Unit - V Lattice and Boolean Algebra

The following is the hasse diagram of a partially ordered set. Verify whether it is a lattice.

Solution:

d and e are the upper bounds of c and b. As d and e cannot be compared, therefore the $LUB\{c,b\}$ does not exists. The Hasse diagram is not a lattice.

Give an example of a relation which is symmetric, transitive but not reflexive on $\{a,b,c\}$

Solution:

$$R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (c, a)\}$$

Define partially ordered set.

A Set with a partially ordering relation is called a poset or partially ordered set.

Find the Partition of $A=\{0,1,2,3,4,5\}$ with minsets generated by $B_1=\{0,2,4\}$ and $B_2=\{1,5\}$.

Solution:

$$B_1 \cap B_2 = \emptyset, B_1 \cup B_2 = \{0, 1, 2, 4, 5\} \neq A, (B_1 \cup B_2)' = \{3\}$$

 $B_1 \cup B_2 \cup (B_1 \cap B_2)' = \{0, 1, 2, 3, 4, 5\} = A$
Partition of $A = \{\{0, 2, 4\}, \{1, 5\}, \{3\}\}$

If a poset has a least element, then prove it is unique.

Proof:

Let $\langle L, \leq \rangle$ be a poset with a_1, a_2 be two least elements.

If a_1 is the least element, $a_1 \le a_2$

If a_2 is the least element $a_2 \le a_1$

By antisymmetric property $a_1 = a_2$

So that least element is unique.

If $R = \{(1,1),(1,2),(2,3)\}$ and $S = \{(2,1),(2,2),(3,2)\}$ are the relations on the set $A = \{1,2,3\}$. Verify whether RoS = SoR by finding the relation matrices of RoS and SoR.

Solution:

$$M_{R} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, M_{S} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$M_{RoS} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } M_{SoR} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_{RoS} \neq M_{SoR} \Rightarrow RoS \neq SoR$$

In the following lattice find $(b_1 \oplus b_3) * b_2$

Solution:

$$b_1 \oplus b_3 = 1$$
. Hence $(b_1 \oplus b_3) * b_2 = 1 * b_2 = b_2$

If $A_2=\big\{\{1,2\},\{3\}\big\}, A_2=\big\{\{1\},\{2,3\}\big\}$ and $A_3=\{\{1,2,3\}\}$ then show that A_1,A_2 and A_3 are mutually disjoint.

Solution:

$$A_1 \cap A_2 = \emptyset$$
, $A_1 \cap A_3 = \emptyset$, $A_2 \cap A_3 = \emptyset$
Hence A_1 , A_2 and A_3 are mutually disjoint.

Let $x = \{1, 2, 3, 4\}$. If

 $R = \{ \langle x, y \rangle \mid x \in X \land y \in X \land (x - y) \text{ is an nonzero multiple of 2} \}$ $S = \{ \langle x, y \rangle \mid x \in X \land y \in X \land (x - y) \text{ is an nonzero multiple of 3} \}$ Find $R \cup S$ and $R \cap S$.

Solution:

$$R = \{(1,3), (3,1), (2,4), (4,2)\}, S = \{(1,4), (4,1)\}$$

 $R \cup S = \{(1,3), (3,1), (2,4), (4,2), (1,4), (4,1)\}, R \cap S = \emptyset$
 $R \cap S = \{\langle x, y \rangle \mid x \in X \land y \in X \land (x-y) \text{ is an nonzero multiple of 6} \}$

If R and S are reflexive relations on a set A, then show that $R \cup S$ and $R \cap S$ are also reflexive relations on A.

Solution:

Let $a \in A$. Since R and S are reflexive.

We have $(a, a) \in R$ and $(a, a) \in S \Rightarrow (a, a) \in R \cap S$

Hence $R \cap S$ is reflexive.

 $(a,a) \in R \text{ or } (a,a) \in S \Rightarrow (a,a) \in R \cup S$

Hence $R \cup S$ is reflexive.

Define Equivalence relation. Give an example Solution:

A relation R in a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Eg: i) Equality of numbers on a set of real numbers

ii) Relation of lines being parallel on a set of lines in a plane.

Let $X = \{2, 3, 6, 12, 24, 36\}$ and the relation be such that $x \le y$ iff x divides y. Draw the Hasse Diagram of $\langle X, \le \rangle$. Solution:

The Hasse diagram is

Let A be a given finite set and P(A) its power set. Let \subseteq be the inclusion relation on the elements of P(A). Draw Hasse diagram of $\langle P(A), \leq \rangle$ for $A = \{a, b, c\}$ Solution:

Write the representing each of the relations from $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Solution:

Let $A = \{1, 2, 3\}$ and R be the relation defined on A corresponding to the given matrix. $\therefore R = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\}$

Which elements of the poset $[\{2,4,5,10,12,20,25\},/]$ are maximal and which are minimal?

(or)

Give an example for a poset that have more than one maximal element and more than one minimal element.

Solution:

 $A = [\{2, 4, 5, 10, 12, 20, 25\}, /], /$ is the division relation.

The maximal elements are 12, 20, 25 and the minimal elements are 2,5.

Define Lattice

A Lattice in a partially ordered set $\langle L, \leq \rangle$ in which every pair of elements $a, b \in L$ has the greatest lower bound and a least upper bound.

Let $\langle L, \leq \rangle$ be a lattice. For any $a, b, c \in L$ we have a*a=a Solution:

Since $a \le a$, a is a lower bound of $\{a\}$. If b is any lower bound of $\{a\}$, then we have $b \le a$. Thus we have $a \le a$ or $b \le a$ equivalently, a is an lower bound for $\{a\}$ and any other lower bound of $\{a\}$ is smaller than a. This shows that a is the greatest lower bound of $\{a\}$, i.e., $GLB\{a,a\} = a$

$$\therefore a * a = GLB\{a, a\} = a$$

Define sublattice

Let $\langle L, *, \oplus \rangle$ be a lattice and let $S \subseteq L$ be a subset of L. Then $\langle S, *, \oplus \rangle$ is a sublattice of $\langle L, *, \oplus \rangle$ iff S is closed under both operations * and \oplus .

Define Lattice Homomorphism

Let $\langle L, *, \oplus \rangle$ and $\langle S, \Lambda, V \rangle$ be two lattices. A mapping $g: L \to S$ is called a lattice homomorphism from the lattice $\langle L, *, \oplus \rangle$ to $\langle S, \Lambda, V \rangle$ if for any $a, b \in L$ $g(a*b) = g(a) \land g(b)$ and $g(a \oplus b) = g(a) \lor g(b)$

Define Modular

A lattice $\langle L, *, \oplus \rangle$ is called modular if for all $x, y, z \in L$

$$x \le z \Rightarrow x \oplus (y * z) = (x \oplus y) * z$$

Define Distributive lattice.

A Lattice $\langle L, *, \oplus \rangle$ is called a distributive lattice if for any $a, b, c \in L$ $a * (b \oplus c) = (a * b) \oplus (a * c)$ $a \oplus (b * c) = (a \oplus b) * (a \oplus c)$

Prove that every distributive lattice is modular.

Proof:

Let $\langle L, *, \bigoplus \rangle$ be a distributive lattice.

$$\forall a, b, c \in L \text{ we have }, a \oplus (b * c) = (a \oplus b) * (a \oplus c) \dots (1)$$

Thus if $a \le c$ then $a \oplus c = c \dots (2)$

from (1) and (2) we get

$$a \oplus (b * c) = (a \oplus b) * c$$

So if a * c, then $a \oplus (b * c) = (a \oplus b) * c$.

 \therefore *L* is modular.

The lattice with the following Hasse diagram is not distributive and not modular.

Solution:

In this case,
$$(x_1 \oplus x_3) * x_2 = 1 * x_2 = x_2 \dots (1)$$

And
$$(x_1 * x_2) \oplus (x_3 * x_2) = 0 \oplus x_3 = x_3 \dots (2)$$

From (1) and (2) we get

$$(x_1 \oplus x_3) * x_2 \neq (x_1 * x_2) \oplus (x_3 * x_2)$$

Hence the lattice is not distributive.

$$x_3 < x_2 \Rightarrow x_3 \oplus (x_1 * x_2) = x_3 \oplus 0 = x_3 \dots (3)$$

$$(x_3 \oplus x_1) * x_2 = 1 * x_2 = x_2 \dots (4)$$

From (3) and (4) we get

$$x_3 \oplus (x_1 * x_2) \neq (x_3 \oplus x_1) * x_2$$

Hence the lattice is not modular.

PART-B

In a Lattice, show that a = b and $c = d \Rightarrow a * c = b * d$

Solution:

For any $a, b, c \in L$

If
$$a = b \Rightarrow c * a \le c * b$$

$$\Rightarrow a * c \le b * c \dots (1)(By Commutative law)$$

For any $b, c, d \in L$

If
$$c = d \Rightarrow b * c \leq b * d \dots (2)$$

From (1) and (2) we get

$$a * c = b * d$$

In a distributive Lattice prove that

$$a * b = a * c$$
 and $a \oplus b = a \oplus c \Rightarrow b = c$.

Solution:

$$(a*b) \oplus c = (a*c) \oplus c = c \dots (1) [a*b = a*c \text{ and absorbtion law}]$$

 $(a*b) \oplus c = (a \oplus c)*(b \oplus c) [Distributive law]$

$$= (a \oplus b) * (b \oplus c) = (a \oplus b) * (c \oplus b) [a \oplus b = a \oplus c \text{ and commutative law}]$$

$$= (a * c) \oplus b = (a * b) \oplus b = b \dots (2) [Distributive and absorbtion law]$$

From (1) and (2) we get,

$$b = c$$

Establish De Morgan's laws in a Boolean algebra

Solution: Let
$$a, b \in (B, *, \oplus, ', 0, 1)$$

To prove $(a \oplus b)' = a' * b'$
 $(a \oplus b) * (a' * b') = (a * (a' * b')) \oplus (b * (a' * b'))$
 $= (a * (a' * b')) \oplus ((a' * b') * b)$
 $= ((a * a') * b') \oplus (a' * (b' * b))$
 $= (0 * b') \oplus (a' * 0) = 0 \oplus 0$
 $(a \oplus b) * (a' * b') = 0 \dots (1)$
 $(a \oplus b) \oplus (a' * b') = ((a \oplus b) \oplus a') * ((a \oplus b) \oplus b')$
 $= ((b \oplus a) \oplus a') * ((a \oplus b) \oplus b')$
 $= (b \oplus (a \oplus a')) * (a \oplus (b \oplus b'))$
 $= (b \oplus 1) * (a \oplus 1) = 1 * 1$
 $(a \oplus b) \oplus (a' * b') = 1 \dots (2)$

From (1) and (2) we get,

$$\therefore (a \oplus b)' = a' * b'$$

To prove $(a * b)' = a' \oplus b'$

$$(a * b) \oplus (a' \oplus b') = (a \oplus (a' \oplus b')) * (b \oplus (a' \oplus b'))$$

$$= (a \oplus (a' \oplus b')) * ((a' \oplus b') \oplus b)$$

$$= ((a \oplus a') \oplus b') * (a' \oplus (b' \oplus b))$$

$$= (1 \oplus b') * (a' \oplus 1) = 1 * 1$$

$$(a * b) \oplus (a' \oplus b') = 1 \dots (3)$$

$$(a * b) * (a' \oplus b') = ((a * b) * a') \oplus ((a * b) * b')$$

$$= ((b * a) * a') \oplus ((a * b) * b')$$

$$= (b * (a * a')) \oplus (a * (b * b'))$$

$$= (b * 0) \oplus (a * 0) = 0 \oplus 0$$

$$(a * b) * (a' \oplus b') = 0 \dots (4)$$

From (3) and (4) we get,

$$(a*b)'=a'\oplus b'$$

In a Boolean algebra L, Prove that $(a \land b)' = a' \lor b'$, $\forall a, b \in L$ Solution:

$$(a \wedge b) \vee (a' \vee b') = (a \vee (a' \vee b')) \wedge (b \vee (a' \vee b'))$$

$$= (a \vee (a' \vee b')) \wedge ((a' \vee b') \vee b)$$

$$= ((a \vee a') \vee b') \wedge (a' \vee (b' \vee b))$$

$$= (1 \vee b') \wedge (a' \vee 1) = 1 \wedge 1$$

$$(a \wedge b) \vee (a' \vee b') = 1 \dots (1)$$

$$(a \wedge b) \wedge (a' \vee b') = ((a \wedge b) \wedge a') \vee ((a \wedge b) \wedge b')$$

$$= ((b \wedge a) \wedge a') \vee ((a \wedge b) \wedge b')$$

$$= (b \wedge (a \wedge a')) \vee (a \wedge (b \wedge b'))$$

$$= (b \wedge 0) \vee (a \wedge 0) = 0 \vee 0$$

$$(a \wedge b) \wedge (a' \vee b') = 0 \dots (2)$$

From (1) and (2) we get,

$$(a \wedge b)' = a' \vee b'$$

Draw the Hasse diagram of the lattice L of all subsets of a, b, c under intersection and union.

Solution:

Define the relation P on $\{1, 2, 3, 4\}$ by $P = \{(a, b)/|a - b| = 1\}$. Determine the adjacency matrix of P^2

Solution:

$$P = \{(1,2), (2,1), (2,3), (3,2), (3,4), (4,3)\}.$$

$$M_P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$M_{P^2} = M_{PoP} = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

Let (L, \leq) be a lattice. For any $a,b,c \in L \ if \ b \leq c \Rightarrow a*b \leq a*c$

and
$$a \oplus b \leq a \oplus c$$

Solution:

$$(a*b)*(a*c) = a*(b*a)*c = a*(a*b)*c$$

= $(a*a)*(b*c) = a*b$

$$\therefore (a*b)*(a*c) = a*b$$

$$a*b \leq a*c$$

$$(a \oplus b) * (a \oplus c) = a \oplus (b * c) = a \oplus c$$

 $\therefore a \oplus b \le a \oplus c$

In a distributice lattice, show that

$$(a*b) \oplus (b*c) \oplus (c*a) = (a \oplus b) * (b \oplus c) * (c \oplus a)$$

Solution:

$$(a*b) \oplus (b*c) \oplus (c*a) = (a*b) \oplus (c*b) \oplus (c*a)$$
$$= ((a \oplus c)*b) \oplus (c*a)$$

$$= (((a \oplus c) * b) \oplus c) * (((a \oplus c) * b) \oplus a)$$

$$= (((a \oplus c) \oplus c) * (b \oplus c)) * (((a \oplus c) \oplus a) * (b \oplus a))$$

$$= (((a \oplus c) \oplus c) * (b \oplus c)) * ((a \oplus (a \oplus c)) * (b \oplus a))$$

$$= ((a \oplus (c \oplus c)) * (b \oplus c)) * ((((a \oplus a) \oplus c) * (b \oplus a))$$

$$= (a \oplus c) * (b \oplus c) * (a \oplus c) * (b \oplus a)$$

$$= (a \oplus c) * (b \oplus c) * (a \oplus c) * (a \oplus b)$$

$$= (c \oplus a) * (b \oplus c) * (c \oplus a) * (a \oplus b)$$

$$= (b \oplus c) * (c \oplus a) * (a \oplus b)$$

$$= (b \oplus c) * (a \oplus b) * (c \oplus a)$$

$$= (a \oplus b) * (b \oplus c) * (c \oplus a)$$

Simplify the Boolean expression $((x_1 + x_2) + (x_1 + x_3)) \cdot x_1 \cdot \overline{x_2}$ Solution:

$$((x_1 + x_2) + (x_1 + x_3)). x_1. \overline{x_2} = (x_1 + x_2). x_1. \overline{x_2} + (x_1 + x_3). x_1. \overline{x_2}$$

$$= x_1. x_1. \overline{x_2} + x_2. x_1. \overline{x_2} + x_1. x_1. \overline{x_2} + x_3. x_1. \overline{x_2}$$

$$= x_1. x_1. \overline{x_2} + x_1. x_2. \overline{x_2} + x_3. x_1. \overline{x_2}$$

$$= x_1. \overline{x_2} + x_1. 0 + x_3. x_1. \overline{x_2}$$

$$= x_1. \overline{x_2} + x_3. x_1. \overline{x_2}$$

$$= x_1. \overline{x_2} + x_3. x_1. \overline{x_2}$$

$$= x_1. \overline{x_2} + x_3. x_1. \overline{x_2}$$

State and prove the distributive inequalities of a lattice.

Solution:

Solution:
Let
$$(L, \leq)$$
 be a lattice. For any $a, b, c \in L$
I) $a*(b\oplus c) \geq (a*b)\oplus (a*c)$
II) $a\oplus (b*c) \leq (a\oplus b)*(a\oplus c)$
To prove $a*(b\oplus c) \geq (a*b)\oplus (a*c)$
From $a \geq a*b$ and $a \geq a*c \Rightarrow a \geq (a*b)\oplus (a*c) \dots (1)$
 $b\oplus c \geq b \geq (a*b) \dots (2)$
 $b\oplus c \geq c \geq (a*c) \dots (3)$
From (2) and (3) we get,

From (1) and (4) we get,

$$a * (b \oplus c) \ge (a * b) \oplus (a * c)$$

To prove $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$

From $a \oplus b \ge a$ and $a \oplus c \ge a \Rightarrow (a \oplus b) * (a \oplus c) \ge a \dots (5)$

$$b * c \le b \le (a \oplus b) \dots (6)$$

$$b * c \le c \le (a \oplus c) \dots (7)$$

From (6) and (7) we get,

$$b * c \le (a \oplus b) * (a \oplus c) \dots (8)$$

From (5) and (8) we get,

$$a * (b \oplus c) \ge (a * b) \oplus (a * c)$$

 $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$

In a lattice show that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$

Solution:

To prove $a \le b \Leftrightarrow a * b = a$

Let us assume that $a \le b$, we know that $a \le a : a \le a * b ... (1)$

From the definition we know that $a * b \le a \dots (2)$

From (1) and (2) we get a * b = a

$$\therefore a \leq b \Rightarrow a * b = a \dots (I)$$

Now assume that a * b = a but it is possible iff $a \le b$

$$\therefore a * b = a \Rightarrow a \leq b \dots (II)$$

From (I) and (II) we get

$$a \le b \Leftrightarrow a * b = a$$

To prove $a * b = a \Leftrightarrow a \oplus b = b$

Let us assume that a * b = a

$$b \oplus (a * b) = b \oplus a = a \oplus b \dots (3)$$
$$b \oplus (a * b) = b \dots (4)$$

From (3) and (4) we get $a \oplus b = b$

$$a \cdot a \cdot b = a \Rightarrow a \oplus b = b \dots (III)$$

Let us assume that $a \oplus b = b$

$$a*(a \oplus b) = a*b \dots (5)$$

$$a*(a \oplus b) = a \dots (6)$$

From (5) and (6) we get a * b = a

$$\therefore a \oplus b = b \Rightarrow a * b = a \dots (IV)$$

From (III) and (IV) we get $a * b = a \Leftrightarrow a \oplus b = b$

Prove that every chain is a distributive lattice.

Solution:

Let (L, \leq) be a chain and $a, b, c \in L$. Consider the following cases:

(I) $a \le b$ and $a \le c$, and (II) $a \ge b$ and $a \ge c$

For (I)

$$a * (b \oplus c) = a \dots (1)$$
$$(a * b) \oplus (a * c) = a \oplus a = a \dots (2)$$

For (II)

$$a * (b \oplus c) = b \oplus c \dots (3)$$
$$(a * b) \oplus (a * c) = b \oplus c \dots (4)$$

 \therefore From (1),(2) and (3),(4)

$$a * (b \oplus c) = (a * b) \oplus (a * c)$$

∴Every chain is a distributive lattice

Show that every distributive lattice is a modular. Whether the converse is true? Justify your answer

Solution:

Let $a, b, c \in L$ and assume that $a \leq c$, then

$$a \oplus (b * c) = (a \oplus b) * (a \oplus c)$$

= $(a \oplus b) * c$

∴Every distributive lattice is modular.

For example let us consider the following lattice

Here in this lattice

$$\forall a, b, c \in L, a \leq b \Rightarrow a \oplus (b * c) = (a \oplus b) * c$$

∴The above lattice is modular.

$$a * (b \oplus c) = a * 1 = a \dots (1)$$

 $(a * b) \oplus (a * c) = 0 \oplus 0 = 0 \dots (2)$

From (1) and (2) we get $a * (b \oplus c) \neq (a * b) \oplus (a * c)$

- ∴The above lattice is not distributive.
- : Every distributive lattice is a modular but its converse is not true.

Find the sub lattices of $(D_{45},/)$. Find its complement element. Solution:

$$D_{45} = \{1, 3, 5, 9, 15, 45\}$$
 under division rule $1 \oplus 45 = 45$ and $1 * 45 = 1$ \therefore Complement of 1 is 45 $5 \oplus 9 = 45$ and $5 * 9 = 1$ \therefore Complement of 5 is 9 $3 \oplus 15 = 15$ and $3 * 15 = 3$ \therefore 3 and 15 has no Complement

 \therefore (D_{45} ,/) is not a complement lattice

The sub lattices of $(D_{45},/)$ are given below

$$S_1 = \{1, 3, 5, 9, 15, 45\}, S_2 = \{1, 3, 9, 45\}, S_3 = \{1, 5, 15, 45\},$$

$$S_4 = \{1, 3, 5, 15\}, S_5 = \{3, 9, 15, 45\}, S_6 = \{1, 3, 9, 15, 45\},$$

$$S_7 = \{1, 3, 5, 15, 45\}, S_8 = \{1, 3\}, S_9 = \{1, 5\}, S_{10} = \{1, 3, 9\}, S_{11} = \{1, 5, 15\}$$

$$S_{12} = \{3, 9, 45\}, S_{13} = \{5, 15, 45\}, S_{14} = \{3, 9\}, S_{15} = \{5, 15\}, S_{16} = \{15, 45\}$$

$$S_{17} = \{9, 45\}, S_{18} = \{3, 15\}, S_{19} = \{3, 5, 9, 15, 45\}$$

In any Boolean algebra, show that $a = b \Leftrightarrow ab' + a'b = 0$

```
Proof:
```

Case i) To prove
$$a = b \Rightarrow ab' + a'b = 0$$

$$ab' = bb' = 0 \dots (1)[a = b \text{ and Complement law}]$$

$$a'b = a'a = 0 \dots (2)[a = b \text{ and Complement law}]$$

$$ab' + a'b = 0 + 0 = 0 \quad [from (1) \text{ and } (2)]$$
Case ii) To prove $ab' + a'b = 0 \Rightarrow a = b \dots (3)$

$$ab' + a'b = 0$$

$$a + ab' + a'b = a + 0 \quad [b = c \Rightarrow a + b = a + c]$$

$$a + a'b = a \quad [Absorbtion law \text{ and } a + 0 = a]$$

$$(a + a')(a + b) = a[Distributive law]$$

$$1(a + b) = a \Rightarrow a + b = a \dots (4)[Complement law]$$

$$Similarly from (3), we get ab' + a'b + b = 0 + b$$

$$[b = c \Rightarrow b + a = c + a]$$

$$ab' + b = b \quad [Absorbtion law \text{ and } 0 + b = b]$$

$$(a + b)(b' + b) = b[Distributive law]$$

$$(a + b)1 = b \Rightarrow a + b = b \dots (5)[Complement law]$$
From (4) and (5) we get

Let (L, \leq) be a lattice. For any $a, b, c \in L$ the following holds,

$$a \leq c \Leftrightarrow a \oplus (b * c) \leq (a \oplus b) * c$$

Solution: To prove $a \le c \Rightarrow a \oplus (b*c) \le (a \oplus b)*c$ Let us assume that $a \le c$, $a \oplus (b*c) \le (a \oplus b)*(a \oplus c) \ [\textit{Distributive inequality}]$

$$\leq (a \oplus b) * c \ [\textit{Distributive inequality}]$$
To prove $a \oplus (b * c) \leq (a \oplus b) * c \Rightarrow a \leq c$
Let us assume that $a \oplus (b * c) \leq (a \oplus b) * c$

$$(a \oplus b) * (a \oplus c) \leq (a \oplus b) * c \ [\textit{Distributive law}]$$

$$\Rightarrow (a \oplus c) \leq c \dots (1) \left[a * b \leq a * c \Rightarrow b \leq c \right]$$

$$a \oplus (b * c) \leq (a \oplus b) * c$$

$$a \oplus (b * c) \leq (a \oplus c) \oplus (b * c) \ [\textit{Distributive law}]$$

$$\Rightarrow a \leq (a * c) \leq (a \oplus c) \leq c \ [\textit{Definition of} * and \oplus and (1)]$$

$$\Rightarrow a \leq c$$

Prove that the direct product of any two distributive lattices is a distributive lattice.

Solution:

Let $(L, *, \oplus)$ and (S, \land, \lor) be two distributive lattices and let $(L \times S, ., +)$ be the direct product of two lattices.

For any
$$(a_1,b_1)$$
, (a_2,b_2) and $(a_3,b_3) \in L \times S$
$$(a_1,b_1).\left((a_2,b_2)+(a_3,b_3)\right)=(a_1,b_1).\left(a_2 \oplus a_3,b_2 \vee b_3\right)$$

$$=\left(a_1*(a_2 \oplus a_3),b_1 \wedge (b_2 \vee b_3)\right)$$

$$=\left((a_1*a_2) \oplus (a_1*a_3),(b_1 \wedge b_2) \vee (b_1 \wedge b_3)\right)$$

$$=(a_1,b_1).(a_2,b_2)+(a_1,b_1).(a_3,b_3)$$

:The direct product of any two distributive lattices is a distributive lattice.

Find the complement of every element of the lattice $< S_n$, $D > {\sf for} \ n = 75$. Solution:

$$S_{45} = \{1, 3, 5, 15, 25, 75\}$$
 under division rule
 $1 \oplus 75 = 75$ and $1 * 75 = 1$
 \therefore Complement of 1 is 75
 $3 \oplus 25 = 75$ and $3 * 25 = 1$
 \therefore Complement of 3 is 25
 $5 \oplus 15 = 15$ and $5 * 15 = 5$
 \therefore 5 and 15 has no Complement

∴ It is not a complement lattice

Write the Lattices of $(\emph{D}_{35},\!/\,)$. Find its complements Solution:

 $D_{35} = \{1, 5, 7, 35\}$ under division rule $1 \oplus 35 = 35$ and 1 * 35 = 1 \therefore Complement of 1 is 35 $5 \oplus 7 = 35$ and 5 * 7 = 1 \therefore Complement of 5 is 7

