SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE-10

(Approved by AICTE, New Delhi \& Affiliated to Anna University)
DEPARTMENT OF SCIENCE AND HUMANITIES

Course Code \& Title	MA6151 \& Mathematics - I		$\begin{array}{llll}\text { L } & \text { T } & \text { P } \\ \mathbf{3} & 1 & 0\end{array}$
Class	I B.E (MECHANICAL) - A	Semester	I
Regulation	Anna University, Chennai, R 2013.		
Course Prerequisite	BASIC MATHEMATICS		
Objectives	To develop the use of matrix algebra techniques this is needed by engineers for practical applications. To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling. To familiarize the student with functions of several variables. This is needed in many branches of engineering. To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications. To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.		
Expected Outcomes	* An ability to apply knowledge of mathematics, science and engineering. * An ability to function on multidisiplinary teams. * An ability to identify, formulate and solve engineering problems. * An ability to use the techniques, skills and modern engineering tools necessary for engineering practice.		
Relationship of course to programme objectives	Graduates of Mechanical Engineering Programme will - Be able to apply the principles of Mechanical engineering, to solve real time problems and succeed in their career. - Be able to contribute and communicate effectively in multidisciplinary projects and perform services related to Mechanical engineering to meet the customer requirements in both quality and quantity. - Update the modern trends in engineering and technology through continuous learning and be the leaders in their profession.		
References	TEXT BOOKS: - Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., (2011). - Grewal. B.S, "Higher Engineering Mathematics", $41^{\text {st }}$ Edition, Khanna Publications, Delhi, (2011). REFERENCES: - Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., (2011). - Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, (2012). - Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning,(2012). - Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2008).		

Mode of Evaluation	1. Internal Assessment (20) As per Regulation - 2013, 20 marks are allotted for three assessment tests. \checkmark First assessment test (based on the syllabus of bridge course) - 4 marks \checkmark Second assessment test -8 marks \checkmark Third assessment test -8 marks Tests will be conducted as per the schedule given by the university. 2.External Assessment (80) University will conduct end semester examination for 100 marks ($10 * 2=20 \& 5 * 16=80$). Performance will be considered for assessment out of 80
Faculty	Mr.M. Vijaya Kumar

COURSE PLAN II

Unit	Topics to be covered as per curriculum	Reference	Period
I	MATRICES		
	Eigen values and Eigenvectors of a real matrix, Characteristic equation, Properties of eigen values and eigen vectors	R4: 14.1-14.8	3
	Tutorial I		1
	Statement and applications of Cayley-Hamilton Theorem	R4: 14.9 - 14.12	2
	Diagonalization of matrices	R4: 14.13-14.17	1
	Tutorial II		1
	Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms	R4: 14.18 - 14.26	3
	Tutorial III		1
	Total		12
II	SEQUENCES AND SERIES		
	Sequences - Definition and examples, Series: Types and Convergence	R1: 1005-1008	1
	Series of positive terms - Comparison test	R1: 1009-1016	2
	Tutorial I		1
	D'Alembert's ratio test	R1: 1017-1020	1
	Integral test	R1: 1027-1028	1
	Alternating series - Leibnitz's test	R1: 1035-1037	1
	Tutorial II		1
	Series of positive and negative terms, Absolute and conditional convergence.	R1: 1038-1040	3
	Tutorial III		1
	Total		12
III	APPLICATIONS OF DIFFERENTIAL CALCULUS		
	Curvature in Cartesian co-ordinates, radius of curvature	R4: $2.44-2.48$	3
	Tutorial I		1
	Center and Circle of curvature, Evolutes	R4: $2.57-2.64$	3
	Tutorial II		1
	Envelopes, Evolute as envelope of normals	R4: $2.65-2.75$	3

	Tutorial III		1
	Total		12
IV	DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES		
	Limits and Continuity - Partial derivatives	R1: 1-36	2
	Total derivative	R1: 37-50	1
	Tutorial I		1
	Differentiation of implicit functions	R1: 51-54	1
	Jacobian and properties	R1: 97-118	1
	Taylor's series for functions of two variable	R1: 122-132	1
	Tutorial II		1
	Maxima and minima of functions of two variables	R1: 59-71	2
	Lagrange's method of undetermined multipliers	R1: 72-86	1
	Tutorial III		1
	Total		12
V	MULTIPLE INTEGRALS		
	Double integrals in Cartesian and polar coordinates	R1: 133-142	2
	Change of order of integration	R1: 143-152	1
	Tutorial I		1
	Change of variables in double integrals	R1: 153-158	2
	Area enclosed by plane curves, Area of a curved surface	R1: 159-164	1
	Tutorial II		1
	Triple integrals	R1: 173-176	1
	Volume of Solids	R1: 182-194	2
	Tutorial III		1
	Total		12

Bridging the Curriculum Gap

Unit	Topics to be covered as per curriculum	Period
I Matrices, Vector Algebra and Partial Fractions		
	Relations between matrices and determinants - Representation of two variable linear equations - Representation of two variable non - linear equations.	1
	Classification of vectors - Linear combination of vectors - Components of a vector in two and three dimensions - Direction ratios \& Direction cosines and counter examples.	1
	Proper and Improper fractions - Types of partial fractions.	1
		3

II	Series \& Sequences, Analytical Geometry (Two Dimensions) and Trigonometric Functions	
	Link between series and sequences - Validity of series	1
	Convergence - Divergence - Counting Principles. Basic concepts - Point - Line - Slope - Straight line - Parallel lines.	1
	Domain - Co domain of all trigonometric functions - Notion of hyperbolic functions - Relation between circular and hyperbolic functions.	1
	Total	3
III	Differential Calculus	
	Theory of equations: Relation between roots and coefficients -expressions- equations and factors.	1
	Theory of limits: Limit of a function - Left and right limits (examples) Concepts of continuity: At a point- in an interval - discontinuous function.	1
	Differentiability: Link between differentiability and continuity-left derivative and right derivative (closed interval and open interval). Techniques of differentiation: Total and partial derivatives up to the second order.	1
	Total	3
IV	Integral Calculus	
	Proper and improper integrals - Definite integrals - Indefinite integrals	1
	Integration by parts - Bernoulli's formula	1
	Integration by using partial fraction - Reduction formula.	1
	Total	3
V	Differential Equations	
	Linear - non linear - homogeneous and non- homogeneous equations Order -Degree - Need of Differential equations and importance	1
	Relation between constant coefficients and variable coefficients	1
	Formation of differential equations	1
	Total	3

