INTEGER PROGRAMMING AND GAME THEORY

INTEGER PROGRAMMING

1. Solve the following Integer Programming Problem.

$$
\operatorname{Max} Z=7 x_{1}+9 x_{2}
$$

Subject to

$$
\begin{gathered}
-x_{1}+3 x_{2} \leq 6 \\
7 x_{1}+x_{2} \leq 35 \\
x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{gathered}
$$

Solution:
The problem is rearranged as follows

$$
\operatorname{Max} Z-7 x_{1}-9 x_{2}+0 s_{1}+0 s_{2}=0
$$

Subject to

$$
\begin{aligned}
& -x_{1}+3 x_{2}+s_{1}=6 \\
& 7 x_{1}+x_{2}+s_{2}=35
\end{aligned}
$$

$$
x_{1}, x_{2}, s_{1}, s_{2} \geq 0 \text { and are integers. }
$$

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	-1	3	1	0	6	2
$\boldsymbol{s}_{\mathbf{2}}$	0	7	1	0	1	35	35
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-7	-9	0	0	0	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution	Ratio
$\boldsymbol{x}_{\mathbf{2}}$	0	$-1 / 3$	1	$1 / 3$	0	2	
$\boldsymbol{s}_{\mathbf{2}}$	0	$22 / 3$	0	$-1 / 3$	1	33	4.5
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-10	0	3	0	18	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$7 / 22$	$1 / 22$	$7 / 2$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	$-1 / 22$	$3 / 22$	$9 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$28 / 11$	$15 / 11$	63

INTEGER PROGRAMMING AND GAME THEORY

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.
Since the values of x_{1} and x_{2} are not integers the solution is infeasible.

$$
x_{1}=4+\frac{1}{2}, x_{2}=3+\frac{1}{2}
$$

Since both the decimal values are equal either x_{1} or x_{2} row is taken for further process Here $x_{2}^{t h}$ row is taken for further process

$$
\begin{gathered}
\frac{7}{2}=x_{2}+\frac{7}{22} s_{1}+\frac{1}{22} s_{2} \\
3+\frac{1}{2}=(1+0) x_{2}+\left(0+\frac{7}{22}\right) s_{1}+\left(0+\frac{1}{22}\right) s_{2} \\
-\frac{1}{2}=-\frac{7}{22} s_{1}-\frac{1}{22} s_{2}+s_{3}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$7 / 22$	$1 / 22$	0	$7 / 2$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	$-1 / 22$	$3 / 22$	0	$9 / 2$
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	$-7 / 22$	$-1 / 22$	1	$-1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$28 / 11$	$15 / 11$	0	63
Ratio				8	30		

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	3
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$1 / 7$	$-1 / 7$	$32 / 7$
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	1	$1 / 7$	$-22 / 7$	$11 / 7$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	1	8	59

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.
Since the value of x_{1} is not an integer the solution is infeasible.

$$
x_{1}=4+\frac{4}{7}
$$

$x_{1}^{t h}$ row is taken for further process

$$
\frac{32}{7}=x_{1}+\frac{1}{7} s_{2}-\frac{1}{7} s_{3}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{gathered}
4+\frac{4}{7}=(1+0) x_{1}+\left(0+\frac{1}{7}\right) s_{2}+\left(-1+\frac{6}{7}\right) s_{3} \\
-\frac{4}{7}=-\frac{1}{7} s_{2}-\frac{6}{7} s_{3}+s_{4}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	3
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$1 / 7$	$-1 / 7$	0	$32 / 7$
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	1	$1 / 7$	$-22 / 7$	0	$11 / 7$
$\boldsymbol{s}_{\mathbf{4}}$	0	0	0	0	$-1 / 7$	$-6 / 7$	1	$-4 / 7$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	1	8	0	59
Ratio					7	9.33		

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	3
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	0	0	-1	1	4
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	1	0	-4	1	1
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	0	1	6	-7	4
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	2	7	55

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x_{1} and x_{2} are integers. Therefore optimum solution is reached.

$$
\therefore x_{1}=4, x_{2}=3, \operatorname{Max} Z=55
$$

2. Solve $\operatorname{Max} Z=x+4 y$

Subject to

$$
\begin{gathered}
2 x+4 y \leq 7 \\
5 x+3 y \leq 15
\end{gathered}
$$

where x and y are positive integers.
Solution:
The problem is rearranged as follows

$$
\operatorname{Max} Z-x-4 y+0 s_{1}+0 s_{2}=0
$$

Subject to

$$
\begin{gathered}
2 x+4 y+s_{1}=7 \\
5 x+3 y+s_{2}=15
\end{gathered}
$$

INTEGER PROGRAMMING AND GAME THEORY

$x, y, s_{1}, s_{2} \geq 0$ and are integers.

Basis	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	2	4	1	0	7	1.75
$\boldsymbol{s}_{\mathbf{2}}$	0	5	3	0	1	15	5
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	-4	0	0	0	

Basis	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution
\boldsymbol{y}	0	$1 / 2$	1	$1 / 4$	0	$7 / 4$
$\boldsymbol{s}_{\boldsymbol{2}}$	0	$7 / 2$	0	$-3 / 4$	1	$39 / 4$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	1	0	1	0	7

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.
Since the value of y is not an integer the solution is infeasible.

$$
y=1+\frac{3}{4}, s_{2}=9+\frac{3}{4}
$$

$y^{\text {th }}$ row is taken for further process

$$
\begin{gathered}
\frac{3}{4}=\frac{1}{2} x+y+\frac{1}{4} s_{1} \\
\frac{3}{4}=\left(0+\frac{1}{2}\right) x+(1+0) y+\left(0+\frac{1}{4}\right) s_{1} \\
-\frac{3}{4}=-\frac{1}{2} x-\frac{1}{4} s_{1}+s_{3}
\end{gathered}
$$

Basis	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
\boldsymbol{y}	0	$1 / 2$	1	$1 / 4$	0	0	$7 / 4$
$\boldsymbol{s}_{\mathbf{2}}$	0	$7 / 2$	0	$-3 / 4$	1	0	$39 / 4$
$\boldsymbol{s}_{\mathbf{3}}$	0	$-1 / 2$	0	$-1 / 4$	0	1	$-3 / 4$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	1	0	1	0	0	7
Ratio		2		4			

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
\boldsymbol{y}	0	0	1	0	0	1	1
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	$-5 / 2$	1	7	$9 / 2$
\boldsymbol{x}	0	1	0	$1 / 2$	0	-2	$3 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$1 / 2$	0	$3 / 2$	$11 / 2$

INTEGER PROGRAMMING AND GAME THEORY

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.
Since the values of x is not an integer the solution is infeasible.

$$
\begin{gathered}
x=1+\frac{1}{2} \\
\frac{3}{2}=x+\frac{1}{2} s_{1}-2 s_{3} \\
1+\frac{1}{2}=(1+0) x+\left(0+\frac{1}{2}\right) s_{1}+(-2+0) s_{3} \\
-\frac{1}{2}=-\frac{1}{2} s_{1}+s_{4}
\end{gathered}
$$

Basis	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
\boldsymbol{y}	0	0	1	0	0	1	0	1
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	$-5 / 2$	1	7	0	$9 / 2$
\boldsymbol{x}	0	1	0	$1 / 2$	0	-2	0	$3 / 2$
$\boldsymbol{s}_{\mathbf{4}}$	0	0	0	$-1 / 2$	0	0	1	$-1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$1 / 2$	0	$3 / 2$	0	$11 / 2$
Ratio			1					

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{4}}$	Solution
\boldsymbol{y}	0	0	1	0	0	1	0	1
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	0	1	7	$-5 / 4$	$13 / 4$
\boldsymbol{x}	0	1	0	0	0	-2	1	1
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	1	0	0	$-1 / 2$	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	$3 / 2$	1	5

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x and y are integers. Therefore optimum solution is reached.

$$
\therefore x=1, y=1, \operatorname{Max} Z=5
$$

3. Solve $\operatorname{Max} Z=x_{1}+2 x_{2}$

Subject to

$$
\begin{array}{r}
x_{1}+x_{2} \leq 7 \\
2 x_{1} \leq 11 \\
2 x_{2} \leq 7 \\
x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{array}
$$

INTEGER PROGRAMMING AND GAME THEORY

Solution:

The problem is rearranged as follows

$$
\operatorname{Max} Z-x_{1}-2 x_{2}+0 s_{1}+0 s_{2}+0 s_{3}=0
$$

Subject to

$$
\begin{gathered}
x_{1}+x_{2}+s_{1}=7 \\
2 x_{1}+s_{2}=11 \\
2 x_{2}+s_{3}=7 \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0 \text { and } x_{1}, x_{2} \text { are integers. }
\end{gathered}
$$

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	1	1	1	0	0	7	7
$\boldsymbol{s}_{\mathbf{2}}$	0	2	0	0	1	0	11	
$\boldsymbol{s}_{\mathbf{3}}$	0	0	2	0	0	1	7	3.5
$\boldsymbol{Z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	-2	0	0	0	0	

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	1	0	1	0	$-1 / 2$	$7 / 2$	3.5
$\boldsymbol{s}_{\mathbf{2}}$	0	2	0	0	1	0	11	5.5
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	$1 / 2$	$7 / 2$	
$\boldsymbol{Z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	0	0	0	1	7	

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	1	0	$-1 / 2$	$7 / 2$
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	-2	1	1	4
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	$1 / 2$	$7 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	1	0	$1 / 2$	$21 / 2$

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.

Since the values of x_{1} and x_{2} are not integers the solution is infeasible.

$$
x_{1}=3+\frac{1}{2}, x_{2}=3+\frac{1}{2}
$$

Here $x_{2}^{\text {th }}$ row is taken for further process

$$
\frac{7}{2}=x_{2}+\frac{1}{2} s_{3}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{gathered}
3+\frac{1}{2}=(1+0) x_{2}+\left(0+\frac{1}{2}\right) s_{3} \\
-\frac{1}{2}=-\frac{1}{2} s_{3}+s_{4}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	1	0	$-1 / 2$	0	$7 / 2$
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	-2	1	1	0	4
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	$1 / 2$	0	$7 / 2$
$\boldsymbol{s}_{\mathbf{4}}$	0	0	0	0	0	$-1 / 2$	1	$-1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	1	0	$1 / 2$	0	$21 / 2$
Ratio						0		

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
$\boldsymbol{x}_{\mathbf{1}}$	0	0	0	1	0	0	-1	4
$\boldsymbol{s}_{\mathbf{2}}$	0	1	0	-2	1	0	2	3
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	0	1	3
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	0	1	-2	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	1	0	0	0	10

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x_{1} and x_{2} are integers. Therefore optimum solution is reached.

$$
\therefore x_{1}=4, x_{2}=3, \operatorname{Max} Z=10
$$

4. Solve the following integer programming problem using the cutting plane algorithm.

$$
\operatorname{Max} Z=2 x_{1}+20 x_{2}-10 x_{3}
$$

Subject to the constraints

$$
\begin{aligned}
& 2 x_{1}+20 x_{2}+4 x_{3} \leq 15 \\
& 6 x_{1}+20 x_{2}+4 x_{3}=20
\end{aligned}
$$

$$
x_{1}, x_{2} \text { and } x_{3} \text { are non - negative integers. }
$$

Solution:

The problem is rearranged as follows

$$
\operatorname{Max} Z-2 x_{1}-20 x_{2}+10 x_{3}+0 s_{1}+M A_{1}=0
$$

Subject to

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{aligned}
& 2 x_{1}+20 x_{2}+4 x_{3}+s_{1}=15 \\
& 6 x_{1}+20 x_{2}+4 x_{3}+A_{1}=20
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3}, s_{1}, A_{1} \geq 0 \text { and are integers. }
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	2	20	4	1	0	15
$\boldsymbol{A}_{\mathbf{1}}$	0	6	20	4	0	1	20
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-2	-20	10	0	M	0

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution	Ratio
$\boldsymbol{s}_{\boldsymbol{1}}$	0	2	20	4	1	0	15	0.75
$\boldsymbol{A}_{\boldsymbol{1}}$	0	6	20	4	0	1	20	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	$-2-6 \mathrm{M}$	$-20-20 \mathrm{M}$	$10-4 \mathrm{M}$	0	0	-20 M	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution	Ratio
$\boldsymbol{x}_{\mathbf{2}}$	0	$1 / 10$	1	$1 / 5$	$1 / 20$	0	$3 / 4$	7.5
$\boldsymbol{A}_{\boldsymbol{1}}$	0	4	0	0	-1	1	5	1.25
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-4 M	0	14	$1+\mathrm{M}$	0	$15-5 \mathrm{M}$	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$1 / 5$	$3 / 40$	$-1 / 40$	$5 / 8$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$-1 / 4$	$1 / 4$	$5 / 4$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	14	1	M	15

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{1} and x_{2} are not integers, the solution is infeasible.

$$
x_{1}=\frac{5}{4}=1+\frac{1}{4}, x_{2}=\frac{5}{8}
$$

Here $x_{2}^{\text {th }}$ row is taken for further process since fractional part of x_{2} is greater than the fractional part of x_{1}.

$$
\begin{gathered}
\frac{5}{8}=x_{2}+\frac{1}{5} x_{3}+\frac{3}{40} s_{1}-\frac{1}{40} A_{1} \\
\frac{5}{8}=(1+0) x_{2}+\left(0+\frac{1}{5}\right) x_{3}+\left(0+\frac{3}{40}\right) s_{1}+\left(-1+\frac{39}{40}\right) A_{1}
\end{gathered}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
-\frac{5}{8}=-\frac{1}{5} x_{3}-\frac{3}{40} s_{1}-\frac{39}{40} A_{1}+s_{2}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$1 / 5$	$3 / 40$	0	$-1 / 40$	$5 / 8$
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	0	$-1 / 4$	0	$1 / 4$	$5 / 4$
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	$-1 / 5$	$-3 / 40$	1	$-39 / 40$	$-5 / 8$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	14	1	0	M	15
Ratio				70	13.33			

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	-1	0
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	$2 / 3$	0	$-10 / 3$	$7 / 2$	$10 / 3$
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	$8 / 3$	1	$-40 / 3$	13	$25 / 3$
$\boldsymbol{Z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$34 / 3$	0	$40 / 3$	$-13+\mathrm{M}$	$20 / 3$

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{1} is not an integer, the solution is infeasible.

$$
x_{1}=\frac{10}{3}=3+\frac{1}{3}
$$

Here $x_{1}^{\text {th }}$ row is taken for further process

$$
\begin{gathered}
\frac{10}{3}=x_{1}+\frac{2}{3} x_{3}-\frac{10}{3} s_{2}+\frac{7}{2} A_{1} \\
3+\frac{1}{3}=(1+0) x_{1}+\left(0+\frac{2}{3}\right) x_{3}+\left(-4+\frac{2}{3}\right) s_{2}+\left(3+\frac{1}{2}\right) A_{1} \\
-\frac{1}{3}=-\frac{2}{3} x_{3}-\frac{2}{3} s_{2}-\frac{1}{2} A_{1}+s_{3}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\boldsymbol{2}}$	0	0	1	0	0	1	0	-1	0
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	$2 / 3$	0	$-10 / 3$	0	$7 / 2$	$10 / 3$
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	$8 / 3$	1	$-40 / 3$	0	13	$25 / 3$
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	$-2 / 3$	0	$-2 / 3$	1	$-1 / 2$	$-1 / 3$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$34 / 3$	0	$40 / 3$	0	$-13+\mathrm{M}$	$20 / 3$
Ratio				17		20			

INTEGER PROGRAMMING AND GAME THEORY

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	-1	0
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	0	0	-4	1	3	3
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	0	1	-16	4	5	7
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	1	$-3 / 2$	3	$1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	2	17	$-22 / 3+\mathrm{M}$	1

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{3} is not an integer, the solution is infeasible.

$$
x_{3}=\frac{1}{2}
$$

Here $x_{1}^{\text {th }}$ row is taken for further process

$$
\begin{gathered}
\frac{1}{2}=x_{3}+s_{2}-\frac{3}{2} s_{3}+3 A_{1} \\
\frac{1}{2}=(1+0) x_{3}+(1+0) s_{2}+\left(-2+\frac{1}{2}\right) s_{3}+(3+0) A_{1} \\
-\frac{1}{2}=-\frac{1}{2} s_{3}+s_{4}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	0	-1	0
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	0	0	-4	1	0	3	3
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	0	1	-16	4	0	5	7
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	1	$-3 / 2$	0	3	$1 / 2$
$\boldsymbol{s}_{\boldsymbol{4}}$	0	0	0	0	0	0	$-1 / 2$	1	0	$-1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	2	17	0	$-22 / 3+\mathrm{M}$	1
Ratio							34			

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	0	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	0	-4	0	2	3	2
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	0	1	-16	0	8	5	3
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	1	0	-3	3	2
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	0	0	1	-2	0	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	2	0	34	$-22 / 3+\mathrm{M}$	-16

INTEGER PROGRAMMING AND GAME THEORY

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x_{1}, x_{2} and x_{3} are integers. Therefore optimum solution is reached.

$$
\therefore x_{1}=2, x_{2}=0, x_{3}=2, \operatorname{Max} Z=-16
$$

5. Solve the following integer programming problem by cutting plane algorithm.

$$
\operatorname{Max} Z=x_{1}+x_{2}
$$

Subject to the constraints

$$
\begin{gathered}
x_{1}+2 x_{2} \leq 12 \\
4 x_{1}+3 x_{2} \leq 14
\end{gathered}
$$

x_{1} and x_{2} are non - negative integers.
Solution:
The problem is rearranged as follows

$$
\operatorname{Max} Z-x_{1}-x_{2}+0 s_{1}+0 s_{2}=0
$$

Subject to

$$
\begin{gathered}
x_{1}+2 x_{2}+s_{1}=12 \\
4 x_{1}+3 x_{2}+s_{2}=14 \\
x_{1}, x_{2}, s_{1}, s_{2} \geq 0 \text { and } x_{1}, x_{2} \text { are integers }
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	1	2	1	0	12	6
$\boldsymbol{s}_{\mathbf{2}}$	0	4	3	0	1	14	4.667
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	-1	0	0	0	

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	$-5 / 3$	0	1	$-2 / 3$	$8 / 3$
$\boldsymbol{x}_{\mathbf{2}}$	0	$4 / 3$	1	0	$1 / 3$	$14 / 3$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	$1 / 3$	0	0	$1 / 3$	$14 / 3$

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.
Since the value of x_{2} is not an integer the solution is infeasible.

INTEGER PROGRAMMING AND GAME THEORY

$$
x_{2}=4+\frac{2}{3}
$$

Here $x_{2}^{t h}$ row is taken for further process

$$
\begin{gathered}
\frac{14}{3}=\frac{4}{3} x_{1}+x_{2}+\frac{1}{3} s_{2} \\
4+\frac{2}{3}=\left(1+\frac{1}{3}\right) x_{1}+(1+0) x_{2}+\left(0+\frac{1}{3}\right) s_{2} \\
-\frac{2}{3}=-\frac{1}{3} x_{1}-\frac{1}{3} s_{2}+s_{3}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	$-5 / 3$	0	1	$-2 / 3$	0	$8 / 3$
$\boldsymbol{x}_{\mathbf{2}}$	0	$4 / 3$	1	0	$1 / 3$	0	$14 / 3$
$\boldsymbol{s}_{\mathbf{3}}$	0	$-1 / 3$	0	0	$-1 / 3$	1	$-2 / 3$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	$1 / 3$	0	0	$1 / 3$	0	$14 / 3$
Ratio		1			1		

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	-1	0	1	0	$-2 / 9$	4
$\boldsymbol{x}_{\mathbf{2}}$	0	1	1	0	0	$-1 / 3$	4
$\boldsymbol{s}_{\mathbf{2}}$	0	1	0	0	1	$-1 / 3$	2
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	1	4

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x_{1} and x_{2} are integers. Therefore optimum solution is reached.

$$
\therefore x_{1}=0, x_{2}=4, \operatorname{Max} Z=4
$$

6. Solve the following integer programming problem by Gomory technique.

$$
\operatorname{Max} Z=3 x_{2}
$$

Subject to the constraints

$$
\begin{gathered}
3 x_{1}+2 x_{2} \geq 7 \\
-x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{gathered}
$$

Solution:
The problem is rearranged as follows

INTEGER PROGRAMMING AND GAME THEORY

$$
\operatorname{Max} Z-3 x_{2}+0 s_{1}+0 s_{2}+M A_{1}=0
$$

Subject to

$$
\begin{gathered}
3 x_{1}+2 x_{2}-s_{1}+A_{1}=7 \\
-x_{1}+x_{2}+s_{2}=2
\end{gathered}
$$

$x_{1}, x_{2}, s_{1}, s_{2}, A_{1} \geq 0$ and are integers.

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{A}_{\mathbf{1}}$	0	3	2	-1	0	1	7
$\boldsymbol{s}_{\mathbf{2}}$	0	-1	1	0	1	0	2
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	-3	0	0	M	0

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution	Ratio
$\boldsymbol{A}_{\mathbf{1}}$	0	3	2	-1	0	1	7	$7 / 3$
$\boldsymbol{s}_{\mathbf{2}}$	0	-1	1	0	1	0	2	
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-3 M	$-3-2 \mathrm{M}$	M	0	0	-7 M	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution	Ratio
$\boldsymbol{x}_{\mathbf{1}}$	0	1	$2 / 3$	$-1 / 3$	0	$1 / 3$	$7 / 3$	3.5
$\boldsymbol{s}_{\mathbf{2}}$	0	0	$5 / 3$	$-1 / 3$	1	$1 / 3$	$13 / 3$	2.6
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	-3	0	0	M	0	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	$-1 / 5$	$-2 / 5$	$1 / 5$	$3 / 5$
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$-1 / 5$	$3 / 5$	$1 / 5$	$13 / 5$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$-3 / 5$	$9 / 5$	$3 / 5+\mathrm{M}$	$39 / 5$

Since all the values in the pivot column is negative, the solution is unbounded.
7. Solve the following integer programming problem using the cutting plane algorithm.

$$
\operatorname{Max} Z=2 x_{1}+20 x_{2}+4 x_{3}
$$

Subject to the constraints

$$
\begin{aligned}
& 2 x_{1}+20 x_{2}+4 x_{3} \leq 15 \\
& 6 x_{1}+20 x_{2}+4 x_{3}=20
\end{aligned}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
x_{1}, x_{2} \text { and } x_{3} \text { are non - negative integers. }
$$

Solution:

The problem is rearranged as follows

$$
\operatorname{Max} Z-2 x_{1}-20 x_{2}-4 x_{3}+0 s_{1}+M A_{1}=0
$$

Subject to

$$
\begin{gathered}
2 x_{1}+20 x_{2}+4 x_{3}+s_{1}=15 \\
6 x_{1}+20 x_{2}+4 x_{3}+A_{1}=20 \\
x_{1}, x_{2}, x_{3}, s_{1}, A_{1} \geq 0 \text { and are integers. }
\end{gathered}
$$

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	2	20	4	1	0	15
$\boldsymbol{A}_{\boldsymbol{1}}$	0	6	20	4	0	1	20
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-2	-20	-4	0	M	0

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution	Ratio
$\boldsymbol{s}_{\boldsymbol{1}}$	0	2	20	4	1	0	15	0.75
$\boldsymbol{A}_{\boldsymbol{1}}$	0	6	20	4	0	1	20	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	$-2-6 \mathrm{M}$	$-20-20 \mathrm{M}$	$-4-4 \mathrm{M}$	0	0	-20 M	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{1}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution	Ratio
$\boldsymbol{x}_{\mathbf{2}}$	0	$1 / 10$	1	$1 / 5$	$1 / 20$	0	$3 / 4$	7.5
$\boldsymbol{A}_{\boldsymbol{1}}$	0	4	0	0	-1	1	5	1.25
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-4 M	0	0	$1+\mathrm{M}$	0	$15-5 \mathrm{M}$	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$1 / 5$	$3 / 40$	$-1 / 40$	$5 / 8$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$-1 / 4$	$1 / 4$	$5 / 4$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	1	M	15

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{1} and x_{2} are not integers, the solution is infeasible.

$$
x_{1}=\frac{5}{4}=1+\frac{1}{4}, x_{2}=\frac{5}{8}
$$

INTEGER PROGRAMMING AND GAME THEORY

Here $x_{2}^{t h}$ row is taken for further process since fractional part of x_{2} is greater than the fractional part of x_{1}.

$$
\begin{gathered}
\frac{5}{8}=x_{2}+\frac{1}{5} x_{3}+\frac{3}{40} s_{1}-\frac{1}{40} A_{1} \\
\frac{5}{8}=(1+0) x_{2}+\left(0+\frac{1}{5}\right) x_{3}+\left(0+\frac{3}{40}\right) s_{1}+\left(-1+\frac{39}{40}\right) A_{1} \\
-\frac{5}{8}=-\frac{1}{5} x_{3}-\frac{3}{40} s_{1}-\frac{39}{40} A_{1}+s_{2}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	$1 / 5$	$3 / 40$	0	$-1 / 40$	$5 / 8$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$-1 / 4$	0	$1 / 4$	$5 / 4$
$\boldsymbol{s}_{\mathbf{2}}$	0	0	0	$-1 / 5$	$-3 / 40$	1	$-39 / 40$	$-5 / 8$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	1	0	M	15
Ratio				70	13.33			

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\boldsymbol{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution	Ratio
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	-1	0	
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	$2 / 3$	0	$-10 / 3$	$7 / 2$	$10 / 3$	5
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	$8 / 3$	1	$-40 / 3$	13	$25 / 3$	3.125
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	$-8 / 3$	0	$40 / 3$	$-13+\mathrm{M}$	$20 / 3$	

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$-1 / 4$	0	$1 / 4$	$5 / 4$
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	$3 / 8$	-5	$39 / 8$	$25 / 8$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	1	0	M	15

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{1} and x_{3} are not integers, the solution is infeasible.

$$
x_{1}=\frac{5}{4}=1+\frac{1}{4}, x_{3}=\frac{25}{8}=3+\frac{1}{8}
$$

Here $x_{1}^{\text {th }}$ row is taken for further process since fractional part of x_{1} is greater than the fractional part of x_{2}.

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{gathered}
\frac{5}{4}=x_{1}-\frac{1}{4} s_{1}+\frac{1}{4} A_{1} \\
1+\frac{1}{4}=(1+0) x_{1}+\left(-1+\frac{3}{4}\right) s_{1}+\left(0+\frac{1}{4}\right) A_{1} \\
-\frac{1}{4}=-\frac{3}{4} s_{1}-\frac{1}{4} A_{1}+s_{3}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$-1 / 4$	0	0	$1 / 4$	$5 / 4$
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	$3 / 8$	-5	0	$39 / 8$	$25 / 8$
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	$-3 / 4$	0	1	$-1 / 4$	$-1 / 4$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	1	0	0	M	15
Ratio					1.33				

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	-1	0
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	0	0	0	$-1 / 3$	$1 / 3$	$4 / 3$
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	-5	$1 / 2$	$19 / 4$	3
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	0	1	0	$-4 / 3$	$1 / 3$	$1 / 3$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	0	$4 / 3$	$-1 / 3+\mathrm{M}$	$44 / 3$

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{1} is not an integer, the solution is infeasible.

$$
x_{3}=\frac{4}{3}
$$

Here $x_{1}^{t h}$ row is taken for further process

$$
\begin{gathered}
\frac{4}{3}=x_{1}-\frac{1}{3} s_{3}+\frac{1}{3} A_{1} \\
1+\frac{1}{3}=(1+0) x_{1}+\left(-1+\frac{2}{3}\right) s_{3}+\left(0+\frac{1}{3}\right) A_{1} \\
-\frac{1}{3}=-\frac{2}{3} s_{3}-\frac{1}{3} A_{1}+s_{4}
\end{gathered}
$$

INTEGER PROGRAMMING AND GAME THEORY

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	0	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	0	0	$-1 / 3$	0	$1 / 3$	$4 / 3$
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	-5	$1 / 2$	0	$19 / 4$	3
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	0	1	0	$-4 / 3$	0	$1 / 3$	$1 / 3$
$\boldsymbol{s}_{\mathbf{4}}$	0	0	0	0	0	0	$-2 / 3$	1	$-1 / 3$	$-1 / 3$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	0	$4 / 3$	0	$-1 / 3+\mathrm{M}$	$44 / 3$
Ratio							2			

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\boldsymbol{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	0	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	0	0	0	$-1 / 2$	$1 / 2$	$3 / 2$
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	-5	0	$3 / 4$	$9 / 2$	$11 / 4$
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	0	1	0	0	-2	1	1
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	0	0	1	$-3 / 2$	$1 / 2$	$1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	0	0	2	$-1+\mathrm{M}$	14

Since all the values in the row $z_{j}-c_{i j}$ are ≥ 0 and artificial variable is not present in the basis. Since x_{1} and x_{3} are not integers, the solution is infeasible.

$$
x_{1}=\frac{3}{2}=1+\frac{1}{2}, x_{3}=\frac{11}{4}=2+\frac{3}{4}
$$

Here $x_{1}^{t h}$ row is taken for further process since fractional part of x_{3} is greater than the fractional part of x_{1}.

$$
\begin{gathered}
\frac{11}{4}=x_{3}-5 s_{2}+\frac{3}{4} s_{4}+\frac{9}{2} A_{1} \\
2+\frac{3}{4}=(1+0) x_{3}+(-5+0) s_{2}+\left(0+\frac{3}{4}\right) s_{4}+\left(4+\frac{1}{2}\right) A_{1} \\
-\frac{3}{4}=-\frac{3}{4} s_{4}-\frac{1}{2} A_{1}+s_{5}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	$\boldsymbol{s}_{\mathbf{5}}$	$\boldsymbol{A}_{\mathbf{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	0	0	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	0	0	0	$-1 / 2$	0	$1 / 2$	$3 / 2$
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	-5	0	$3 / 4$	0	$9 / 2$	$11 / 4$
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	0	1	0	0	-2	0	1	1
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	0	0	1	$-3 / 2$	0	$1 / 2$	$1 / 2$
$\boldsymbol{s}_{\mathbf{5}}$	0	0	0	0	0	0	0	$-3 / 4$	1	$-1 / 2$	$-3 / 4$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	0	0	2	0	$-1+\mathrm{M}$	14
Ratio								2.67			

INTEGER PROGRAMMING AND GAME THEORY

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\boldsymbol{4}}$	$\boldsymbol{s}_{\mathbf{5}}$	$\boldsymbol{A}_{\boldsymbol{1}}$	Solution
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	0	0	0	-1	0
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	0	0	0	0	$-2 / 3$	$5 / 6$	2
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	0	-5	0	0	1	4	2
$\boldsymbol{s}_{\boldsymbol{1}}$	0	0	0	0	1	0	0	0	$-8 / 3$	$7 / 3$	3
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	0	0	1	0	-2	$3 / 2$	2
$\boldsymbol{s}_{\mathbf{4}}$	0	0	0	0	0	0	0	1	$-4 / 3$	$2 / 3$	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0	0	0	0	$8 / 3$	$-7 / 3+\mathrm{M}$	12

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x_{1}, x_{2} and x_{3} are integers. Therefore optimum solution is reached.

$$
\therefore x_{1}=2, x_{2}=0, x_{3}=2, \operatorname{Max} Z=12
$$

8. Solve $\operatorname{Max} Z=x_{1}+2 x_{2}$

Subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 7 \\
2 x_{1} \leq 4 \\
2 x_{2} \leq 7
\end{gathered}
$$

$$
x_{1}, x_{2} \geq 0 \text { and are integers. }
$$

Solution:

The problem is rearranged as follows

$$
\operatorname{Max} Z-x_{1}-2 x_{2}+0 s_{1}+0 s_{2}+0 s_{3}=0
$$

Subject to

$$
\begin{gathered}
x_{1}+x_{2}+s_{1}=7 \\
2 x_{1}+s_{2}=4 \\
2 x_{2}+s_{3}=7 \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0 \text { and } x_{1}, x_{2} \text { are integers. }
\end{gathered}
$$

INTEGER PROGRAMMING AND GAME THEORY

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	1	1	1	0	0	7	7
$\boldsymbol{s}_{\mathbf{2}}$	0	2	0	0	1	0	4	
$\boldsymbol{s}_{\mathbf{3}}$	0	0	2	0	0	1	7	3.5
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	-2	0	0	0	0	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	1	0	1	0	$-1 / 2$	$7 / 2$	3.5
$\boldsymbol{s}_{\mathbf{2}}$	0	2	0	0	1	0	4	2
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	$1 / 2$	$7 / 2$	
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	0	0	0	1	7	

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	1	$-1 / 2$	$-1 / 2$	$3 / 2$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$1 / 2$	0	2
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	$1 / 2$	$7 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	$1 / 2$	1	9

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0. Therefore solution is reached.
Since the value of x_{2} is not an integer the solution is infeasible.

$$
x_{2}=3+\frac{1}{2}
$$

Here $x_{2}^{t h}$ row is taken for further process

$$
\begin{gathered}
\frac{7}{2}=x_{2}+\frac{1}{2} s_{3} \\
3+\frac{1}{2}=(1+0) x_{2}+\left(0+\frac{1}{2}\right) s_{3} \\
-\frac{1}{2}=-\frac{1}{2} s_{3}+s_{4}
\end{gathered}
$$

Basis	\boldsymbol{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	1	$-1 / 2$	$-1 / 2$	0	$3 / 2$
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$1 / 2$	0	0	2
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	$1 / 2$	0	$7 / 2$
$\boldsymbol{s}_{\mathbf{4}}$	0	0	0	0	0	$-1 / 2$	1	$-1 / 2$
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	$1 / 2$	1	0	9
Ratio						2		

Now solving the problem by dual simplex method, we get

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{4}}$	Solution
$\boldsymbol{s}_{\mathbf{1}}$	0	0	0	1	$-1 / 2$	0	-1	2
$\boldsymbol{x}_{\mathbf{1}}$	0	1	0	0	$1 / 2$	0	0	2
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	0	1	3
$\boldsymbol{s}_{\mathbf{3}}$	0	0	0	0	0	1	-2	1
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	$1 / 2$	0	0	8

Since all the values in the $z_{j}-c_{j}$ row is ≥ 0 and x_{1} and x_{2} are integers. Therefore optimum solution is reached.

$$
\therefore x_{1}=2, x_{2}=3, \operatorname{Max} Z=8
$$

GAME THEORY

1. Reduce the following game by dominance and find the game value:

	Player B				
		I	II	III	IV
Player A	I	3	2	4	0
	II	3	4	2	4
	III	4	2	4	0
	IV	0	4	0	8

Solution:

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
The values of Row III is greater than the values of Row I. \therefore Row I is dominated by Row III, so eliminate Row I.

INTEGER PROGRAMMING AND GAME THEORY

	Player B				
		I	II	III	IV
Player A	II	3	4	2	4
	III	4	2	4	0
	IV	0	4	0	8

The values of Column III is lesser than the values of Column I. \therefore Column I is dominated by Column III, so eliminate Column I.

		Player B	
		II	III
Player A	II	4	2
	III	2	4
	IV	4	0

Now the average of Column III and Column IV is less than Column II. \therefore Column II is dominated by Columns III and IV respectively, so eliminate Column II.

	Player B		
		III	IV
Player A	II	2	4
	III	4	0
	IV	0	8

Now the average of Row III and Row IV is equal to Row II. \therefore Row II is dominated by Rows III and IV respectively, so eliminate Row II.

	Player B		
Player A	III	IV	
	IV	4	0
		0	8

Now we can solve this 2×2 by short cut method.

$$
\begin{aligned}
& \\
& p_{3}=\frac{8}{12}=\frac{2}{3}, p_{4}=\frac{4}{12}=\frac{1}{3} \\
& q_{3}=\frac{8}{12}=\frac{2}{3}, q_{4}=\frac{4}{12}=\frac{1}{3} \\
& \text { Strategy for game } A \text { is }\left(\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right)
\end{aligned}
$$

INTEGER PROGRAMMING AND GAME THEORY

Strategy for game B is $\left(\begin{array}{llll}q_{1} & q_{2} & q_{3} & q_{4}\end{array}\right)=\left(\begin{array}{llll}0 & 0 & \frac{2}{3} & \frac{1}{3}\end{array}\right)$
Value of the game $V=a q_{1}+b q_{2}=4 \times \frac{2}{3}+0 \times \frac{1}{3}=\frac{8}{3}$
2. Solve the following game graphically.

Player A	Player B	
	-3	1
	5	3
	6	-1
	1	4
2	2	
	0	-5

Solution:

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
The values of Row 2 are greater than the values of Rows 1,5 and 6 . \therefore Rows 1,5 and 6 are dominated by Row 2 , so eliminate Rows 1,5 and 6.

Player B

Player A

	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{2}$	
$\mathbf{3}$	$\mathbf{5}$	3
$\mathbf{4}$	-1	
1	4	

INTEGER PROGRAMMING AND GAME THEORY

\therefore From the graph Minimax value involves strategies A_{2} and A_{4}. Therefore eliminating Rows except strategies A_{2} and A_{4} to make it a 2×2 Game.

Now we can solve this 2×2 by short cut method.

Player B

Player A

$$
\begin{aligned}
& \begin{array}{l|ll}
& \begin{array}{ll}
\mathbf{1} & \mathbf{2} \\
\mathbf{2} & \begin{array}{ll}
5 & 3 \\
1 & 4 \\
\mathbf{4} & 3
\end{array} \\
\hline 1 & 4
\end{array}
\end{array} \\
& p_{2}=\frac{3}{5}, p_{4}=\frac{2}{5} \\
& q_{1}=\frac{1}{5}, q_{2}=\frac{4}{5}
\end{aligned}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{aligned}
& \text { Strategy for game } A \text { is }\left(\begin{array}{llllll}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6}
\end{array}\right)=\left(\begin{array}{llllll}
0 & \frac{3}{5} & 0 & \frac{2}{5} & 0 & 0
\end{array}\right) \\
& \text { Strategy for game } B \text { is }\left(\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{5} & \frac{4}{5}
\end{array}\right) \\
& \text { Value of the game } V=a q_{1}+b q_{2}=5 \times \frac{1}{5}+3 \times \frac{4}{5}=\frac{17}{5}
\end{aligned}
$$

3. Solve the following game whose payoff matrix is given below.

	Player \boldsymbol{B}				
		$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
Player A	$\boldsymbol{A}_{\mathbf{1}}$	5	-10	9	0
	$\boldsymbol{A}_{\mathbf{2}}$	6	7	8	1
	$\boldsymbol{A}_{\mathbf{3}}$	8	7	15	2
	$\boldsymbol{A}_{\mathbf{4}}$	3	4	-1	4

Solution:
Player B

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
The values of Row A_{3} is greater than the values of Rows A_{1} and $A_{2} \therefore$ Rows A_{1} and A_{2} are dominated by Row A_{3}, so eliminate the Rows A_{1} and A_{2}.

	Player B				
		$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
Player A	$\boldsymbol{A}_{\mathbf{3}}$	8	7	15	2
	$\boldsymbol{A}_{\mathbf{4}}$	3	4	-1	4

INTEGER PROGRAMMING AND GAME THEORY

The values of Column B_{4} is lesser than the values of Column $B_{2} . \therefore$ Column B_{2} is dominated by Column B_{4}, so eliminate Column B_{2}.

Player B

		$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
Player A	$\boldsymbol{A}_{\mathbf{3}}$	8	15	2
	$\boldsymbol{A}_{\mathbf{4}}$	3	-1	4

Further we cannot reduce by using dominance rule. Since it is 2×3 Game we can solve using Graphical method to reduce it to 2×2 Game.

\therefore From the graph Maximin value involves strategies B_{3} and B_{4}. Therefore eliminating columns except strategies B_{3} and B_{4} to make it a 2×2 Game.

Player B

Player A

	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
$\boldsymbol{A}_{\mathbf{3}}$	15	2
$\boldsymbol{A}_{\mathbf{4}}$	-1	4

Now we can solve this 2×2 by short cut method.

INTEGER PROGRAMMING AND GAME THEORY

Player B

Player A

	Player B					
				$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$	
$\boldsymbol{A}_{\mathbf{3}}$	15	2				
$\boldsymbol{A}_{\mathbf{4}}$	5					
	-1	4				
	$\mathbf{2}$	13				

5
13

$$
\begin{gathered}
p_{3}=\frac{5}{18}, p_{4}=\frac{13}{18} \\
q_{3}=\frac{2}{18}=\frac{1}{9}, q_{4}=\frac{16}{18}=\frac{8}{9}
\end{gathered}
$$

Strategy for game A is $\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4}\end{array}\right)=\left(\begin{array}{llll}0 & 0 & \frac{5}{18} & \frac{13}{18}\end{array}\right)$
Strategy for game B is $\left(\begin{array}{llll}q_{1} & q_{2} & q_{3} & q_{4}\end{array}\right)=\left(\begin{array}{llll}0 & 0 & \frac{1}{9} & \frac{8}{9}\end{array}\right)$
Value of the game $V=a q_{1}+b q_{2}=15 \times \frac{1}{9}+2 \times \frac{8}{9}=\frac{31}{9}$
4. Use graphical method in solving the following game and find the optimal strategies of player A and Player B and the value of the game.

Solution:
Player B
Player A

$$
\begin{aligned}
& \quad \begin{array}{cccc|}
& \boldsymbol{B}_{\mathbf{1}} & \boldsymbol{B}_{\mathbf{2}} & \boldsymbol{B}_{\mathbf{3}} \\
\boldsymbol{A}_{\mathbf{1}} & \boldsymbol{B}_{\mathbf{4}} & \text { Row } \mathbf{~ M i n} \\
\boldsymbol{A}_{\mathbf{2}} & 2 & 2 & 3 \\
\hline & -2 & -2 \\
4 & 3 & 2 & 6 \\
\text { Column Max } & 4 & 3 & 3 \\
\hline & 6 \\
\text { Maximin }=\text { Max Row Min }=2
\end{array} \\
& \text { Minimax }=\text { Min Column Max }=3 \\
& \quad \text { Maximin } \neq \text { Minimax }
\end{aligned}
$$

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
The values of Column B_{2} is lesser than the values of Column $B_{1} \therefore$ Column B_{1} is dominated by Column B_{2}, so eliminate the Column B_{1}.

INTEGER PROGRAMMING AND GAME THEORY

Player B

		$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
Player A	$\boldsymbol{A}_{\mathbf{1}}$	2	3	-2
	$\boldsymbol{A}_{\mathbf{2}}$	3	2	6

Further we cannot reduce by using dominance rule. Since it is 2×3 Game we can solve using Graphical method to reduce it to 2×2 Game.

\therefore From the graph Maximin value involves strategies B_{3} and B_{4}. Therefore eliminating columns except strategies B_{3} and B_{4} to make it a 2×2 Game.

Now we can solve this 2×2 by short cut method.

INTEGER PROGRAMMING AND GAME THEORY

> Player B
> Player A
> Strategy for game A is $\left(\begin{array}{ll}p_{1} & p_{2}\end{array}\right)=\left(\begin{array}{ll}\frac{4}{9} & \frac{5}{9}\end{array}\right)$
> Strategy for game B is $\left(\begin{array}{llll}q_{1} & q_{2} & q_{3} & q_{4}\end{array}\right)=\left(\begin{array}{llll}0 & 0 & \frac{8}{9} & \frac{1}{9}\end{array}\right)$
> Value of the game $V=a q_{1}+b q_{2}=3 \times \frac{8}{9}-2 \times \frac{1}{9}=\frac{22}{9}$
5. Two breakfast food manufactures, $A B C$ and $X Y Z$ are competing for an increased market share. The payoff matrix, shown in the following table, describes the increase in market share for ABC and decrease in market share of XYZ.

			XYZ		
		GC	DP	MPS	IA
	Give Coupons (GC)	2	-2	4	1
ABC	Decrease Price (DP)	6	1	12	3
	Maintain Present Strategy (MPS)	-3	2	0	6
	Increase Advertising (IA)	2	-3	7	11

Determine optimal strategies for both the manufacturing and the value of the game.
Solution:

Player XYZ

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.

INTEGER PROGRAMMING AND GAME THEORY

The values of Row DP are greater than the values of Row GC. \therefore Row GC is dominated by Row DP, so eliminate Row GC.

	Player XYZ				
		GC	DP	MPS	IA
Player ABC	DP	6	1	12	3
	MPS	-3	2	0	6
	IA	2	-3	7	11

The values of Column GC are lesser than the values of Column MPS. \therefore Column MPS is dominated by Column GC, so eliminate Column MPS.

	Player XYZ			
		GC	DP	IA
Player ABC	DP	6	1	3
	MPS	-3	2	6
	IA	2	-3	11

The values of Column DP are lesser than the values of Column IA. \therefore Column IA is dominated by Column DP, so eliminate Column IA.

The values of Row DP are greater than the values of Row IA. \therefore Row IA is dominated by Row DP, so eliminate Row IA.

Player XYZ

		GC	DP
Player ABC	DP	6	1
	MPS	-3	2

Now we can solve this 2×2 by short cut method.

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
p_{2}=\frac{5}{10}=\frac{1}{2}, p_{3}=\frac{5}{10}=\frac{1}{2} \\
\qquad q_{1}=\frac{1}{10}, q_{2}=\frac{9}{10} \\
\text { Strategy for game } A \text { is }\left(\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right)=\left(\begin{array}{llll}
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \\
\text { Strategy for game } B \text { is }\left(\begin{array}{llll}
q_{1} & q_{2} & q_{3} & q_{4}
\end{array}\right)=\left(\begin{array}{llll}
\frac{1}{10} & \frac{9}{10} & 0 & 0
\end{array}\right) \\
\text { Value of the game } V=a q_{1}+b q_{2}=6 \times \frac{1}{10}+1 \times \frac{9}{10}=\frac{15}{10}
\end{array}\right)
\end{aligned}
$$

6. Players A and B play a game in which each has three coins Re. 1, Rs. 2 and Rs. 5. Each select a coin without the knowledge of other's choice. If the sum of the coins is an odd amount, A wins B's coin, if the sum is even B wins A's coin. Find the best strategy for each player and value of the game.

Solution:

The payoff matrix is
Player B

Player B

Player A

Column Max

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$
$\mathbf{1}$			
$\mathbf{2}$			
$\mathbf{5}$	-1 2 -1 1 -2 5 -5 2		
	1	-5	

Row Min
-1
-2
-5

$$
\begin{gathered}
\text { Maximin }=\text { Max Row Min }=-1 \\
\text { Minimax }=\text { Min Column Max }=1 \\
\text { Maximin } \neq \text { Minimax }
\end{gathered}
$$

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
The values of Column 1 is lesser than the values of Column $5 \therefore$ Column 5 is dominated by Column 1 , so eliminate the Column 5.

INTEGER PROGRAMMING AND GAME THEORY

Player B

Player A

The values of Row 1 is greater than the values of Row $5 \therefore$ Row 5 is dominated by Row 1 , so eliminate the Row 5.

Player B

Player A

$\mathbf{1}$	$\mathbf{2}$
-1	2
1	-2

Now we can solve this 2×2 by short cut method.
Player B
Player A
$p_{1}=\frac{3}{6}=\frac{1}{2}, p_{2}=\frac{3}{6}=\frac{1}{2}$
$q_{1}=\frac{4}{6}=\frac{2}{3}, q_{2}=\frac{2}{6}=\frac{1}{3}$
Strategy for game A is $\left(\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right)=\left(\begin{array}{lll}\frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$
Strategy for game B is $\left(\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right)=\left(\begin{array}{lll}\frac{2}{3} & \frac{1}{3} & 0\end{array}\right)$
Value of the game $V=a q_{1}+b q_{2}=-1 \times \frac{2}{3}+2 \times \frac{1}{3}=0$
7. Players A and B play a game in which each has three coins 5 paise, 10 paise and 20 paise. Each selects a coin without the knowledge of other's choice. If the sum of the coins is an odd amount, A wins B's coin, if the sum is even B wins A's coin. Find the best strategy for each player and value of the game.

Solution: The payoff matrix is

	Player B			
		$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$
Player A	$\mathbf{5}$	-5	10	20
	$\mathbf{1 0}$	5	-10	-10
	$\mathbf{2 0}$	-5	-20	-20

INTEGER PROGRAMMING AND GAME THEORY

			B B		
		5	10	20	Row Min
layer A	5	-5	10	20	-5
Player	10	5	- 10	-10	-10
	20	-5	-20	-20	-20
Column Max		5	10	20	

$$
\begin{gathered}
\text { Maximin }=\text { Max Row Min }=-5 \\
\text { Minimax }=\text { Min Column Max }=5 \\
\text { Maximin } \neq \text { Minimax }
\end{gathered}
$$

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
The values of Column 10 is lesser than the values of Column $20 \therefore$ Column 20 is dominated by Column10, so eliminate the Column 20

Player B

Player A

$\mathbf{5}$	$\mathbf{1 0}$
-5	10
5	-10
-5	-20

The values of Row 5 is greater than the values of Row $20 \therefore$ Row 20 is dominated by Row 5 , so eliminate the Row 20.

Player B

Player A

$\mathbf{5}$	$\mathbf{1 0}$
-5	10
5	-10

Now we can solve this 2×2 by short cut method.

$$
\begin{aligned}
& \text { Player A } \\
& p_{1}=\frac{15}{30}=\frac{1}{2}, p_{2}=\frac{15}{30}=\frac{1}{2} \\
& q_{1}=\frac{20}{30}=\frac{2}{3}, q_{2}=\frac{10}{30}=\frac{1}{3}
\end{aligned}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{aligned}
& \text { Strategy for game } A \text { is }\left(\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right)=\left(\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \\
& \text { Strategy for game } B \text { is }\left(\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right)=\left(\begin{array}{lll}
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right) \\
& \text { Value of the game } V=a q_{1}+b q_{2}=-5 \times \frac{2}{3}+10 \times \frac{1}{3}=0
\end{aligned}
$$

8. Find the value of the game by using Linear Programming A_{1}, A_{2}, A_{3} are $A^{\prime} \mathrm{s}$ strategy, B_{1}, B_{2}, B_{3} are B^{\prime} 's strategy

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$
$\boldsymbol{A}_{\mathbf{1}}$	3	-1	-3
$\boldsymbol{A}_{\mathbf{2}}$	-2	4	-1
$\boldsymbol{A}_{\mathbf{3}}$	-5	-6	2

Solution:

	B_{1}	B_{2}	B_{3}	Row Min
A_{1}	3	-1	-3	-3
A_{2}	-2	4	-1	-2
A_{3}	-5	-6	2	-6
Column Max 304				
Maximin $=$ Max Row Min $=-2$				
Minimax $=$ Min Column Max $=2$				

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
Here we cannot able to reduce using dominance rule. To make all the values of payoff matrix positive add all the values of payoff matrix with the absolute value of the most negative value plus one.

Here most negative value is -6 . The absolute value of -6 is 6 so add all values with 6+1=7

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$
$\boldsymbol{A}_{\mathbf{1}}$	10	6	4
$\boldsymbol{A}_{\mathbf{2}}$	5	11	6
$\boldsymbol{A}_{\mathbf{3}}$	2	1	9

Now the linear programming problem for player B is given by

$$
\operatorname{Max} Z=y_{1}+y_{2}+y_{3}
$$

Subject to

$$
\begin{aligned}
& 10 y_{1}+6 y_{2}+4 y_{3} \leq 1 \\
& 5 y_{1}+11 y_{2}+6 y_{3} \leq 1
\end{aligned}
$$

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{gathered}
2 y_{1}+y_{2}+9 y_{3} \leq 1 \\
y_{1}, y_{2}, y_{3} \geq 0 \\
\text { where } y_{1}=\frac{q_{1}}{V}, y_{2}=\frac{q_{2}}{V}, y_{3}=\frac{q_{3}}{V} \text { and } Z=\frac{1}{V}
\end{gathered}
$$

The above LPP is rearranged as follows

$$
\operatorname{Max} Z-y_{1}-y_{2}-y_{3}=0
$$

Subject to

$$
\begin{gathered}
10 y_{1}+6 y_{2}+4 y_{3}+s_{1}=1 \\
5 y_{1}+11 y_{2}+6 y_{3}+s_{2}=1 \\
2 y_{1}+y_{2}+9 y_{3}+s_{3}=1 \\
y_{1}, y_{2}, y_{3}, s_{1}, s_{2}, s_{3} \geq 0
\end{gathered}
$$

Basis	\boldsymbol{Z}	$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{2}}$	$\boldsymbol{y}_{\mathbf{3}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{3}}$	Solution	Ratio
$\boldsymbol{s}_{\mathbf{1}}$	0	10	6	4	1	0	0	1	0.1
$\boldsymbol{s}_{\mathbf{2}}$	0	5	11	6	0	1	0	1	0.2
$\boldsymbol{s}_{\mathbf{3}}$	0	2	1	9	0	0	1	1	0.5
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	-1	-1	-1	0	0	0	0	
$\boldsymbol{y}_{\mathbf{1}}$	0	1	0.6	0.4	0.1	0	0	0.1	0.25
$\boldsymbol{s}_{\boldsymbol{2}}$	0	0	8	4	-0.5	1	0	0.5	0.125
$\boldsymbol{s}_{\mathbf{3}}$	0	0	-0.2	8.2	-0.2	0	1	0.8	0.098
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	-0.4	-0.6	0.1	0	0	0.1	
$\boldsymbol{y}_{\boldsymbol{1}}$	0	1	0.6098	0	0.1098	0	-0.0488	0.0610	0.1
$\boldsymbol{s}_{\boldsymbol{2}}$	0	0	8.0976	0	-0.4024	1	-0.4878	0.1098	0.013554
$\boldsymbol{y}_{\mathbf{3}}$	0	0	-0.0244	1	-0.0244	0	0.1220	0.0976	
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	-0.4146	0	0.0854	0	0.0732	0.1585	
$\boldsymbol{y}_{\mathbf{1}}$	0	1	0	0	0.1401	-0.0753	-0.0120	0.0527	
$\boldsymbol{y}_{\mathbf{2}}$	0	0	1	0	-0.0497	0.1235	-0.0602	0.0136	
$\boldsymbol{y}_{\mathbf{3}}$	0	0	0	1	-0.0256	0.0030	0.1205	0.0979	
$\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{c}_{\boldsymbol{j}}$	1	0	0	0	0.0648	0.0512	0.0482	0.1642	

Since all the values in the $z_{j}-c_{j}$ is ≥ 0, Therefore optimum solution is reached.

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{gathered}
\operatorname{Max} Z=\frac{1}{V}=0.16 \Rightarrow V=\frac{1}{0.1642}=6.09 \\
y_{1}=\frac{q_{1}}{V} \Rightarrow q_{1}=y_{1} V=0.0527 \times 6.09=0.32 \\
y_{2}=\frac{q_{2}}{V} \Rightarrow q_{2}=y_{2} V=0.0136 \times 6.09=0.08 \\
y_{3}=\frac{q_{3}}{V} \Rightarrow q_{3}=y_{3} V=0.0979 \times 6.09=0.6
\end{gathered}
$$

The values of s_{1}, s_{2} and s_{3} in $z_{j}-c_{j}$ row are the values of x_{1}, x_{2} and x_{3} for Player A.

$$
\begin{gathered}
x_{1}=0.0648, x_{2}=0.0512, x_{3}=0.0482 \\
x_{1}=\frac{p_{1}}{V} \Rightarrow p_{1}=x_{1} V=0.0648 \times 6.09=0.39 \\
x_{2}=\frac{p_{2}}{V} \Rightarrow p_{2}=x_{2} V=0.0512 \times 6.09=0.31 \\
x_{3}=\frac{p_{3}}{V} \Rightarrow p_{3}=x_{3} V=0.0482 \times 6.09=0.29
\end{gathered}
$$

Optimal strategies for Player A is ($\left.\begin{array}{lll}0.39 & 0.31 & 0.29\end{array}\right)$
Optimal strategies for Player B is ($0.32 \quad 0.08 \quad 0.6)$
Value of the original game $=6.09-7=-0.91$
9. Solve the game

		$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
Player \mathbf{A}	$\boldsymbol{A}_{\mathbf{1}}$	19	6	7	5
	$\boldsymbol{A}_{\mathbf{2}}$	7	14	14	6
	$\boldsymbol{A}_{\mathbf{3}}$	12	8	18	4
	$\boldsymbol{A}_{\mathbf{4}}$	8	7	13	-1

Solution:

Player A	Player B					
		B_{1}	B_{2}	B_{3}	B_{4}	Row Min
	A_{1}	19	6	7	5	5
	A_{2}	7	14	14	6	6
	A_{3}	12	8	18	4	4
	A_{4}	8	7	13	-1	-1
	Column Max	19	14	18	6	

INTEGER PROGRAMMING AND GAME THEORY

$$
\begin{gathered}
\text { Minimax }=\text { Min Column Max }=6 \\
\text { Maximin }=\text { Minimax }
\end{gathered}
$$

\therefore Saddle point exists. The game has pure strategy.

$$
\begin{aligned}
& \text { Strategy for game } A \text { is }\left(\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)=A_{2} \\
& \text { Strategy for game } B \text { is }\left(\begin{array}{llll}
q_{1} & q_{2} & q_{3} & q_{4}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)=B_{4}
\end{aligned}
$$

Value of the game $V=6$
10. Find the value of the game by using Matrix method

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$
$\boldsymbol{A}_{\mathbf{1}}$	3	-1	-3
$\boldsymbol{A}_{\mathbf{2}}$	-2	4	-1
$\boldsymbol{A}_{\mathbf{3}}$	-5	-6	2

Solution:

\therefore No saddle point. The game has mixed strategy. So we apply dominance rule to minimize the problem.
Here we cannot able to reduce using dominance rule, so solve the problem by matrix method.
Subtract the values of B_{2} from B_{1} and the values of B_{3} from B_{2} and write it on the right side of the payoff matrix. Similarly subtract the values of A_{2} from A_{1} and the values of A_{3} from A_{2} and write it on the Bottom of the payoff matrix.

	B_{1}	B_{2}	B_{3}		
A_{1}	3	-1	-3	4	2
A_{2}	-2	4	-1	-6	5
A_{3}	-5	-6	2	1	-8
	5	-5	-2		
	3	10	-3		

INTEGER PROGRAMMING AND GAME THEORY

Oddments of $A_{1}=\left|\begin{array}{cc}-6 & 5 \\ 1 & -8\end{array}\right|=48-5=43$
Oddments of $A_{2}=\left|\begin{array}{cc}4 & 2 \\ 1 & -8\end{array}\right|=-32-2=-34$
Oddments of $A_{3}=\left|\begin{array}{cc}4 & 2 \\ -6 & 5\end{array}\right|=20+12=32$
Oddments of $B_{1}=\left|\begin{array}{ll}-5 & -2 \\ 10 & -3\end{array}\right|=15+20=35$
Oddments of $B_{2}=\left|\begin{array}{ll}5 & -2 \\ 3 & -3\end{array}\right|=-15+6=-9$
Oddments of $B_{3}=\left|\begin{array}{cc}5 & -5 \\ 3 & 10\end{array}\right|=50+15=65$
Now consider only the value not the sign.

	B_{1}	B_{2}	B_{3}	
A_{1}	3	-1	-3	43
A_{2}	-2	4	-1	34
A_{3}	-5	-6	2	32
	35	9	65	

$p_{1}=\frac{43}{109}=0.39, p_{2}=\frac{34}{109}=0.31, p_{3}=\frac{32}{109}=0.29$
$q_{1}=\frac{35}{109}=0.32, q_{2}=\frac{9}{109}=0.08, q_{3}=\frac{65}{109}=0.6$
Optimal strategies for Player A is ($\left.\begin{array}{llll}0.39 & 0.31 & 0.29\end{array}\right)$
Optimal strategies for Player B is $\left(\begin{array}{lll}0.32 & 0.08 & 0.6\end{array}\right)$
Value of the game $=V=3 \times 0.32-1 \times 0.08-3 \times 0.6=-0.92$

