Unit - V Lattice and Boolean Algebra

The following is the hasse diagram of a partially ordered set. Verify whether it is a lattice.

Solution:

d and e are the upper bounds of c and b . As d and e cannot be compared, therefore the $L U B\{c, b\}$ does not exists. The Hasse diagram is not a lattice.

Give an example of a relation which is symmetric, transitive but not reflexive on $\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}$

Solution:

$R=\{(a, a),(a, b),(a, c),(b, a),(b, b),(c, a)\}$

Define partially ordered set.

A Set with a partially ordering relation is called a poset or partially ordered set.
Find the Partition of $A=\{0,1,2,3,4,5\}$ with minsets generated by $B_{1}=\{0,2,4\}$ and $B_{2}=\{1,5\}$.

Solution:

$B_{1} \cap B_{2}=\emptyset, B_{1} \cup B_{2}=\{0,1,2,4,5\} \neq A,\left(B_{1} \cup B_{2}\right)^{\prime}=\{3\}$
$B_{1} \cup B_{2} \cup\left(B_{1} \cap B_{2}\right)=\{0,1,2,3,4,5\}=A$
Partition of $A=\{\{0,2,4\},\{1,5\},\{3\}\}$
If a poset has a least element, then prove it is unique.
Proof:
Let $\langle\boldsymbol{L}, \leq\rangle$ be a poset with a_{1}, a_{2} be two least elements.
If a_{1} is the least element, $a_{1} \leq a_{2}$
If a_{2} is the least element $a_{2} \leq a_{1}$
By antisymmetric property $a_{1}=a_{2}$
So that least element is unique.
If $R=\{(1,1),(1,2),(2,3)\}$ and $S=\{(2,1),(2,2),(3,2)\}$ are the relations on the set $A=\{1,2,3\}$. Verify whether RoS $=$ SoR by finding the relation matrices of RoS and SoR.

Solution:

$M_{R}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), M_{s}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$
$M_{R o S}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $M_{S o R}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
$M_{R o S} \neq M_{S o R} \Rightarrow R o S \neq S o R$

In the following lattice find $\left(b_{1} \oplus b_{3}\right) * b_{2}$

Solution:

$$
b_{1} \oplus b_{3}=1 . \text { Hence }\left(b_{1} \oplus b_{3}\right) * b_{2}=1 * b_{2}=b_{2}
$$

If $\boldsymbol{A}_{\mathbf{2}}=\{\{1,2\},\{3\}\}, \boldsymbol{A}_{\mathbf{2}}=\{\{1\},\{2,3\}\}$ and $\boldsymbol{A}_{\mathbf{3}}=\{\{1,2,3\}\}$ then show that A_{1}, A_{2} and A_{3} are mutually disjoint.
Solution:
$A_{1} \cap A_{2}=\emptyset, A_{1} \cap A_{3}=\emptyset, A_{2} \cap A_{3}=\varnothing$
Hence A_{1}, A_{2} and A_{3} are mutually disjoint.

Let $x=\{1,2,3,4\}$. If
$R=\{<x, y>\mid x \in X \wedge y \in X \wedge(x-y)$ is an nonzero multiple of 2$\}$ $S=\{<x, y>\mid x \in X \wedge y \in X \wedge(x-y)$ is an nonzero multiple of 3$\}$
Find $\boldsymbol{R} \cup S$ and $\boldsymbol{R} \cap S$.

Solution:

$R=\{(1,3),(3,1),(2,4),(4,2)\}, S=\{(1,4),(4,1)\}$
$R \cup S=\{(1,3),(3,1),(2,4),(4,2),(1,4),(4,1)\}, R \cap S=\emptyset$
$R \cap S=\{\langle x, y\rangle \mid x \in X \wedge y \in X \wedge(x-y)$ is an nonzero multiple of 6$\}$

If R and S are reflexive relations on a set A, then show that $R \cup S$ and $R \cap S$ are also reflexive relations on A.

Solution:

Let $a \in A$. Since R and S are reflexive.
We have $(a, a) \in R$ and $(a, a) \in S \Rightarrow(a, a) \in R \cap S$
Hence $R \cap S$ is reflexive.
$(a, a) \in R$ or $(a, a) \in S \Rightarrow(a, a) \in R \cup S$
Hence $R \cup S$ is reflexive.

Define Equivalence relation. Give an example

Solution:

A relation R in a set A is called an equivalence relation if it is reflexive, symmetric and transitive.
Eg: i) Equality of numbers on a set of real numbers
ii) Relation of lines being parallel on a set of lines in a plane.

Let $X=\{2,3,6,12,24,36\}$ and the relation be such that $x \leq y$ iff x divides y. Draw the Hasse Diagram of $\langle X, \leq\rangle$.
Solution:
The Hasse diagram is

Let A be a given finite set and $P(A)$ its power set. Let \subseteq be the inclusion relation on the elements of $P(A)$. Draw Hasse diagram of $\langle P(A), \leq\rangle$ for $A=\{a, b, c\}$ Solution:

Write the representing each of the relations from $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$

Solution:

Let $A=\{1,2,3\}$ and R be the relation defined on A corresponding to the given matrix. $\therefore R=\{(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)\}$

Which elements of the poset $[\{2,4,5,10,12,20,25\}, /]$ are maximal and which are minimal?

Give an example for a poset that have more than one maximal element and more than one minimal element.

Solution:

$A=[\{2,4,5,10,12,20,25\}, /], /$ is the division relation.
The maximal elements are $12,20,25$ and the minimal elements are 2,5 .

Define Lattice

A Lattice in a partially ordered set $\langle\boldsymbol{L}, \leq\rangle$ in which every pair of elements $a, b \in L$ has the greatest lower bound and a least upper bound.

Let $\langle L, \leq\rangle$ be a lattice. For any $a, b, c \in L$ we have $a * a=a$ Solution:
Since $a \leq a, a$ is a lower bound of $\{a\}$. If b is any lower bound of $\{a\}$, then we have $b \leq a$. Thus we have $a \leq a$ or $b \leq a$ equivalently, a is an lower bound for $\{a\}$ and any other lower bound of $\{a\}$ is smaller than a. This shows that a is the greatest lower bound of $\{a\}$, i.e., $G L B\{a, a\}=a$
$\therefore a * a=G L B\{a, a\}=a$

Define sublattice

Let $\langle L, *, \oplus\rangle$ be a lattice and let $S \subseteq L$ be a subset of L . Then $\langle S, *, \oplus\rangle$ is a sublattice of $\langle L, *, \oplus\rangle$ iff S is closed under both operations $*$ and \oplus.

Define Lattice Homomorphism

Let $\langle L, *, \oplus\rangle$ and $\langle S, \wedge, \vee\rangle$ be two lattices. A mapping $g: L \rightarrow S$ is called a lattice homomorphism from the lattice $\langle L, *, \oplus\rangle$ to $\langle S, \wedge, \mathrm{~V}\rangle$ if for any $a, b \in L$
$g(a * b)=g(a) \wedge g(b)$ and $g(a \oplus b)=g(a) \vee g(b)$

Define Modular

A lattice $\langle L, *, \oplus\rangle$ is called modular if for all $x, y, z \in L$

$$
x \leq z \Rightarrow x \oplus(y * z)=(x \oplus y) * z
$$

Define Distributive lattice.

A Lattice $\langle L, *, \oplus\rangle$ is called a distributive lattice if for any $a, b, c \in L$
$a *(b \oplus c)=(a * b) \oplus(a * c)$

$$
a \oplus(b * c)=(a \oplus b) *(a \oplus c)
$$

Prove that every distributive lattice is modular.
Proof:
Let $\langle L, *, \oplus\rangle$ be a distributive lattice.
$\forall a, b, c \in L$ we have,$a \oplus(b * c)=(a \oplus b) *(a \oplus c)$.
Thus if $a \leq c$ then $a \oplus c=c \ldots$ (2)
from (1) and (2) we get
$a \oplus(b * c)=(a \oplus b) * c$
So if $a * c$, then $a \oplus(b * c)=(a \oplus b) * c$.
$\therefore L$ is modular.

The lattice with the following Hasse diagram is not distributive and not modular.

Solution:

In this case, $\left(x_{1} \oplus x_{3}\right) * x_{2}=1 * x_{2}=x_{2} \ldots$ (1)
And $\left(x_{1} * x_{2}\right) \oplus\left(x_{3} * x_{2}\right)=0 \oplus x_{3}=x_{3} \ldots$ (2)
From (1) and (2) we get
$\left(x_{1} \oplus x_{3}\right) * x_{2} \neq\left(x_{1} * x_{2}\right) \oplus\left(x_{3} * x_{2}\right)$
Hence the lattice is not distributive.

$$
\begin{gather*}
x_{3}<x_{2} \Rightarrow x_{3} \oplus\left(x_{1} * x_{2}\right)=x_{3} \oplus 0=x_{3} \tag{3}\\
\left(x_{3} \oplus x_{1}\right) * x_{2}=1 * x_{2}=x_{2} \ldots(4) \tag{4}
\end{gather*}
$$

From (3) and (4) we get
$x_{3} \oplus\left(x_{1} * x_{2}\right) \neq\left(x_{3} \oplus x_{1}\right) * x_{2}$
Hence the lattice is not modular.
PART-B

In a Lattice, show that $a=b$ and $c=d \Rightarrow a * c=b * d$
Solution:
For any $a, b, c \in L$
If $a=b \Rightarrow c * a \leq c * b$

$$
\Rightarrow a * c \leq b * c \ldots(1)(\text { By Commutative law })
$$

For any $b, c, d \in L$
If $c=d \Rightarrow b * c \leq b * d$
From (1) and (2) we get

$$
a * c=b * d
$$

In a distributive Lattice prove that $a * b=a * c$ and $a \oplus b=a \oplus c \Rightarrow b=c$.
Solution:

$$
\begin{gathered}
(a * b) \oplus c=(a * c) \oplus c=c \ldots(1)[a * b=a * c \text { and absorbtion law }] \\
(a * b) \oplus c=(a \oplus c) *(b \oplus c)[\text { Distributive law }] \\
=(a \oplus b) *(b \oplus c)=(a \oplus b) *(c \oplus b)[a \oplus b=a \oplus c \text { and commutative law }] \\
=(a * c) \oplus b=(a * b) \oplus b=b \ldots(2)[\text { Distributive and absorbtion law }]
\end{gathered}
$$

From (1) and (2) we get,

$$
b=c
$$

Establish De Morgan's laws in a Boolean algebra

Solution: Let $a, b \in(B, *, \oplus,, 0,1)$
To prove $(a \oplus b)^{\prime}=a^{\prime} * b^{\prime}$

$$
\begin{aligned}
&(a \oplus b) *\left(a^{\prime} * b^{\prime}\right)=\left(a *\left(a^{\prime} * b^{\prime}\right)\right) \oplus\left(b *\left(a^{\prime} * b^{\prime}\right)\right) \\
&=\left(a *\left(a^{\prime} * b^{\prime}\right)\right) \oplus\left(\left(a^{\prime} * b^{\prime}\right) * b\right) \\
&=\left(\left(a * a^{\prime}\right) * b^{\prime}\right) \oplus\left(a^{\prime} *\left(b^{\prime} * b\right)\right) \\
&=\left(0 * b^{\prime}\right) \oplus\left(a^{\prime} * 0\right)=0 \oplus 0 \\
&(a \oplus b) *\left(a^{\prime} * b^{\prime}\right)=0 \ldots(1) \\
&(a \oplus b) \oplus\left(a^{\prime} * b^{\prime}\right)=\left((a \oplus b) \oplus a^{\prime}\right) *\left((a \oplus b) \oplus b^{\prime}\right) \\
&=\left((b \oplus a) \oplus a^{\prime}\right) *\left((a \oplus b) \oplus b^{\prime}\right) \\
&=\left(b \oplus\left(a \oplus a^{\prime}\right)\right) *\left(a \oplus\left(b \oplus b^{\prime}\right)\right) \\
&=(b \oplus 1) *(a \oplus 1)=1 * 1 \\
&(a \oplus b) \oplus\left(a^{\prime} * b^{\prime}\right)=1 \ldots(2)
\end{aligned}
$$

From (1) and (2) we get,

$$
\therefore(a \oplus b)^{\prime}=a^{\prime} * b^{\prime}
$$

To prove $(a * b)^{\prime}=a^{\prime} \oplus b^{\prime}$

$$
\begin{gathered}
(a * b) \oplus\left(a^{\prime} \oplus b^{\prime}\right)=\left(a \oplus\left(a^{\prime} \oplus b^{\prime}\right)\right) *\left(b \oplus\left(a^{\prime} \oplus b^{\prime}\right)\right) \\
=\left(a \oplus\left(a^{\prime} \oplus b^{\prime}\right)\right) *\left(\left(a^{\prime} \oplus b^{\prime}\right) \oplus b\right) \\
=\left(\left(a \oplus a^{\prime}\right) \oplus b^{\prime}\right) *\left(a^{\prime} \oplus\left(b^{\prime} \oplus b\right)\right) \\
=\left(1 \oplus b^{\prime}\right) *\left(a^{\prime} \oplus 1\right)=1 * 1 \\
(a * b) \oplus\left(a^{\prime} \oplus b^{\prime}\right)=1 \ldots(3) \\
(a * b) *\left(a^{\prime} \oplus b^{\prime}\right)=\left((a * b) * a^{\prime}\right) \oplus\left((a * b) * b^{\prime}\right) \\
=\left((b * a) * a^{\prime}\right) \oplus\left((a * b) * b^{\prime}\right) \\
=\left(b *\left(a * a^{\prime}\right)\right) \oplus\left(a *\left(b * b^{\prime}\right)\right) \\
=(b * 0) \oplus(a * 0)=0 \oplus 0 \\
\\
(a * b) *\left(a^{\prime} \oplus b^{\prime}\right)=0 \ldots(4)
\end{gathered}
$$

From (3) and (4) we get,

$$
(a * b)^{\prime}=a^{\prime} \oplus b^{\prime}
$$

In a Boolean algebra L, Prove that $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}, \forall a, b \in L$
Solution:

$$
\begin{aligned}
(a \wedge b) \vee & \left(a^{\prime} \vee b^{\prime}\right)=\left(a \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \wedge\left(b \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \\
= & \left(a \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \wedge\left(\left(a^{\prime} \vee b^{\prime}\right) \vee b\right) \\
= & \left(\left(a \vee a^{\prime}\right) \vee b^{\prime}\right) \wedge\left(a^{\prime} \vee\left(b^{\prime} \vee b\right)\right) \\
& =\left(1 \vee b^{\prime}\right) \wedge\left(a^{\prime} \vee 1\right)=1 \wedge 1 \\
& (a \wedge b) \vee\left(a^{\prime} \vee b^{\prime}\right)=1 \ldots(1) \\
(a \wedge b) \wedge & \left(a^{\prime} \vee b^{\prime}\right)=\left((a \wedge b) \wedge a^{\prime}\right) \vee\left((a \wedge b) \wedge b^{\prime}\right) \\
= & \left((b \wedge a) \wedge a^{\prime}\right) \vee\left((a \wedge b) \wedge b^{\prime}\right) \\
= & \left(b \wedge\left(a \wedge a^{\prime}\right)\right) \vee\left(a \wedge\left(b \wedge b^{\prime}\right)\right) \\
& =(b \wedge 0) \vee(a \wedge 0)=0 \vee 0 \\
& (a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=0 \ldots(2)
\end{aligned}
$$

From (1) and (2) we get,

$$
(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}
$$

Draw the Hasse diagram of the lattice L of all subsets of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ under intersection and union.
Solution:

Define the relation P on $\{1,2,3,4\}$ by $P=\{(a, b) /|a-b|=1\}$. Determine the adjacency matrix of P^{2}
Solution:

$$
\begin{gathered}
P=\{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)\} . \\
M_{P}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0
\end{array}\right) \\
M_{P^{2}}=M_{P o P}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Let (L, \leq) be a lattice. For any $a, b, c \in L$ if $b \leq c \Rightarrow a * b \leq a * c$ and $a \oplus b \leq a \oplus c$
Solution:

$$
\begin{aligned}
& \quad(a * b) *(a * c)=a *(b * a) * c=a *(a * b) * c \\
& =(a * a) *(b * c)=a * b \quad \therefore(a * b) *(a * c)=a * b \\
& \quad \begin{array}{c}
a * b \leq a * c
\end{array} \\
& \begin{aligned}
&(a \oplus b) *(a \oplus c)=a \oplus(b * c)= a \oplus c \\
& \quad \therefore a \oplus b \leq a \oplus c
\end{aligned} \\
& \text { In a distributice lattice, show that } \\
& \begin{array}{c}
(\boldsymbol{a} * \boldsymbol{b}) \oplus(\boldsymbol{b} * \boldsymbol{c}) \oplus(\boldsymbol{c} * \boldsymbol{a})=(\boldsymbol{a} \oplus \boldsymbol{b}) *(\boldsymbol{b} \oplus \boldsymbol{c}) *(\boldsymbol{c} \oplus \boldsymbol{a})
\end{array} \\
& \text { Solution: } \\
& \qquad \begin{aligned}
&(a * b) \oplus(b * c) \oplus(c * a)=(a * b) \oplus(c * b) \oplus(c * a) \\
&((a \oplus c) * b) \oplus(c * a)
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
=(((a \oplus c) * b) \oplus c) *(((a \oplus c) * b) \oplus a) \\
=(((a \oplus c) \oplus c) *(b \oplus c)) *(((a \oplus c) \oplus a) *(b \oplus a)) \\
=(((a \oplus c) \oplus c) *(b \oplus c)) *((a \oplus(a \oplus c)) *(b \oplus a)) \\
=((a \oplus(c \oplus c)) *(b \oplus c)) *(((a \oplus a) \oplus c) *(b \oplus a)) \\
=(a \oplus c) *(b \oplus c) *(a \oplus c) *(b \oplus a) \\
=(c \oplus a) *(b \oplus c) *(c \oplus a) *(a \oplus b) \\
=(b \oplus c) *(c \oplus a) *(c \oplus a) *(a \oplus b) \\
=(b \oplus c) *(c \oplus a) *(a \oplus b) \\
=(b \oplus c) *(a \oplus b) *(c \oplus a) \\
=(a \oplus b) *(b \oplus c) *(c \oplus a)
\end{gathered}
$$

Simplify the Boolean expression $\left(\left(x_{1}+x_{2}\right)+\left(x_{1}+x_{3}\right)\right) \cdot x_{1} \cdot \overline{x_{2}}$
Solution:

$$
\begin{gathered}
\left(\left(x_{1}+x_{2}\right)+\left(x_{1}+x_{3}\right)\right) \cdot x_{1} \cdot \overline{x_{2}}=\left(x_{1}+x_{2}\right) \cdot x_{1} \cdot \overline{x_{2}}+\left(x_{1}+x_{3}\right) \cdot x_{1} \cdot \overline{x_{2}} \\
=x_{1} \cdot x_{1} \cdot \overline{x_{2}}+x_{2} \cdot x_{1} \cdot \overline{x_{2}}+x_{1} \cdot x_{1} \cdot \overline{x_{2}}+x_{3} \cdot x_{1} \cdot \overline{x_{2}} \\
=x_{1} \cdot x_{1} \cdot \overline{x_{2}}+x_{1} \cdot x_{2} \cdot \overline{x_{2}}+x_{3} \cdot x_{1} \cdot \overline{x_{2}} \\
=x_{1} \cdot \overline{x_{2}}+x_{1} \cdot 0+x_{3} \cdot x_{1} \cdot \overline{x_{2}} \\
=x_{1} \cdot \overline{x_{2}}+x_{3} \cdot x_{1} \cdot \overline{x_{2}} \\
=x_{1} \cdot \overline{x_{2}}
\end{gathered}
$$

State and prove the distributive inequalities of a lattice.
Solution:
Let (L, \leq) be a lattice. For any $a, b, c \in L$
I) $a *(b \oplus c) \geq(a * b) \oplus(a * c)$
II) $a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)$

To prove $a *(b \oplus c) \geq(a * b) \oplus(a * c)$
From $a \geq a * b$ and $a \geq a * c \Rightarrow a \geq(a * b) \oplus(a * c)$..

$$
\begin{equation*}
b \oplus c \geq b \geq(a * b) \tag{1}
\end{equation*}
$$

$$
b \oplus c \geq c \geq(a * c) \ldots
$$

From (2) and (3) we get,

$$
b \oplus c \geq(a * b) \oplus(a * c) \ldots
$$

From (1) and (4) we get,

$$
a *(b \oplus c) \geq(a * b) \oplus(a * c)
$$

To prove $a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)$
From $a \oplus b \geq a$ and $a \oplus c \geq a \Rightarrow(a \oplus b) *(a \oplus c) \geq a$

$$
\begin{align*}
& b * c \leq b \leq(a \oplus b) \tag{6}\\
& b * c \leq c \leq(a \oplus c) .
\end{align*}
$$

From (6) and (7) we get,

$$
\begin{equation*}
b * c \leq(a \oplus b) *(a \oplus c) \ldots \tag{7}
\end{equation*}
$$

From (5) and (8) we get,

$$
\begin{aligned}
& a *(b \oplus c) \geq(a * b) \oplus(a * c) \\
& a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)
\end{aligned}
$$

In a lattice show that $\boldsymbol{a} \leq \boldsymbol{b} \Leftrightarrow \boldsymbol{a} * \boldsymbol{b}=\boldsymbol{a} \Leftrightarrow \boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{b}$
Solution:
To prove $a \leq b \Leftrightarrow a * b=a$
Let us assume that $a \leq b$, we know that $a \leq a$. $\therefore a \leq a * b$
From the definition we know that $a * b \leq a \ldots$ (2)
From (1) and (2) we get $a * b=a$

$$
\therefore a \leq b \Rightarrow a * b=a \ldots(I)
$$

Now assume that $a * b=a$ but it is possible iff $a \leq b$

$$
\therefore a * b=a \Rightarrow a \leq b \ldots \text { (II) }
$$

From (I) and (II) we get

$$
a \leq b \Leftrightarrow a * b=a
$$

To prove $a * b=a \Leftrightarrow a \oplus b=b$
Let us assume that $a * b=a$

$$
\begin{gather*}
b \oplus(a * b)=b \oplus a=a \oplus b . . \tag{3}\\
b \oplus(a * b)=b \ldots
\end{gather*}
$$

From (3) and (4) we get $a \oplus b=b$

$$
\therefore a * b=a \Rightarrow a \oplus b=b \ldots(I I I)
$$

Let us assume that $a \oplus b=b$

$$
\begin{gather*}
a *(a \oplus b)=a * b \ldots(5 \tag{5}\\
a *(a \oplus b)=a \ldots(6)
\end{gather*}
$$

From (5) and (6) we get $a * b=a$

$$
\therefore a \oplus b=b \Rightarrow a * b=a \ldots(I V)
$$

From (III) and (IV) we get $a * b=a \Leftrightarrow a \oplus b=b$

Prove that every chain is a distributive lattice.

Solution:
Let (L, \leq) be a chain and $a, b, c \in L$. Consider the following cases:
(I) $a \leq b$ and $a \leq c$, and (II) $a \geq b$ and $a \geq c$

For (I)

$$
\begin{gathered}
a *(b \oplus c)=a \ldots \text { (1) } \\
(a * b) \oplus(a * c)=a \oplus a=a \ldots \text { (2) }
\end{gathered}
$$

For (II)

$$
\begin{gather*}
a *(b \oplus c)=b \oplus c \ldots \tag{3}\\
(a * b) \oplus(a * c)=b \oplus c \tag{4}
\end{gather*}
$$

\therefore From (1),(2) and (3),(4)

$$
a *(b \oplus c)=(a * b) \oplus(a * c)
$$

\therefore Every chain is a distributive lattice
Show that every distributive lattice is a modular. Whether the converse is true? Justify your answer
Solution:

Let $a, b, c \in L$ and assume that $a \leq c$, then

$$
\begin{gathered}
a \oplus(b * c)=(a \oplus b) *(a \oplus c) \\
=(a \oplus b) * c
\end{gathered}
$$

\therefore Every distributive lattice is modular.
For example let us consider the following lattice

Here in this lattice

$$
\forall a, b, c \in L, a \leq b \Rightarrow a \oplus(b * c)=(a \oplus b) * c
$$

\therefore The above lattice is modular.

$$
\begin{gathered}
a *(b \oplus c)=a * 1=a \ldots \text { (1) } \\
(a * b) \oplus(a * c)=0 \oplus 0=0 \ldots
\end{gathered}
$$

From (1) and (2) we get $a *(b \oplus c) \neq(a * b) \oplus(a * c)$
\therefore The above lattice is not distributive.
\therefore Every distributive lattice is a modular but its converse is not true.

Find the sub lattices of ($\boldsymbol{D}_{45}, /$). Find its complement element.
Solution:

$$
D_{45}=\{1,3,5,9,15,45\} \text { under division rule }
$$

$1 \oplus 45=45$ and $1 * 45=1$
\therefore Complement of 1 is 45
$5 \oplus 9=45$ and $5 * 9=1$
\therefore Complement of 5 is 9
$3 \oplus 15=15$ and $3 * 15=3$
$\therefore 3$ and 15 has no Complement
$\therefore\left(D_{45}, /\right)$ is not a complement lattice

1
The sub lattices of ($D_{45}, /$) are given below

$$
\begin{gathered}
S_{1}=\{1,3,5,9,15,45\}, S_{2}=\{1,3,9,45\}, S_{3}=\{1,5,15,45\}, \\
S_{4}=\{1,3,5,15\}, S_{5}=\{3,9,15,45\}, S_{6}=\{1,3,9,15,45\}, \\
S_{7}=\{1,3,5,15,45\}, S_{8}=\{1,3\}, S_{9}=\{1,5\}, S_{10}=\{1,3,9\}, S_{11}=\{1,5,15\} \\
S_{12}=\{3,9,45\}, S_{13}=\{5,15,45\}, S_{14}=\{3,9\}, S_{15}=\{5,15\}, S_{16}=\{15,45\} \\
S_{17}=\{9,45\}, S_{18}=\{3,15\}, S_{19}=\{3,5,9,15,45\}
\end{gathered}
$$

In any Boolean algebra, show that $a=b \Leftrightarrow a b^{\prime}+a^{\prime} \boldsymbol{b}=\mathbf{0}$
Proof:
Case i) To prove $a=b \Rightarrow a b^{\prime}+a^{\prime} b=0$

$$
\begin{gather*}
a b^{\prime}=b b^{\prime}=0 \ldots \text { (1) }[a=b \text { and Complement law }] \\
a^{\prime} b=a^{\prime} a=0 \ldots \text { (2) }[a=b \text { and Complement law }] \\
a b^{\prime}+a^{\prime} b=0+0=0 \quad[\text { from (1) and (2) }] \tag{3}
\end{gather*}
$$

Case ii) To prove $a b^{\prime}+a^{\prime} b=0 \Rightarrow a=b$

$$
\begin{gathered}
a b^{\prime}+a^{\prime} b=0 \\
a+a b^{\prime}+a^{\prime} b=a+0[b=c \Rightarrow a+b=a+c] \\
a+a^{\prime} b=a[\text { Absorbtion law and } a+0=a] \\
\left(a+a^{\prime}\right)(a+b)=a[\text { Distributive law }] \\
1(a+b)=a \Rightarrow a+b=a \ldots(4)[\text { Complement law }] \\
\text { Similarly from }(3), \text { we get ab } b^{\prime}+a^{\prime} b+b=0+b \\
{[b=c \Rightarrow b+a=c+a]} \\
a b^{\prime}+b=b[\text { Absorbtion law and } 0+b=b] \\
(a+b)\left(b^{\prime}+b\right)=b[\text { Distributive law }] \\
(a+b) 1=b \Rightarrow a+b=b \ldots(5)[\text { Complement law }]
\end{gathered}
$$

From (4) and (5) we get

$$
a=b
$$

Let (L, \leq) be a lattice. For any $a, b, c \in L$ the following holds,

$$
\boldsymbol{a} \leq \boldsymbol{c} \Leftrightarrow \boldsymbol{a} \oplus(b * \boldsymbol{c}) \leq(\boldsymbol{a} \oplus \boldsymbol{b}) * \boldsymbol{c}
$$

Solution: To prove $a \leq c \Rightarrow a \oplus(b * c) \leq(a \oplus b) * c$
Let us assume that $a \leq c$,

$$
a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)[\text { Distributive inequality }]
$$

$$
\leq(a \oplus b) * c[\text { Distributive inequality }]
$$

To prove $a \oplus(b * c) \leq(a \oplus b) * c \Rightarrow a \leq c$
Let us assume that $a \oplus(b * c) \leq(a \oplus b) * c$

$$
\begin{gathered}
(a \oplus b) *(a \oplus c) \leq(a \oplus b) * c[\text { Distributive law }] \\
\Rightarrow(a \oplus c) \leq c \ldots(1)[a * b \leq a * c \Rightarrow b \leq c] \\
a \oplus(b * c) \leq(a \oplus b) * c \\
a \oplus(b * c) \leq(a * c) \oplus(b * c)[\text { Distributive law] } \\
\Rightarrow a \leq(a * c) \leq(a \oplus c) \leq c[\text { Definitionof } * \text { and } \oplus \text { and } 1)] \\
\Rightarrow a \leq c
\end{gathered}
$$

Prove that the direct product of any two distributive lattices is a distributive lattice.

 Solution:Let $(L, *, \oplus)$ and (S, \wedge, v) be two distributive lattices and let $(L \times S, .,+)$ be the direct product of two lattices.
For any $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right) \in L \times S$

$$
\begin{gathered}
\left(a_{1}, b_{1}\right) \cdot\left(\left(a_{2}, b_{2}\right)+\left(a_{3}, b_{3}\right)\right)=\left(a_{1}, b_{1}\right) \cdot\left(a_{2} \oplus a_{3}, b_{2} \vee b_{3}\right) \\
=\left(a_{1} *\left(a_{2} \oplus a_{3}\right), b_{1} \wedge\left(b_{2} \vee b_{3}\right)\right) \\
=\left(\left(a_{1} * a_{2}\right) \oplus\left(a_{1} * a_{3}\right),\left(b_{1} \wedge b_{2}\right) \vee\left(b_{1} \wedge b_{3}\right)\right) \\
=\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)+\left(a_{1}, b_{1}\right) \cdot\left(a_{3}, b_{3}\right)
\end{gathered}
$$

\therefore The direct product of any two distributive lattices is a distributive lattice.
Find the complement of every element of the lattice $<S_{n}, D>$ for $n=75$. Solution:

$$
\begin{gathered}
S_{45}=\{1,3,5,15,25,75\} \text { under division rule } \\
1 \oplus 75=75 \text { and } 1 * 75=1 \\
\therefore \text { Complement of } 1 \text { is } 75 \\
3 \oplus 25=75 \text { and } 3 * 25=1 \\
\therefore \text { Complement of } 3 \text { is } 25 \\
5 \oplus 15=15 \text { and } 5 * 15=5 \\
\therefore 5 \text { and } 15 \text { has no Complement }
\end{gathered}
$$

\therefore It is not a complement lattice

Write the Lattices of ($\boldsymbol{D}_{35}, /$). Find its complements Solution:

$$
\begin{aligned}
D_{35}= & \{1,5,7,35\} \text { under division rule } \\
& 1 \oplus 35=35 \text { and } 1 * 35=1 \\
& \therefore \text { Complement of } 1 \text { is } 35 \\
& 5 \oplus 7=35 \text { and } 5 * 7=1 \\
& \therefore \text { Complement of } 5 \text { is } 7
\end{aligned}
$$

5

