})^{\prime}=\boldsymbol{a}^{\prime} \vee \boldsymbol{b}^{\prime}$.

Solution: Let $a, b \in\left(B, \wedge, \oplus,^{\prime}, 0,1\right)$
To prove $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$

$$
\begin{aligned}
(a \wedge b) \vee & \left(a^{\prime} \vee b^{\prime}\right)=\left(a \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \wedge\left(b \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \\
& =\left(a \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \wedge\left(\left(a^{\prime} \vee b^{\prime}\right) \vee b\right) \\
= & \left(\left(a \vee a^{\prime}\right) \vee b^{\prime}\right) \wedge\left(a^{\prime} \vee\left(b^{\prime} \vee b\right)\right) \\
& =\left(1 \vee b^{\prime}\right) \wedge\left(a^{\prime} \vee 1\right)=1 \wedge 1 \\
& (a \wedge) \vee\left(a^{\prime} \vee b^{\prime}\right)=1 \ldots(1) \\
(a \wedge b) \wedge & \left(a^{\prime} \vee b^{\prime}\right)=\left((a \wedge b) \wedge a^{\prime}\right) \vee\left((a \wedge b) \wedge b^{\prime}\right) \\
& \left((b \wedge a) \wedge a^{\prime}\right) \vee\left((a \wedge b) \wedge b^{\prime}\right) \\
& =\left(b \wedge\left(a \wedge a^{\prime}\right)\right) \vee\left(a \wedge\left(b \wedge b^{\prime}\right)\right) \\
& =(b \wedge 0) \vee(a \wedge 0)=0 \vee 0 \\
& (a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=0 \ldots(2)
\end{aligned}
$$

From (1) and (2) we get,

$$
(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}
$$

b) i) In a Lattice (L, \leq), prove that $x \vee(y \wedge z) \leq(x \vee y) \wedge(x \vee z)$. Proof:
From the definition of LUB,

$$
\begin{gathered}
(x \vee y) \geq x \& \quad(x \vee z) \geq x \Rightarrow(x \vee y) \wedge(x \vee z) \geq x \ldots \\
y \wedge z \leq y \leq x \vee y \ldots \text { (2) } \\
y \wedge z \leq z \leq x \vee z \ldots \text { (3) }
\end{gathered}
$$

From (2) and (3), we get

$$
\begin{equation*}
(x \vee y) \wedge(x \vee z) \geq y \wedge z \ldots \tag{4}
\end{equation*}
$$

From (1) and (4), we get

$$
x \vee(y \wedge z) \leq(x \vee y) \wedge(x \vee z)
$$

ii) If S_{42} is the set all divisors of 42 and D is the relation "divisor of" on S_{42}, prove that $\left(S_{42}, D\right)$ is a

complemented Lattice.

Solution:
$S_{42}=\{1,2,3,6,7,14,21,42\}$
The Hasse diagram for $\left(S_{42}, D\right)$ is

$$
\begin{aligned}
1 \vee 42 & =42,1 \wedge 42=1 \\
2 \vee 21 & =42,2 \wedge 21=1 \\
3 \vee 14 & =42,3 \wedge 14=1 \\
7 \vee 6 & =42,7 \wedge 6=1
\end{aligned}
$$

The complement of 1 is 42 , The complement of 42 is 1 , The complement of 2 is 21 , The complement of 21 is 2 , The complement of 3 is 14 , The complement of 14 is 3 , The complement of 7 is 6 , The complement of 6 is 7 . Since all the elements in (S_{24}, D) has a complement, $\therefore\left(S_{24}, D\right)$ is a complemented lattice.

