ANNA UNIVERSITY CHENNAI

B.E./B.TECH. DEGREE EXAMINATION - January -2010.

MATHEMATICS - I
PART - A

1. Given $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2\end{array}\right]$. Find the eigenvalues of A^{2}.

Since A is a triangular matrix, the eigenvalues are $-1,-3,2$.
\therefore The eigenvalues of A^{2} are $1,9,4$.
2. Can $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ be diagonalized? Why?
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ can be diagonalized, since A is symmetric and non-singular matrix.
3. Find the equation of the sphere concentric with $x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+4=0$ and passing through the point $(1,2,3)$.

The equation of the concentric circle is $x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+k=0$
Since it passes through $(1,2,3), 1+4+9-4+12-24+k=0 \Rightarrow k=2$
$\therefore x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+k=0$
4. Find the equation of the cone whose vertex is the origin and guiding curve is
$\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{1}=1, x+y+z=1$.
The vertex of the cone is origin.
\therefore The equation of the cone will be homogeneous of second degree in x, y, z.
Given $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{1}=1, x+y+z=1$
$\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{1}=1(x+y+z)^{2} \Rightarrow 27 x^{2}+32 y^{2}+72 x y+72 y z+72 x z=0$
5. Find the curvature of the curve $2 x^{2}+2 y^{2}+5 x-2 y+1=0$.
$2 x^{2}+2 y^{2}+5 x-2 y+1=0 \Rightarrow x^{2}+y^{2}+\frac{5}{2} x-y+\frac{1}{2}=0$
\therefore centre $\left(-\frac{5}{4}, \frac{1}{2}\right)$ and radius $=\frac{\sqrt{21}}{4}$ and \therefore curvature $=\frac{4}{\sqrt{21}}$
6. Find the envelope of the family of straight line $\boldsymbol{y}=\boldsymbol{m x}+\frac{a}{m}, m$ being the parameter.

$$
y=m x+\frac{a}{m} \Rightarrow y=\frac{m^{2} x+a}{m} \Rightarrow m^{2} x-m y+a=0
$$

\therefore The envelope is $B^{2}-4 A C=0 \Rightarrow y^{2}-4 a x=0 \Rightarrow y^{2}=4 a x$.
7. Find $\frac{d u}{d t}$ if $u=\sin \left(\frac{x}{y}\right)$,where $x=e^{t}, y=t^{2}$.

Given $u=\sin \left(\frac{x}{y}\right) x=e^{t}, y=t^{2}$
$\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t}=\cos \left(\frac{x}{y}\right)\left(\frac{1}{y}\right) e^{t}+\cos \left(\frac{x}{y}\right)\left(-\frac{x}{y^{2}}\right) 2 t=\frac{1}{y} \cos \left(\frac{x}{y}\right) e^{t}-\frac{x}{y^{2}} \cos \left(\frac{x}{y}\right) 2 t$
8. If $u=\frac{y^{2}}{2 x}, v=\frac{x^{2}+y^{2}}{2 x}$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
$\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right|=\left|\begin{array}{cc}-\frac{y^{2}}{2 x^{2}} & \frac{y}{x} \\ \frac{x^{2}-y^{2}}{2 x^{2}} & \frac{y}{x}\end{array}\right|=-\frac{y}{2 x}$.
9. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta$.
$\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta=\int_{0}^{\pi}\left[\frac{r^{2}}{2}\right]_{0}^{\sin \theta} d \theta=\int_{0}^{\pi} \frac{\sin ^{2} \theta}{2} d \theta=\int_{0}^{\pi} \frac{1-\cos 2 \theta}{4} d \theta=\frac{1}{4}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi}=\frac{\pi}{4}$
10. Change the order of integration for the double integral $\int_{0}^{1} \int_{0}^{x} f(x, y) d x d y$
$\int_{0}^{1} \int_{0}^{x} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x=\int_{0}^{1} \int_{y}^{1} f(x, y) d x d y$
PART - B
11. (a). (i). Verify Cayley Hamilton theorem and hence find A^{-1} for $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

The characteristic equation is $\lambda^{3}-a_{1} \lambda^{2}+a_{2} \lambda-a_{3}=0$
Here $a_{1}=6 \quad a_{2}=9 \quad a_{3}=4$.
The characteristic equation is $\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0$
By Cayley Hamilton theorem , $A^{3}-6 A^{2}+9 A-4 I=0$

$$
A^{2}=\left[\begin{array}{ccc}
6 & -5 & 5 \\
-1 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \quad, A^{3}=\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]
$$

$\therefore A^{3}-6 A^{2}+9 A-4 I=0$ and hence Cayley Hamilton theorem is verified.
To find A^{-1} :

$$
A^{3}-6 A^{2}+9 A-4 I=0 \Rightarrow A^{-1}=\frac{1}{4}\left(A^{2}-6 A+9 I\right)=\frac{1}{4}\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

(ii). Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

The characteristic equation is $\lambda^{3}-a_{1} \lambda^{2}+a_{2} \lambda-a_{3}=0$
Here $a_{1}=-1 \quad a_{2}=-21 \quad a_{3}=45$ and $\lambda^{3}+\lambda^{2}-21 \lambda-45={ }^{\prime \prime} 0$
$\therefore \lambda=-3$ is a root. And $\lambda^{2}-2 \lambda-15=0$
The eigenvalues are $-3,-3,5$.
To find eigen vectors:
$(A-\lambda I) X=0 \Rightarrow\left[\begin{array}{ccc}-2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & -\lambda\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow(-2-\lambda) x+2 y-3 z=0,2 x+(1-\lambda) y-6 z=0,-x-2 y-\lambda z=0---$
Case(i): When $\lambda=-3$
$x+2 y-3 z=0, \quad 2 x+4 y-6 z=0,-x-2 y+3 z=0$
On solving, $X_{1}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$ and $X_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$
Case(ii): When $\lambda=5$
$-7 x+2 y-3 z=0, \quad 2 x-4 y-6 z=0,-x-2 y-5 z=0$
On solving, $X_{3}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
11.(b). Reduce the Quadratic form $10 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+6 x_{2} x_{3}-10 x_{1} x_{3}-4 x_{1} x_{2}$ to a canonical form through an orthogonal transformation and hence find rank, index, signature and also no-zero set of values for x_{1}, x_{2}, x_{3} (if they exist), that will make the quadratic form zero.

The matrix of the quadratic form is $A=\left[\begin{array}{ccc}10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5\end{array}\right]$
The characteristic equation is $\lambda^{3}-a_{1} \lambda^{2}+a_{2} \lambda-a_{3}=0$
Here $a_{1}=17 \quad a_{2}=42 \quad a_{3}=0$.
The characteristic equation is $\lambda^{3}-17 \lambda^{2}+42 \lambda=0$
The eigenvalues are $\lambda=0,3,14$
To find eigen vectors:
$(A-\lambda I) X=0 \Rightarrow\left[\begin{array}{ccc}10-\lambda & -2 & -5 \\ -2 & 2-\lambda & 3 \\ -5 & 3 & 5-\lambda\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$(10-\lambda) x-2 y-5 z=0,-2 x+(2-\lambda) y+3 z=0,-5 x+3 y+(5-\lambda) z=0$
Case(i): When $\lambda=0$
$10 x-2 y-5 z=0,-2 x+2 y+3 z=0,-5 x+3 y+5 z=0$
On solving, $X_{1}=\left[\begin{array}{c}1 \\ -5 \\ 4\end{array}\right]$
Case(ii): When $\lambda=3$

On solving, $X_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Case(iii): When $\lambda=14$
$-4 x-2 y-5 z=0,-2 x-12 y+3 z=0,-5 x+3 y-9 z=0$
On solving, $X_{3}=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$
The modal matrix is $M=\left[\begin{array}{ccc}1 & 1 & -3 \\ -5 & 1 & 1 \\ 4 & 1 & 2\end{array}\right]$
The normalized modal matrix is $N=\left[\begin{array}{ccc}\frac{1}{\sqrt{42}} & \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} \\ -\frac{5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\ \frac{4}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}}\end{array}\right]$ and $N^{T}=\left[\begin{array}{ccc}\frac{1}{\sqrt{42}} & -\frac{5}{\sqrt{42}} & \frac{4}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{3}{\sqrt{14}} & \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}}\end{array}\right]$
$N^{T} A N=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 14\end{array}\right]$
The quadratic form is $Q=Y\left(N^{T} A N\right) Y^{T}=\left(\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 14\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=0 Y_{1}^{2}+3 y_{2}^{2}+14 y_{3}^{2}$
Rank $=2$, Index $=2$, Signature $=2$, Nature $=$ Positive definite
12.(a) (i). Find the centre, radius and area of the circle given by

$$
x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0, \quad x+2 y+2 z+7=0
$$

The centre of the sphere is $C(-1,1,2)$ and radius $=\sqrt{1+1+4+19}=5$
Let $Q(x, y, z)$ be the centre of the circle. Then Q is the foot of the perpendicular from $C(-1,1,2)$ to the plane $x+2 y+2 z+7=0$

The d.r's of CQ are $(x+1, y-1, z-2)$
The d.r's of the normal to the plane are $1,2,2$.
Then $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$
Any point on CQ is $(r-1,2 r+1,2 r+2)$
If this point lies on $x+2 y+2 z+7=0$, then
$(r-1)+2(2 r+1)+2(2 r+2)+7 \neq 0 \Rightarrow r=-\frac{4}{3}$
\therefore The coordinates of Q are $\left(\frac{-z}{3}, \frac{-5}{3}, \frac{-2}{3}\right)$ and length of $C Q=4$
Radius of the circle is $Q P=\sqrt{C P^{2}-C Q^{2}}=1 \quad$ and Area $=\pi\left(1^{2}\right)=\pi$
(ii). Find the equation of the cone formed by rotating the line $2 x+3 y=6, z=$ 0 about y-axis.

Given $2 x+3 y=6, z=0$. And on y-axis, $x=0$ and $z=0$.
The vertex is at the point $(0,2,0)$.
Then $\frac{x-0}{3}=\frac{y-2}{-2}=\frac{z-0}{0}$
Let $P(x, y, z)$ be any point on the cone. Then the d.c's of AP are
$\frac{x}{\sqrt{x^{2}+(y-2)^{2}+z^{2}}}, \frac{y-2}{\sqrt{x^{2}+(y-2)^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+(y-2)^{2}+z^{2}}}$

The direction cosines of y-axis are $0,1,0$.
$\cos \theta=\frac{y-2}{\sqrt{x^{2}+(y-2)^{2}+z^{2}}}$. But $\cos \theta=\frac{3}{\sqrt{13}} \times 0+\frac{-2}{\sqrt{13}} \times 1+0=\frac{-2}{\sqrt{13}}$
$\therefore \frac{y-2}{\sqrt{x^{2}+(y-2)^{2}+z^{2}}}=\frac{-2}{\sqrt{13}} \Rightarrow 4 x^{2}-9 y^{2}+4 z^{2}+36 y-36=0$.
12 (b)(i). Find the two tangent planes to the sphere $x^{2}+y^{2}+z^{2}-4 x-2 y-6 z+5=0$, which are parallel to the plane $x+4 y+8 z=0$. Find their point of contact.

Centre of the sphere is $(2,1,3)$ and radius $=3$
The equation of the plane parallel it $x+4 y+8 z=0$ is $x+4 y+8 z+k=0$
Length of the \perp^{r} from $(2,1,3)$ to the plane $x+4 y+8 z+k=0$ is
Length of the $\perp^{r}= \pm \frac{2+4+24+k}{\sqrt{1+16+64}}= \pm \frac{30 k}{9}$
The plane will touch the sphere is Radius $=$ Length of $\perp \mathbb{B}= \pm \frac{30 k}{9} \Rightarrow k=-3,-57$
The equation of two tangent planes: $x+4 y+8 z-3-0+2 x+4 y+57=0$
(ii). Find the equation of the right circular cylinder of radius 3 and axis $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-1}$

Given radius $=3$ and axis $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-1}$
$P N^{2}=A P^{2}-A N^{2} \Rightarrow 3^{2}=\left[(x-1)^{2}+(y-3)^{2}+(z-5)^{2}\right.$
$\Rightarrow 5 x^{2}+5 y^{2}+8 z^{2}-8 x y+4 x z+4 y z-6 x=42 y-96 z+225=0$
13.(a)(i). Find the radius of cyrvature at (a,0) on $y^{2}=\frac{a^{3}-x^{3}}{x}$.

Given $y^{2}=a^{3}-x^{3}$
Differentiating with respect to x,

$$
\begin{aligned}
& x .2 y \cdot \frac{d y}{d x}+y^{2}=-3 x^{2} \Rightarrow \frac{d y}{d x}=-\frac{3 x^{2}+y^{2}}{2 x y} \Rightarrow\left(\frac{d y}{d x}\right)_{(a, 0)}=\infty \therefore\left(\frac{d x}{d y}\right)_{(a, 0)}=0 \\
& \frac{d^{2} x}{d y^{2}}=\frac{-2\left(3 x^{2}+y^{2}\right)\left(x+y \frac{d y}{d x}\right)+2 x y\left(6 x \frac{d y}{d x}+2 y\right)}{\left(3 x^{2}+y^{2}\right)^{2}}, \quad\left(\frac{d^{2} x}{d y^{2}}\right)_{(a, 0)}=-\frac{2}{3 a} \\
& \rho=\frac{1}{\left(\frac{\boldsymbol{d}^{2} \boldsymbol{x}}{\boldsymbol{d} \boldsymbol{y}^{2}}\right)}=-\frac{\mathbf{3} \boldsymbol{a}}{\mathbf{2}}=\frac{\mathbf{3 a}}{\mathbf{2}}
\end{aligned}
$$

(ii). Find the equation of circle of curvature of the rectangular hyperbola

$$
x y=12 a t(3,4) .
$$

Given $x y=12 \Rightarrow x \frac{d y}{d x}+y=0 \Rightarrow \frac{d y}{d x}=-\frac{y}{x}$ and $\left(\frac{d y}{d x}\right)_{(3,4)}=-\frac{4}{3}$
$\frac{d^{2} y}{d x^{2}}=\frac{-x \frac{d y}{d x}+y}{x^{2}} \Rightarrow\left(\frac{d^{2} x}{d y^{2}}\right)_{(3,4)}=\frac{8}{9}$
$\rho=\frac{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}{y^{\prime \prime 2}}=\frac{\left(1+\frac{16}{9}\right)^{\frac{3}{2}}}{\frac{8}{9}}=\frac{125}{24}$
$\bar{X}=x-\frac{y_{1}}{y_{2}}\left(1+y_{1}^{2}\right)=3-\frac{\left(-\frac{4}{3}\right)\left(1+\frac{16}{9}\right)}{\frac{8}{9}}=\frac{43}{6}$
$\bar{Y}=x+\frac{1}{y_{2}}\left(1+y_{1}^{2}\right)=4+\frac{\left(1+\frac{16}{9}\right)}{\frac{8}{9}}=\frac{57}{8}$
The circle of curvature is $(x-\bar{X})^{2}+(y-\bar{Y})^{2}=\rho^{2}$
$\left(x-\frac{43}{6}\right)^{2}+\left(y-\frac{57}{8}\right)^{2}=\left(\frac{125}{24}\right)^{2}$
13.(b)(i). Show that the evolute of the parabola $y^{2}=4 a x$ is the curve $27 y^{2}=4(x-2 a)^{3}$.

The parametric equations of the parabola $y^{2}=4 a x$ are $x=a t^{2}, y=2 a t$.
$\frac{d x}{d t}=2 a t, \quad \frac{d y}{d t}=2 a$

$y_{1}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 a}{2 a t}=\frac{1}{t}$
$y_{2}=\frac{d^{2} y}{d x^{2}}=-\frac{1}{t^{2}} \frac{d t}{d x}=-\frac{1}{t^{2}} \frac{1}{2 a t}=-\frac{1}{2 a t^{3}}$
$\bar{X}=a t^{2}-\frac{1 / t}{-\frac{1}{2 a t^{3}}}\left(1+1 / t^{2}\right)=a t^{2}+2 a t^{2}\left(1+\frac{1}{t^{2}}\right)=3 a t^{2}+2 a---(1)$
$\bar{Y}=x+\frac{1}{-\frac{1}{2 a t^{3}}}\left(1+1 / t^{2}\right)=2 a t-2 a t^{3}\left(1+\frac{1}{t^{2}}\right)=-2 a t^{3}---$
The centre of curvature is $\left(3 a t^{2}+2 a,-2 a t^{3}\right)$

Evolute of the curve is the locus of its centre of curvature.
From (1), $t^{2}=\frac{X-2 a}{3 a}=>t^{6}=\left(\frac{X-2 a}{3 a}\right)^{3}$
From (2), $t^{3}=-\frac{Y}{2 a}=>t^{6}=\left(-\frac{Y}{2 a}\right)^{2}$
$\left(\frac{X-2 a}{3 a}\right)^{3}=\left(-\frac{Y}{2 a}\right)^{2}=>4(X-2 a)^{3}=27 a Y^{2}$
$4(x-2 a)^{3}=27 a y^{2}$ is the required evolute of the parabola.
(ii) Find the envelope of the straight line $\frac{x}{a}+\frac{y}{b}=1$, where a and b are connected by the relation $a b=c^{2}, c$ is a constant.

Given $\frac{x}{a}+\frac{y}{b}=1$ and $a b=c^{2} \Rightarrow b=\frac{c^{2}}{a}$
$\frac{x}{a}+\frac{c^{2}}{a b}=1 \Rightarrow a^{2} y-a c^{2}+x c^{2}=0$, which is a quadratid equation in a.
$B^{2}-4 A C=0 \Rightarrow c^{4}-4 y c^{2} x=0 \Rightarrow 4 x y=c^{2}$, whichis the envelope of the given curve.
14.(a)(i). If $z=f(x, y)$ where $x=u^{2}-v^{2}, y=2 \mu($ prove that

$$
\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}=4\left(u^{2}+v^{2}\right)\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)
$$

Solution:
Given $z=f(x, y)$

$$
\begin{aligned}
& x=u^{2}-v^{2} \Rightarrow \frac{\partial x}{\partial u}=2 u \text { and } \frac{\partial x}{\partial v}=-2 v \\
& y=2 u v \Rightarrow \frac{\partial y}{\partial u}=2 v \text { and } \frac{\partial y}{\partial v}=2 u \\
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=\frac{\partial z}{\partial x} 2 u+\frac{\partial z}{\partial y} 2 v \quad \text { and } \frac{\partial}{\partial u}=\frac{\partial}{\partial x} 2 u+\frac{\partial}{\partial y} 2 v \\
& \frac{\partial^{2} z}{\partial u^{2}}=\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\right)=\left(\frac{\partial}{\partial x} 2 u+\frac{\partial}{\partial y} 2 v\right)\left(\frac{\partial z}{\partial x} 2 u+\frac{\partial z}{\partial y} 2 v\right)=4 u^{2} \frac{\partial^{2} z}{\partial x^{2}}+8 u v \frac{\partial^{2} z}{\partial x y}+4 v^{2} \frac{\partial^{2} z}{\partial y^{2}} \\
& \quad \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}=\frac{\partial z}{\partial x}(-2 v)+\frac{\partial z}{\partial y} 2 u \quad \text { and } \frac{\partial}{\partial v}=\frac{\partial}{\partial x}(-2 v)+\frac{\partial}{\partial y} 2 u \\
& \frac{\partial^{2} z}{\partial v^{2}}=\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial v}\right)=\left(\frac{\partial}{\partial x}(-2 v)+\frac{\partial}{\partial y} 2 u\right)\left(\frac{\partial z}{\partial x}(-2 v)+\frac{\partial z}{\partial y} 2 u\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} Z}{\partial v^{2}}=4 v^{2} \frac{\partial^{2} z}{\partial x^{2}}-8 u v \frac{\partial^{2} z}{\partial x y}+4 u^{2} \frac{\partial^{2} z}{\partial y^{2}} \\
& \therefore \frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}=\left(4 u^{2}+4 v^{2}\right)\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)
\end{aligned}
$$

(ii). Find the Taylor's series expansion of $x^{2} y^{2}+2 x^{2} y+3 x y^{2}$ in powers of $(x+2)$ and $(y-1)$ up to third degree terms.

Solution: Here $x=-2, y=1$.
Let $f(x, y)=x^{2} y^{2}+2 x^{2} y+3 x y^{2}$

$f(x, y)=x^{2} y^{2}+2 x^{2} y+3 x y^{2}$	$f(-2,1)=6$
$f_{X}=2 x y^{2}+4 x y+3 y^{2}$	$f_{x}(-2,1)=-9$
$f_{y}=2 x^{2} y+2 x^{2}+6 x y$	$f_{y}(-2,1)=4$
$f_{x x}=2 y^{2}+4 y$	$f_{x x}(-2,1)=6$
$f_{x y}=4 x+4 x+6 y$	$f_{x y}(-2,1)=-10$
$f_{y y}=2 x^{2}+6 x$	$f_{y y}(-2,1)=-4$
$f_{x x x}=0$	
$f_{y y y}=0$	

By Taylor's series
$f(x, y)=f(a, b)+(x-a) f_{x}+(y-b) f_{y}+\frac{1}{2!}\left[(x-a)^{2} f_{x x}+2(x-a)(y-b) f_{x y}\right.$
$\quad+(y-b)-(y y)$
$f(x, y)=6-9(x+2)+(y-1) 4+\frac{1}{2!}\left[(x+2)^{2} 6-20(x+2)(y-1)-4(y-1)^{2}\right.$
14(b)(i). If $x+y+z=u, y+z=u v, z=u v w$, prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$.
Given $z=u v w, y=u v-z=u v-u v w, x=u-z-y=u-u v+u v w-u v w=u-u v$
$\therefore z=u v w \quad y=u v-u v w \quad x=u-u v$

$\frac{\partial(x, y, z)}{\partial(u, v, w)}=$| $\frac{\partial x}{\partial u}$ | $\frac{\partial x}{\partial v}$ | $\frac{\partial x}{\partial w}$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{\partial y}{\partial u}$ | $\frac{\partial y}{\partial v}$ | $\frac{\partial y}{\partial w}=$ | $1-v$ | $-u$ |
| $\frac{\partial z}{\partial u}$ | $\frac{\partial z}{\partial v}$ | $\frac{\partial z}{\partial w}$ | $u-u w$ | 0 |
| | | $u w$ | $u v$ | |$=(1-v)\left(u^{2} v\right)+u\left(u v^{2}\right)=u^{2} v$

(ii). Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.

Given $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$
$\frac{\partial f}{\partial x}=3 x^{2}-3 ; \frac{\partial f}{\partial y}=3 y^{2}-12 ; A=\frac{\partial^{2} f}{\partial x^{2}}=6 x ; C=\frac{\partial^{2} f}{\partial y^{2}}=6 y ; B=\frac{\partial^{2} f}{\partial x \partial y}=0$
For maxima and minima,
$\frac{\partial f}{\partial x}=3 x^{2}-3=0 \Rightarrow x= \pm 1 \quad$ and $\frac{\partial f}{\partial y}=3 y^{2}-12=0 \Rightarrow y= \pm 2$
The points at which the maximum or minimum occurs is $(1,2),(1,-2),(-1,2),(-1,-2)$.
At $(1,2), \quad A C-B^{2}=72>0$ and $A=6>0 . \therefore$ The point $(1,2)$ is a minimum point.
And the minimum value $=1$
At $(1,-2) \&(-1,2), A C-B^{2}=-72<0 . \therefore$ The points $(-1,2) \&(1,-2)$ are saddle points. At $(-1,-2), \quad A C-B^{2}=72>0$ and $A=-6<0 . \therefore$ The point $(-1,-2)$ is a maximum point. And the maximum value $=38$.

15(a)(i). Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ using polarcoordinates.
In polar coordinates $x=r \cos \theta, \quad y=r \sin \theta, x^{2}+y^{2}=r^{2}$ and $d x d y=r d r d \theta$
$\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}}(-2 r) d r d \theta$
$=-\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left[e^{-r^{2}}\right]_{0}^{\infty} d \theta=-\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(0-1) d \theta=\frac{\pi}{4}$
(ii) Change the order of integration in the integral $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$.

$$
\begin{aligned}
& \int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y=\iint_{R_{1}} x y d x d y+\iint_{R_{2}} x y d x d y=\int_{0}^{1} \int_{0}^{\sqrt{y}} x y d x d y+\int_{1}^{2} \int_{0}^{2-y} x y d x d y \\
& \int_{0}^{1} \int_{0}^{\sqrt{y}} x y d x d y=\int_{0}^{1}\left[\frac{x^{2} y}{2}\right]_{0}^{\sqrt{y}} d y=\int_{0}^{1} \frac{y^{2}}{2} d y=\frac{1}{2}\left[\frac{y^{3}}{3}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

$$
\int_{1}^{2} \int_{0}^{2-y} x y d x d y=\int_{1}^{2}\left[\frac{x^{2} y}{2}\right]_{0}^{2-y} d y=\int_{1}^{2} \frac{(2-y)^{2} y}{2} d y=\frac{1}{2}\left[4 \cdot \frac{y^{2}}{2}+\frac{y^{4}}{4}-4 \frac{y^{3}}{3}\right]_{1}^{2}=\frac{5}{24}
$$

$\therefore \int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y=\int_{0}^{1} \int_{0}^{\sqrt{y}} x y d x d y+\int_{1}^{2} \int_{0}^{2-y} x y d x d y=\frac{1}{6}+\frac{5}{24}=\frac{3}{8}$
15(b)(i). Find, by double integration, the area enclosed by the curves

$$
y^{2}=4 a x \text { and } x^{2}=4 a y
$$

Given $y^{2}=4 a x, x^{2}=4 a y \Rightarrow y^{4}=16 a^{2} x^{2}=16 a^{2}(4 a y) \Rightarrow y=4 a$ and $x=4 a$
Limits: $x: \frac{y^{2}}{4 a}$ to $2 \sqrt{a y} \quad y: 0$ to $4 a$
Area $=\iint d x d y=\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{2 \sqrt{a y}} d x d y=\int_{0}^{4 a}[x] \frac{y^{2}}{4 a} d y=\int_{0}^{2 \sqrt{a y}} 2 \sqrt{a y}-\frac{y^{2}}{4 a} d y$
$=\left[\frac{2 a y^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{4 a} \frac{y^{3}}{3}\right]_{0}^{4 a}=\frac{32 a^{2}}{3}-\frac{16 a^{2}}{3}=\frac{16 a^{2}}{3}$

(ii). Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Volume of the ellipsoid $=8 \times$ Volume of the positive octant.
Limits: $x: 0$ to a $y: 0$ tob $\sqrt{1-\frac{x^{2}}{a^{2}}} \quad z: 0$ to $c \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}$

$$
\begin{aligned}
& V=8 \int_{0}^{a} \int_{0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}} \sqrt{\sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}} \int_{0} d z d y d x=8 \int_{0}^{a} \int_{0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}}[z]_{0}^{c} \sqrt{1-\frac{x^{2}}{a^{2}-\frac{y^{2}}{b^{2}}}} d y d x \\
& =8 c \int_{0}^{a} \int_{0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}} \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} d y d x=8 c \int_{0}^{a} \int_{0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}} \sqrt{\frac{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)-y^{2}}{b^{2}}} d y d x \\
& =\frac{8 c}{b} \int_{0}^{a} \frac{y \sqrt{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)-y^{2}}}{2}+\frac{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)}{2} \sin ^{-1}\left(\frac{y}{\sqrt{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)-y^{2}}}\right)_{0}^{a} d x
\end{aligned}
$$

$$
=\frac{8 c}{b} \int_{0}^{a} \frac{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)}{2} \frac{\pi}{2} d x=2 \pi b c \int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right) d x=2 \pi b c\left[x-\frac{x^{3}}{3 a^{2}}\right]_{0}^{a}=\frac{4 \pi a b c}{3}
$$

