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B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012 
Fifth Semester 

Computer Science and Engineering 
MA2265 – DISCRETE MATHEMATICS 

(Regulation 2008) 
 

Part - A 

1. Using truth table, show that the proposition 𝑷 ∨∼ ( 𝑷 ∧ 𝑸)is a tautology. 
Solution: 

𝐏 𝑸 𝐏 ∧ 𝐐 ∼  𝐏 ∧ 𝐐  𝑷 ∨∼  𝐏 ∧ 𝐐  
T T T F T 

T F F T T 

F T F T T 

F F F T T 

Since all the values in last column are true.  𝑃 ∨∼ ( 𝑃 ∧ 𝑄) is a tautology. 
 
2. Write the negation of the statement  ∃𝒙  ∀𝒚 𝒑 𝒙,𝒚 . 
Solution: 

∼  ∃𝑥  ∀𝑦 𝑝 𝑥, 𝑦 ⇒  ∀𝑥  ∃𝑦 ∼ 𝑝 𝑥, 𝑦  
 
3. Find the number of non-negative integer solutions of the equation  𝒙𝟏  + 𝒙𝟐  + 𝒙𝟑 =  𝟏𝟏. 

Solution: 
If there are 𝑟 unknowns and their sum is 𝑛, then the number of non-negative integer solution for the 
problem is  𝑛 + 𝑟 − 1 𝐶𝑟−1 
Here there are 3 unknowns and the sum is 7 
∴ The number of non-negative integer solutions of the equation  𝑥1  + 𝑥2  + 𝑥3 =  11 is         

 11 + 3 − 1 𝐶3−1 = 13𝐶2 = 78 

 
4. Find the recurrence relation for the Fibonacci sequence. 
Solution:  

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2, 𝑛 ≥ 2 𝑎𝑛𝑑 𝑓0 = 0, 𝑓1 = 1 

 
5. Define isomorphism of two graphs. 
Ans:  
Two graphs 𝐺1and 𝐺2 are said to be isomorphic to each other, if there exists one to one correspondence 
between the vertex sets preserves adjacency of the vertices. 
 
6. Give an example of an Euler graph. 
Ans: 

   
 

𝑎 𝑏 

𝑑 𝑐 
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7. Define a semi group. 
Ans: 
A nonempty set 𝑆 together with the binary operation satisfying the following conditions 
Closure: ∀𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ∗ 𝑏 ∈ 𝑆 
Associative: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆,  𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 ∗ 𝑐  
then  𝑆,∗  is called semi group. 

8. If ′𝒂 ′ is a generator of a cyclic group 𝑮, then show that 𝒂−𝟏 is also a generator of 𝑮. 
Solution: 

< 𝑎−1 >=   𝑎−1 𝑛 , 𝑛 ∈ 𝑍  
                 =  𝑎−𝑛 , 𝑛 ∈ 𝑍  
                 =  𝑎𝑚 ,𝑚 ∈ 𝑍  

< 𝑎−1 > = < 𝑎 > 
 
9. In a Lattice (𝑳, ≤), prove that  𝒂 ∧  𝒂 ∨ 𝒃 = 𝒂, for all 𝒂, 𝒃 ∈ 𝑮. 
Solution: 
We know from the definition of GLB and LUB 

𝑎 ∧ 𝑏 ≤ 𝑎… 1  
𝑎 ∨ 𝑏 ≥ 𝑎… 2  

𝑎 ∧  𝑎 ∨ 𝑏 ≤  𝑎…  3     𝑓𝑟𝑜𝑚  1   
𝑎 ∧  𝑎 ∨ 𝑏 = (𝑎 ∧ 𝑎) ∨ (𝑎 ∧ 𝑏) 

𝑎 ∧  𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∧ 𝑏 ≥ 𝑎  𝑓𝑟𝑜𝑚 (2)  
⇒ 𝑎 ∧  𝑎 ∨ 𝑏 ≥ 𝑎…  4  

From (3) and (4), we get 
𝑎 ∧  𝑎 ∨ 𝑏 = 𝑎 

10. Define a Boolean algebra. 
Ans: 
A complemented distributive lattice is called Boolean algebra. 
 

Part - B 
11. a)i) Prove that the following argument is valid: 𝒑 →∼ 𝒒,𝒓 → 𝒒, 𝒓 ⇒∼ 𝒑 . 
Solution: 

1. 𝑝 →∼ 𝑞 Rule P 
2. 𝑟 → 𝑞 Rule P 
3.  𝑟 Rule P 
4. 𝑞 Rule T,2,3, Modus phones 
5. ∼ 𝑝 Rule T,1,4, Modus tollens 

 
ii) Determine the validity of the following argument: 
If 7 is less than 4 then 7 is not a prime number, 7 is not less than 4. Therefore 7 is a prime number. 
Solution: 
Let 𝐿 represents 7 is less than 4. 
Let 𝑁 represents 7 is a prime number 
The inference is 𝐿 →∼ 𝑁, ∼ 𝐿 ⇒ 𝑁 

1. 𝐿 →∼ 𝑁 Rule P 
2. ∼ 𝐿 Rule P 

The argument is not valid, since 𝐿 →∼ 𝑁, ∼ 𝐿 ⇏ 𝑁 
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b) i) Verify the validity of the following argument. Every living thing is a plant or an animal. John’s gold 
fish is alive and it is not a plant. All animals have hearts. Therefore John’s gold fish has a  heart. 
Solution: 
Let 𝐿 𝑥 : 𝑥 is a living thing 
Let 𝑃 𝑥 : 𝑥 is a plant 
Let 𝐴 𝑥 : 𝑥 is an animal 
Let 𝑦 represents John’s gold fish 
Let 𝐻 𝑥 : 𝑥 have heart 

The inference is ∀𝑥  𝐿 𝑥 →  𝑃 𝑥 ∨ 𝐴 𝑥   , 𝐿 𝑦 ∧∼ 𝑃 𝑦 , ∀𝑥 𝐴 𝑥 → 𝐻(𝑥) ⇒ 𝐻(𝑦) 

1. ∀𝑥  𝐿 𝑥 →  𝑃 𝑥 ∨ 𝐴 𝑥    Rule P 

2. 𝐿 𝑦 ∧∼ 𝑃 𝑦  Rule P 
3. ∀𝑥 𝐴 𝑥 → 𝐻(𝑥)  Rule P 
4. 𝐿 𝑦 →  𝑃 𝑦 ∨ 𝐴 𝑦   Rule T,1,US 

5. 𝐴 𝑦 → 𝐻(𝑦) Rule T,3,US 
6. 𝐿(𝑦) Rule T,2, 𝑝 ∧ 𝑞 ⇒ 𝑝 
7. ∼ 𝑃 𝑦  Rule T,2, 𝑝 ∧ 𝑞 ⇒ 𝑞 
8. 𝑃 𝑦 ∨ 𝐴 𝑦  Rule T,4,6, Modus phones 
9.  𝐴 𝑦  Rule T,7,8, disjunctive syllogism 
10. 𝐻(𝑦) Rule T,5,9, Modus phones 

 

ii) Show that  ∀𝒙  𝑷 𝒙 → 𝑸 𝒙  ,  ∃𝒚 𝑷  𝒚 ⇒  (∃𝒙)𝑸(𝒙) . 

Solution: 
1.  ∀𝑥  𝑃 𝑥 → 𝑄 𝑥   Rule P 

2.  ∃𝑦 𝑃  𝑦  Rule P 
3. 𝑃 𝑎 → 𝑄 𝑎  Rule T,1,US 
4. 𝑃  𝑎  Rule T,2,ES 
5. 𝑄 𝑎  Rule T,3,4, Modus phones 
6. (∃𝑥)𝑄(𝑥) Rule T,5, EG 

 
12.a) i) Prove by the principle of  Mathematical induction, for ′𝒏′ a positive integer  

𝟏𝟐 + 𝟐𝟐 + 𝟑𝟐 + ⋯ + 𝒏𝟐 =
𝒏 𝒏 + 𝟏  𝟐𝒏 + 𝟏 

𝟔
 

Solution: 

𝐿𝑒𝑡 𝑃 𝑛 : 12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛 𝑛 + 1  2𝑛 + 1 

6
                    … (1) 

𝑃 1 : 12 =
1 1 + 1  2 + 1 

6
 

1 =
6

6
⇒ 1 = 1 

∴ 𝑃(1) is true. 
Let us assume that 𝑃(𝑛)  is true. Now we have to prove that 𝑃(𝑛 + 1) is true. 
To prove: 

𝑃 𝑛 + 1 : 12 + 22 + 32 + ⋯ +  𝑛 + 1 2 =
 𝑛 + 1  𝑛 + 2  2𝑛 + 3 

6
 

12 + 22 + 32 + ⋯+ 𝑛2 +  𝑛 + 1 2 =
𝑛 𝑛 + 1  2𝑛 + 1 

6
+  𝑛 + 1 2            (𝑓𝑟𝑜𝑚  1 ) 
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=
𝑛 𝑛 + 1  2𝑛 + 1 + 6 𝑛 + 1 2

6
 

=
 𝑛 + 1  𝑛 2𝑛 + 1 + 6 𝑛 + 1  

6
 

=
 𝑛 + 1  2𝑛2 + 𝑛 + 6𝑛 + 6 

6
 

=
 𝑛 + 1  2𝑛2 + 7𝑛 + 6 

6
 

12 + 22 + 32 + ⋯ + 𝑛2 +  𝑛 + 1 2 =
 𝑛 + 1  𝑛 + 2  2𝑛 + 3 

6
 

 
∴ 𝑃 𝑛 + 1  is true. 
∴ By induction method,  

𝑃 𝑛 : 12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛 𝑛 + 1  2𝑛 + 1 

6
 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 

 
ii) Find the number of distinct permutations that can be formed from all the letters of each word  
     (1) RADAR (2) UNUSUAL. 
Solution:  
(1) The word RADAR contains 5 letters of which 2 A’s and 2 R’s are there. 

𝑇𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠 =
5!

2! 2!
= 30 

Number of distinct permutation =  30. 
(2) The word UNUSUAL contains 7 letters of which 3 U’s are there. 

𝑇𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠 =
7!

3!
= 840 

Number of distinct permutation =  840. 
 
b) Solve the recurrence relation, 𝑺(𝒏)  =  𝑺(𝒏 − 𝟏) +  𝟐𝑺(𝒏 − 𝟐) , with 𝑺(𝟎)  =  𝟑, 𝑺(𝟏)  =  𝟏 , 
by finding its generating function. 
Solution: 
The given recurrence relation is   2𝑎𝑛 –2 + 𝑎𝑛−1 − 𝑎𝑛 = 0 with 𝑎0 = 3, 𝑎1 = 1. 

𝐿𝑒𝑡 𝐺 𝑥 =  𝑎𝑛𝑥
𝑛

∞

𝑛=0

= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯            … 1  

where 𝐺 𝑥  is the generating function for the sequence  𝑎𝑛  . 
Given 2𝑎𝑛−2 + 𝑎𝑛−1 − 𝑎𝑛 = 0 
Multiplying by 𝑥𝑛  and summing from 2 to ∞, we have 

2  𝑎𝑛−2𝑥
𝑛

∞

𝑛=2

+  𝑎𝑛−1𝑥
𝑛

∞

𝑛=2

−  𝑎𝑛𝑥
𝑛

∞

𝑛=2

= 0  

2𝑥2  𝑎𝑛−2𝑥
𝑛−2

∞

𝑛=2

+ 𝑥  𝑎𝑛−1𝑥
𝑛−1

∞

𝑛=2

−  𝑎𝑛𝑥
𝑛

∞

𝑛=2

= 0 

2𝑥2 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯  + 𝑥 𝑎1𝑥 + 𝑎2𝑥

2 + ⋯  −  𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + ⋯  = 0 

2𝑥2𝐺 𝑥 + 𝑥𝐺 𝑥 − 𝑥𝑎0 − 𝐺 𝑥 + 𝑎0 + 𝑎1𝑥 = 0            [𝑓𝑟𝑜𝑚  1 ] 
𝐺 𝑥  2𝑥2 + 𝑥 − 1 − 3𝑥 + 3 + 𝑥 = 0 
𝐺 𝑥  2𝑥2 + 𝑥 − 1 = 2𝑥 − 3 
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𝐺 𝑥 =
2𝑥 − 3

 2𝑥2 + 𝑥 − 1 
=

2𝑥 − 3

− 1 + 𝑥  1 − 2𝑥 
=

3 − 2𝑥

 1 + 𝑥  1 − 2𝑥 
 

 
3 − 2𝑥

 1 + 𝑥  1 − 2𝑥 
=

𝐴

1 + 𝑥
+

𝐵

 1 − 2𝑥 
 

3 − 2𝑥 = 𝐴 1 − 2𝑥 + 𝐵 1 + 𝑥 …  2  

Put 𝑥 =  
1

2
 in (2) 

3 − 1 = 𝐵  1 +
1

2
 ⇒  

3

2
𝐵 = 2 ⇒ 𝐵 =

4

3
 

Put 𝑥 = −1 in (2) 

3 + 2 = 𝐴 1 + 2 ⇒ 3𝐴 = 5 ⇒ 𝐴 =
5

3
 

 

𝐺 𝑥 =

5
3

1 + 𝑥
+

4
3

 1 − 2𝑥 
 

 

 𝑎𝑛𝑥𝑛

∞

𝑛=0

=
5

3
  −1 𝑛  𝑥𝑛

∞

𝑛=0

+
4

3
 2𝑛𝑥𝑛

∞

𝑛=0

           ∵
1

1 − 𝑥
=  𝑥𝑛

∞

𝑛=0

   

𝑎𝑛 = Coefficient of 𝑥𝑛  in 𝐺(𝑥) 

𝑎𝑛 =
5

3
 −1 𝑛 +

4

3
2𝑛  

 
13. a) Prove that a connected graph G is Eulerian if and only if all the vertices are on even degree.      
Proof: 
Suppose, 𝐺 is an Euler graph. 𝐺 contains an Eulerian circuit. While traversing through the circuit a vertex 
𝑣 is incident by two edges with one we entered and other exited. This is true, for all the vertices, 
because it is a circuit. Thus the degree of every vertex is even. 
Conversely, suppose that all vertices of 𝐺 are of even degree, we have to prove that 𝐺 is an Euler graph. 
Construct a circuit starting at an arbitrary vertex 𝑣 and going through the edge of 𝐺 such that no edge id 
repeated. Because, each vertex is of even degree, we can exit from each end, every vertex we enter, the 
tracing can stop only at vertex 𝑣. Name the circuit as . If  covers all edges of 𝐺, then 𝐺 contains Euler 
circuit, and hence 𝐺 is an Euler graph. If  does not cover all edges of 𝐺 then remove all edges of  from 
𝐺 and obtain the remaining graph 𝐺 ′ . Since 𝐺 and 𝐺′ contains all the vertex of even degree. Every vertex 
in 𝐺′ is also of even degree. Since 𝐺 is connected,  will touch 𝐺′ atleast one vertex 𝑣′ . Starting from 𝑣′ 
we can again construct a new circuit ′ in 𝐺′. This will terminate only at 𝑣′ , because every vertex in 𝐺 ′  is 
of even degree. Now, this circuit ′ combined with  forms a circuit starts and ends at 𝑣 and has more 
edges than , this process is repeated until we obtain a circuit covering all edges of 𝐺. Thus 𝐺 is an Euler 
graph. 
 
b) Show that graph 𝑮 is disconnected if and only if its vertex set 𝑽 can be partitioned into two 
nonempty subsets  𝑽𝟏  and  𝑽𝟐 such that there exists no edge in 𝑮 whose one end vertex is in  𝑽𝟏 
and the other in  𝑽𝟐 . 
Proof: 
Suppose that such a partition exists. Consider two arbitrary vertices 𝑎 and 𝑏 of 𝐺 such that 𝑎 ∈ 𝑉1 and 
𝑏 ∈ 𝑉2. No path can exist between vertices 𝑎 and 𝑏. Otherwise, there would be at least one edge whose 
one end vertex be in 𝑉1 and the other in 𝑉2. Hence if partition exists, 𝐺 is not connected. 
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Conversely, let 𝐺 be a disconnected graph. 
Consider a vertex 𝑎 in 𝐺. Let 𝑉1be the set of all vertices that are joined by paths to 𝑎. Since 𝐺 is 
disconnected, 𝑉1 does not include all vertices of 𝐺. The remaining vertices will form a set 𝑉2. No vertex in 
𝑉1is joined to any vertex in 𝑉2 by an edge. Hence the partition. 
 
14.a) Let 𝒇 ∶ 𝑮 → 𝑮′ be a homorphism of groups with Kernel 𝑲 . Then prove that 𝑲 is a normal 
subgroup of 𝑮 and 𝑮 / 𝑲 is isomorphic to the image of 𝒇 . 
Proof: 
Let 𝑓 be a homomorphism from a group (𝐺,∗) to a group (𝐺′,∆), and let 𝐾 be the kernel of 𝑓.  

𝐾 = 𝑘𝑒𝑟 𝑓 = {𝑓 𝑎 = 𝑒′\𝑎 ∈ 𝐺, 𝑒′ ∈ 𝐺′} 
To prove 𝐾 is a subgroup of 𝐺: 
We know that 𝑓 𝑒 = 𝑒′ ⇒ 𝑒 ∈ 𝐾 
∴ 𝐾 is a non-empty subset of 𝐺. 
By the definition of homomorphism 𝑓 𝑎 ∗ 𝑏 = 𝑓 𝑎  ∆ 𝑓 𝑏 , ∀𝑎, 𝑏 ∈ 𝐺 
Let 𝑎, 𝑏 ∈ 𝐾 ⇒ 𝑓 𝑎 = 𝑒′  𝑎𝑛𝑑 𝑔 𝑏 = 𝑒′   

Now 𝑓 𝑎 ∗ 𝑏−1 = 𝑓 𝑎  ∆ 𝑓 𝑏−1 = 𝑓 𝑎  ∆  𝑓 𝑏  
−1

= 𝑒′∆  𝑒′ −1 

= 𝑒′∆ 𝑒′ = 𝑒′ 
∴ 𝑎 ∗ 𝑏−1 ∈ 𝐾 

∴ 𝐾 is a subgroup of 𝐺 
To prove 𝐾 is a normal subgroup of 𝐺: 
For any 𝑎 ∈ 𝐺 𝑎𝑛𝑑 𝑘 ∈ 𝐾, 

𝑓 𝑎−1 ∗ 𝑘 ∗ 𝑎 = 𝑓 𝑎−1  ∆ 𝑓 𝑘 ∆𝑓 𝑎 =  𝑓 𝑎−1 ∆ 𝑓 𝑘  ∆ 𝑓 𝑎  
= 𝑓 𝑎−1 ∆ 𝑒′∆ 𝑓 𝑎 =  𝑓 𝑎−1  ∆ 𝑓 𝑎 = 𝑓 𝑎−1 ∗ 𝑎 = 𝑓 𝑒 = 𝑒′ 

𝑎−1 ∗ 𝑘 ∗ 𝑎 ∈ 𝐾 
∴ 𝐾 is a normal subgroup of 𝐺. 
Let us define a mapping : 𝐺/𝐾 →  𝐺′ from the group  𝐺/𝐾,⊗  to the group  𝐺 ′ ,Δ  such that 
 𝑎𝐾 = 𝑓 𝑎 … (1) 
To prove that  is well defined: 
For any 𝑎, 𝑏 ∈ 𝐺, 

∴ 𝑎𝐾 = 𝑏𝐾 
𝑎 ∗ 𝑏−1 ∈ 𝐾 

𝑓 𝑎 ∗ 𝑏−1 = 𝑒′   𝑠𝑖𝑛𝑐𝑒 𝑘 𝑖𝑠 𝑘𝑒𝑟𝑛𝑒𝑙 𝑜𝑓 𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚 𝑓𝑟𝑜𝑚 𝐺 𝑡𝑜 𝐺′   
𝑓 𝑎 ∆ 𝑓 𝑏−1 = 𝑒′    𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚 𝑓𝑟𝑜𝑚 𝐺 𝑡𝑜 𝐺′         

𝑓 𝑎 ∆  𝑓 𝑏  
−1

= 𝑒′   ∵  𝑓 𝑏  
−1

= 𝑓 𝑏−1     

𝑓 𝑎 ∆  𝑓 𝑏  
−1

∆  𝑓 𝑏 = 𝑒′∆  𝑓 𝑏  

𝑓 𝑎 ∆ 𝑒′ = 𝑓 𝑏 ⇒ 𝑓 𝑎 = 𝑓(𝑏) 
 𝑎𝐾 =  𝑏𝐾  

𝑎𝐾 = 𝑏𝐾 ⇒  𝑎𝐾 =  𝑏𝐾  
∴  is well defined. 
To prove that  is homomorphism: 

 𝑎𝐾 ⊗ 𝑏𝐾 =   𝑎 ∗ 𝑏 𝐾     
                          = 𝑓 𝑎 ∗ 𝑏  𝑓𝑟𝑜𝑚(1)  

                          = 𝑓 𝑎  ∆ 𝑓 𝑏    𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚 𝑓𝑟𝑜𝑚 𝐺 𝑡𝑜 𝐺′    
                          =  𝑎𝐾  ∆  𝑏𝐾   𝑓𝑟𝑜𝑚(1)  

∴  is homomorphism 
To prove that  is one to one:  
For any 𝑎, 𝑏 ∈ 𝐺, 
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 𝑎𝐾 =  𝑏𝐾  
𝑓 𝑎 = 𝑓 𝑏  

𝑓 𝑎 ∆  𝑓 𝑏  
−1

= 𝑓 𝑏 ∆  𝑓 𝑏  
−1

 

𝑓 𝑎 ∆ 𝑓 𝑏−1 = 𝑒′       𝑓 𝑏  
−1

= 𝑓 𝑏−1   &  𝑓 𝑏 ∆  𝑓 𝑏  
−1

= 𝑒′      

𝑓 𝑎 ∗ 𝑏−1 = 𝑒′   𝑠𝑖𝑛𝑐𝑒 𝑔 𝑖𝑠 𝑜𝑚𝑜𝑚𝑜𝑟𝑝𝑖𝑠𝑚 𝑓𝑟𝑜𝑚 𝐺 𝑡𝑜 𝐻    
                                                𝑎 ∗ 𝑏−1 ∈ 𝐾 ⇒ 𝑎 ∈ 𝐾𝑏 

∴ 𝑎𝐾 = 𝑏𝐾 
∴  is one to one 
To prove that  is on to: 
Let 𝑦 be any element of 𝐺 ′ .  

𝑓 𝑎 = 𝑦 
∴  𝑎𝐾 = 𝑓 𝑎 = 𝑦. 

∴ ∀𝑦 ∈ 𝐺′ there is an pre-image 𝑎𝐾 in 𝐺/𝐾.  
∴  is onto. 
∴ : 𝐺/𝐾 →  𝐺′ is isomorphic. 
 
b) State and Prove Lagrange’s theorem. 
Statement: 
The order of a subgroup of a finite group is a divisor of the order of the group. 
Proof: 
Let 𝑎𝐻 and 𝑏𝐻 be two left cosets of the subgroup {𝐻,∗} in the group {𝐺,∗}. 
Let the two cosets 𝑎𝐻 and 𝑏𝐻 be not disjoint. 
Then let 𝑐 be an element common to 𝑎𝐻 and 𝑏𝐻 i.e., 𝑐 ∈ 𝑎𝐻 ∩  𝑏𝐻 

∵ 𝑐 ∈ 𝑎𝐻, 𝑐 = 𝑎 ∗ 1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 1 ∈ 𝐻 … (1) 
∵ 𝑐 ∈ 𝑏𝐻, 𝑐 = 𝑏 ∗ 2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 2 ∈ 𝐻 … (2) 

From (1) and (2), we have 
𝑎 ∗ 1 = 𝑏 ∗ 2 

𝑎 = 𝑏 ∗ 2 ∗ 1
−1 … (3) 

             Let 𝑥 be an element in 𝑎𝐻 
             𝑥 = 𝑎 ∗  3, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 3 ∈ 𝐻 

= 𝑏 ∗ 2 ∗ 1
−1 ∗  3, 𝑢𝑠𝑖𝑛𝑔 (3) 

             Since H is a subgroup, 2 ∗ 1
−1 ∗  3 ∈ 𝐻 

             Hence, (3) means 𝑥 ∈ 𝑏𝐻 
             Thus, any element in 𝑎𝐻 is also an element in 𝑏𝐻. ∴  𝑎𝐻 ⊆ 𝑏𝐻 
              Similarly, we can prove that 𝑏𝐻 ⊆ 𝑎𝐻 
              Hence 𝑎𝐻 = 𝑏𝐻 
              Thus, if 𝑎𝐻 and 𝑏𝐻 are disjoint, they are identical. 
              The two cosets 𝑎𝐻 and 𝑏𝐻 are disjoint or identical. …(4) 
              Now every element 𝑎 ∈ 𝐺 belongs to one and only one left coset of 𝐻 in 𝐺, 
             For,  
             𝑎 = 𝑎𝑒 ∈ 𝑎𝐻, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∈ 𝐻 ⇒ 𝑎 ∈ 𝑎𝐻 

              𝑎 ∉ 𝑏𝐻, since 𝑎𝐻 and 𝑏𝐻 are disjoint i.e., 𝑎 belongs to one and only left coset of     
              𝐻 in 𝐺 i.e., 𝑎𝐻… (5) 
             From (4) and (5), we see that the set of left cosets of 𝐻 in 𝐺 form the partition of  
             𝐺. Now let the order of 𝐻 be 𝑚. 
             Let 𝐻 =  1,2, … , 𝑚  ,𝑤𝑒𝑟𝑒 𝑖 ′𝑠 are distinct 
             Then 𝑎𝐻 =  𝑎1,𝑎2,… , 𝑎𝑚   
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              The elements of 𝑎𝐻  are also distinct, for, 𝑎𝑖 = 𝑎𝑗 ⇒ 𝑖 = 𝑗 , which is not  

              true. 
              Thus 𝐻 and 𝑎𝐻 have the same number of elements, namely 𝑚. 
              In fact every coset of 𝐻 in 𝐺 has exactly 𝑚 elements. 
              Now let the order of the group {𝐺,∗} be 𝑛, i.e., there are 𝑛 elements in 𝐺 
              Let the number of distinct left cosets of 𝐻 in 𝐺 be 𝑝. 
              ∴ The total number of elements of all the left cosets = 𝑝𝑚 = the total number 
              of elements of 𝐺. i.e., 𝑛 = 𝑝𝑚  
              i.e., 𝑚, the order of 𝐻 is adivisor of 𝑛, the order of 𝐺. 
 
15. a) Show that the direct product of any two distributive lattices is a distributive lattice. 
Solution: 
Let  𝐿,∗, ⨁  𝑎𝑛𝑑  𝑆,∧,∨  𝑏𝑒 𝑡𝑤𝑜 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑙𝑒𝑡  𝐿 × 𝑆, . , +  
𝑏𝑒 𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑠. 
For any  𝑎1,𝑏1 ,  𝑎2, 𝑏2  𝑎𝑛𝑑  𝑎3, 𝑏3 ∈ 𝐿 × 𝑆 

 𝑎1,𝑏1 .   𝑎2,𝑏2 +  𝑎3, 𝑏3  =  𝑎1,𝑏1 .  𝑎2⨁𝑎3,𝑏2 ∨ 𝑏3  

=  𝑎1 ∗  𝑎2⨁𝑎3 ,𝑏1 ∧  𝑏2 ∨ 𝑏3   

=   𝑎1 ∗ 𝑎2 ⨁ 𝑎1 ∗ 𝑎3 ,  𝑏1 ∧ 𝑏2 ∨  𝑏1 ∧ 𝑏3   

=  𝑎1,𝑏1 .  𝑎2, 𝑏2 +  𝑎1, 𝑏1 .  𝑎3, 𝑏3  
∴The direct product of any two distributive lattices is a distributive lattice. 
 
b) Let 𝑩 be a finite Boolean algebra and let 𝑨 be the set of all atoms of 𝑩. Then prove that the 
Boolean algebra 𝑩 is isomorphic to the Boolean Algebra 𝝆(𝑨), where 𝝆(𝑨) is the power set of  . 
Proof: 
Let  𝐵 be any finite Boolean algebra. 
We will use induction on |B|. 
We assume that the result is true when  𝐵 < 𝑛. 
Let 𝐵 be the Boolean algebra with  𝐵 = 𝑛. 
Let ′𝑎′  be any element of 𝐵 such that 0 < 𝑎 < 1. 
Let 𝐵1be the Boolean algebra  0, 𝑎  and 𝐵2 be the Boolean Algebra  0, 𝑎′  . 
We know that 𝐵 ≈ 𝐵1 × 𝐵2 

∴ 1 ∉ 𝐵1 ⇒  𝐵1 <  𝐵 = 𝑛 
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 1 ∉ 𝐵2 ⇒  𝐵2 <  𝐵 = 𝑛 

∴ By induction assumption, there exist a finite set 𝑋 and 𝑌 such that  
𝐵1 ≈  𝜌 𝑋 ,∪,∩  and 𝐵2 ≈  𝜌 𝑌 ,∪,∩  
We know that Boolean algebra 
 𝜌 𝑋 ∪ 𝑌 ,∪,∩ ≈  𝜌 𝑋 ,∪,∩ ×  𝜌 𝑌 ,∪,∩   
Let 𝑍 = 𝑋 ∪ 𝑌 then  

 𝜌 𝑍 ,∪,∩ ≈  𝜌 𝑋 ,∪,∩ ×  𝜌 𝑌 ,∪,∩ ≈ 𝐵1 × 𝐵2 ≈ 𝐵 
∴ 𝐵 =  𝜌 𝑍 ,∪,∩  for a suitable finite set 𝑍. 
Now, the smallest number of elements in Boolean algebra is 2 and any Boolean Algebra with two 
elements contain only 0 and 1. 
If 𝑍 =Singleton set 
 𝜌 𝑍 ,∪,∩ ≈ the Boolean algebra with 2 elements 
∴ By induction hypothesis, the result is true for any Boolean algebra. 
 
 


