Unit 4 Groups

Part A

Define Algebraic structure.

The operations and relations on the set S define a structure on the elements of S, an algebraic system is called an algebraic structure.

Define Semi-group

Let S be a nonempty set and o be a binary operation on S . The algebraic system ($S,$.) is called a semigroup if the operation . is associative. In other words $(S,$.$) is a semigroup if$ for any $x, y, z \in S$,

$$
(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

Define Monoid

A semigroup ($\mathrm{M},$.) with an identity element with respect to the operation o is called a monoid. In other words, an algebraic system (M,.) is called a monoid if for any $x, y, z \in M,(x . y) . z=x .(y . z)$ and there exists an element $e \in M$ such that for any $x \in M, e . x=x . e=x$

Define semigroup homomorphism.

Let $(S, *)$ and (T, Δ) be any two semigroups. A mapping $g: S \rightarrow T$ such that for any two elements $a, b \in S, g(a * b)=g(a) \Delta g(b)$ is called a semigroup homomorphism.

Define direct product

Let $(S, *)$ and (T, Δ) be two semigroups. The direct product of $(S, *)$ and (T, Δ) is the algebraic system $(S \times T,$.$) in which the operation . on S \times T$ is defined by

$$
\left(s_{1}, t_{1}\right) \cdot\left(s_{2}, t_{2}\right)=\left(s_{1} * s_{2}, t_{1} \Delta t_{2}\right) \text { for any }\left(s_{1}, t_{1}\right) \text { and }\left(s_{2}, t_{2}\right) \in S \times T
$$

Show that the set N of natural numbers is a semigroup under the operation

 $x * y=\max \{x, y\}$. Is it monoid?Given the operation $x * y=\max \{x, y\}$ for any $x, y \in N$.
Clearly $(N, *)$ is closed because $x * y=\max \{x, y\} \in N$ and $*$ is associative as

$$
=\max \{x,\{y * z\}\}
$$

$$
\begin{array}{r}
(x * y) * z=\max \{x * y, z\} \\
=\max \{\max \{x, y\}, z\} \\
=\max \{x, y, z\} \\
=\max \{x, \max \{y, z\}\} \\
=x *(y * z)
\end{array}
$$

Therefore, $(N, *)$ is a semi-group. The identity e of $(N, *)$ must satisfy the property that $x * e=e * x=x$. But $x * e=e * x=\max \{x, e\}$
$=\max \{e, x\}=x$.
Prove that " A semi-group homomorphism preserves the property of associativity. Let $a, b, c \in S$,

$$
\begin{align*}
& g([(a * b) * c]=g(a * b) \cdot g(c) \\
& \quad=[(g(a) \cdot g(b)) \cdot g(c)] \ldots(1 \tag{1}\\
& g[a *(b * c)]=g(a) \cdot g(b * c) \\
& \quad=g(a) \cdot[g(b) \cdot g(c)] \ldots(2) \tag{2}
\end{align*}
$$

But in $S,(a * b) * c=a *(b * c), \forall a, b, c \in S$
$\therefore g[(a * b) * c]=g[a *(b * c)]$
$\Rightarrow[g(a) \cdot g(b)] \cdot g(c)=g(a) \cdot[g(b) \cdot g(c)]$
\therefore The property of associativity is preserved.

Prove that a semi group homomorphism preserves idem potency.
Let $a \in S$ be an idempotent element.
$\therefore a * a=a$

$$
\begin{gathered}
g(a * a)=g(a) \cdot g(a)=g(a) \\
\therefore g(a * a)=g(a) .
\end{gathered}
$$

This shows that $g(a)$ is an idempotent element in T .
The property of idem potency is preserved under semi group homomorphism.

Prove that A semigroup homomorphism preserves commutativity.

Let $a, b \in S$
Assume that $a * b=b * a$

$$
\begin{aligned}
g(a * b) & =g(b * a) \\
g(a) \cdot g(b) & =g(b) \cdot g(a) .
\end{aligned}
$$

This means that the operation. is commutative in T
The semigroup homomorphism preserves commutativity.

Define group.

A non-empty set G, together with a binary operation * is said to be a group if it satisfies the following axioms.
i) $\forall a, b \in G \Rightarrow a * b \in G$ (Closure Property)
ii) For any $a, b, c \in G,(a * b) * c=a *(b * c)$ (Associative property)
iii) There exists an element e in G such that $a * e=e * a=a$, $\forall a \in G$ (Identity)
iv) For all $a \in G$ there exists an element $a-1 \in G$ such that $a * a^{-1}=a^{-1} * a=e$ (Inverse Property)

Define Abelian group

A Group $(G, *)$ is said to be abelian if $a * b=b * a$ for all $a, b \in G$

Define Left coset of Hin G

Let $(H, *)$ be a subgroup of $(G, *)$. For any $a \in G$, the set $a H$ defined by $a H=\{a * h / h \in H\}$ is called the left coset of H in G determined by the element $a \in G$.

The element a is called the representative element of the left coset $a H$.

State Lagrange's theorem

The order of a subgroup of a finite group divides the order of the group. Or If G is a finite group, then $O(H) \backslash O(G)$, for all sub-group H of G.

If $(G, *)$ is a finite group of order n, then for any $a \in G$, we have $a^{\boldsymbol{n}}=e$, where e is the identity of the group G.
Let $O(G)=n$ and Let $a \in G$ Then order of the subgroup $<a>$ is the order of the element a. If $O(<a>)=m$, then $a^{m}=e$ and by Lagrange's theorem, we get $m \backslash$ n.Let $n=m k$ Then $a^{m}=a^{m k}=\left(a^{m}\right)^{k}=e^{k}=e$.

Let $G=\left\{1, a, a^{2}, a^{3}\right\}$ where $\left(a^{4}=1\right)$ be a group and $H=\left\{1, a^{2}\right\}$ is a subgroup of G under multiplication. Find all the cosets of H .
Let us find the right cosets of H in G.

$$
\begin{gathered}
H 1=\left\{1, a^{2}\right\}=H \\
H a=\left\{a, a^{3}\right\} \\
H a^{2}=\left\{a^{2}, a^{4}\right\}=\left\{a^{2}, 1\right\}=H \\
\text { and } H a^{3}=\left\{a^{3}, a^{5}\right\}=\left\{a^{3}, a\right\}=H a
\end{gathered}
$$

$\therefore H .1=H=H a^{2}=\left\{1, a^{2}\right\}$ and $H a=H a^{3}=\left\{a, a^{3}\right\}$ are distinct right cosets of H in G. Similarly, we can find the left cosets of H in G.

Find the left cosets of $\{[0],[2]\}$ in the group $\left(Z_{4},+_{4}\right)$.
Let $Z_{4}=\{[0],[1],[2],[3]\}$ be a group and $H=\{[0],[2]\}$ be a sub-group of Z_{4} under $+_{4}$.
The left cosets of H are

$$
\begin{aligned}
& {[0]+H=\{[0],[2]\}} \\
& {[1]+H=\{[1],[3]\}}
\end{aligned}
$$

$$
[2]+H=\{[2],[4]\}=\{[2],[0]\}=\{[0],[2]\}=H
$$

$[3]+H=\{[3],[5]\}=\{[3],[1]\}=\{[1],[3]\}=[1]+H$
$[0]+H=[2]+H=H$ and $[1]+H=[3]+H$ are the two distinct left cosets of H in Z_{4}.

Define subgroup

Let $(G, *)$ be a group and let H be a non-empty subset of G. Then H is said to be a subgroup of G if H itself is a group with respect to the operation * .

Define normal subgroup

A subgroup $(H, *)$ of $(G, *)$ is called a normal sub-group if for any $a \in G$, $a H=H a$. (i.e.) Left coset $=$ Right coset

Prove that every subgroup of an abelian group is normal subgroup.
Let $(G, *)$ be an abelian group and $(N, *)$ be a subgroup of G.
Let g be any element in G and let $n \in N$.
Now $g * n * g^{-1}=(n * g) * g^{-1}$ [Since G is abelian]

$$
=n * e=n \in N
$$

$$
\therefore \forall g \in G \text { and } n \in N, g * n * g^{-1} \in N
$$

$\therefore(N, *)$ is a normal subgroup.

Define direct product on groups

Let $(G, *)$ and (H, Δ) be two groups. The direct product of these two groups is the algebraic structure $(G \times H$, .) in which the binary operation . on $G \times H$ is given by $\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \Delta h_{2}\right)$ for any $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times H$.

If S denotes the set of positive integers ≤ 100, for any $x, y \in S$, define $x * y=$ $\min \{x, y\}$. Verify whether $(S, *)$ is a monoid assuming that $*$ is associative.
The identity element is $e=100$ exists.
Since for $x \in S, \min (x, 100)=x \Rightarrow x * 100=x, \forall x \in S$

If H is a subgroup of the group G, among the right cosets of H in G. Prove that there is only one subgroup viz., \boldsymbol{H}.
Let $H a$ be a right coset of H in G where $a \in G$. If $H a$ is a subgroup of G then $e \in H a$, where e is the identity element in $G . H a$ is an equivalence class containing a with respect to an equivalence relation.
$e \in H a \Rightarrow H . e=H a$. But $H e=H$
$\therefore H a=H$. This shows H is only subgroup.

Give an example of sub semi-group

For the semi group $(N,+)$, where N is the set of natural number, the set E of all even non-negative integers $(E,+)$ is a sub semi-group of $(N,+)$.

Find the subgroup of order two of the group $\left(\boldsymbol{Z}_{8},+_{8}\right)$
$H=\{[0],[4]\}$ is a subgroup of order two of the group $G=\left(Z_{8},+_{8}\right)$.

$+_{\mathbf{8}}$	$[0]$	$[4]$
$[\mathbf{0}]$	$[0]$	$[4]$
$[4]$	$[4]$	$[0]$

Define Ring

An algebraic system $(S,+,$.$) is called a ring if the binary operations +$ and . on S satisfy the following three properities.
i) $(S,+)$ is an abelian group
ii) $(S$, . $)$ is a semigroup
iii) The operation . is distributive over + , i.e. , for any $a, b, c \in S$,

$$
a \cdot(b+c)=a \cdot b+a \cdot c \text { and }(b+c) \cdot a=b \cdot a+c \cdot a
$$

Define Subring

A commutative ring $(S,+,$.$) is a ring is called a subring if (R,+,$.$) is itself with the$ operations + and. restricted to R.

Define Ring homomorphism

Let $(R,+,$.$) and (S, \oplus, \odot)$ be rings. A mapping $\mathrm{g}: \mathrm{R} \in \mathrm{S}$ is called a ring homomorphism from $(R,+,$.$) to (S, \oplus, \odot)$ if for any $a, b \in R$.

$$
g(a+b)=g(a) \oplus g(b) \text { and } g(a . b)=g(a) \odot g(b)
$$

If $(R,+,$.$) be a ring then prove that a .0=0$ for every $a \in R$

Proof:
Let $a \in R$ then $a .0=a .(0+0)=a .0+a .0$ [by Distributive Law] a. $0=0$ [Cancellation Law]

Give an example of an ring with zero-divisors.

The ring $\left(Z_{10},+_{10}, \cdot 10\right)$ is not an integral domain.
Since $5 \cdot{ }_{10} 2=0,\left(5 \neq 0,2 \neq 0\right.$ in $\left.Z_{10}\right)$

Define Field.

The commutative ring $(R,+, \times)$ with unity is said to be a Field if it has inverse element under the binary operation $\times .\left(a^{-1} \times a=a \times a^{-1}=1, \forall a \in R\right)$.

Part B

State and Prove Lagrange's theorem for finite groups.

Statement:

The order of a subgroup of a finite group is a divisor of the order of the group.
Proof:
Let $a H$ and $b H$ be two left cosets of the subgroup $\{H, *\}$ in the group $\{G, *\}$.
Let the two cosets $a H$ and $b H$ be not disjoint.
Then let c be an element common to $a H$ and $b H$ i.e., $c \in a H \cap b H$

$$
\begin{aligned}
& \because c \in a H, c=a * h_{1}, \text { for some } h_{1} \in H \ldots \text { (1) } \\
& \because c \in b H, c=b * h_{2}, \text { for some } h_{2} \in H \ldots(2)
\end{aligned}
$$

From (1) and (2), we have

$$
\begin{array}{r}
a * h_{1}=b * h_{2} \\
a=b * h_{2} * h_{1}^{-1} \ldots \tag{3}
\end{array}
$$

Let x be an element in $a H$
$x=a * h_{3}$, for some $h_{3} \in H$

$$
=b * h_{2} * h_{1}^{-1} * h_{3}, u \operatorname{sing}
$$

Since H is a subgroup, $h_{2} * h_{1}^{-1} * h_{3} \in H$
Hence, (3) means $x \in b H$
Thus, any element in $a H$ is also an element in $b H . \therefore a H \subseteq b H$
Similarly, we can prove that $b H \subseteq a H$
Hence $a H=b H$
Thus, if $a H$ and $b H$ are disjoint, they are identical.

The two cosets $a H$ and $b H$ are disjoint or identical. ...(4)
Now every element $a \in G$ belongs to one and only one left coset of H in G,
For,
$a=a e \in a H$, since $e \in H \Rightarrow a \in a H$
$a \notin b H$, since $a H$ and $b H$ are disjoint i.e., a belongs to one and only left coset of H in G i.e., $a H$... (5)
From (4) and (5), we see that the set of left cosets of H in G form the partition of G. Now let the order of H be m.
Let $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, where $h_{i}{ }^{\prime} s$ are distinct
Then $a H=\left\{a h_{1}, a h_{2}, \ldots, a h_{m}\right\}$
The elements of $a H$ are also distinct, for, $a h_{i}=a h_{j} \Rightarrow h_{i}=h_{j}$, which is not
true.
Thus H and $a H$ have the same number of elements, namely m.
In fact every coset of H in G has exactly m elements.
Now let the order of the group $\{G, *\}$ be n, i.e., there are n elements in G
Let the number of distinct left cosets of H in G be p.
\therefore The total number of elements of all the left cosets $=p m=$ the total number of elements of G. i.e., $n=p m$
i.e., m, the order of H is adivisor of n, the order of G.

Find all non-trivial subgroups of $\left(\boldsymbol{Z}_{\mathbf{6}}, \boldsymbol{+}_{\mathbf{6}}\right)$
Solution: $\left(Z_{6},+_{6}\right), S=\{[0]\}$ under binary operation $+_{6}$ are trivial subgroups

$+_{6}$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[1]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[0]$
$[2]$	$[2]$	$[3]$	$[4]$	$[5]$	$[0]$	$[1]$
$[3]$	$[3]$	$[4]$	$[5]$	$[0]$	$[1]$	$[2]$
$[4]$	$[4]$	$[5]$	$[0]$	$[1]$	$[2]$	$[3]$
$[5]$	$[5]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$

$S_{1}=\{[0],[2],[4]\}$

$+_{6}$	$[0]$	$[2]$	$[4]$
$[0]$	$[0]$	$[2]$	$[4]$
$[2]$	$[2]$	$[4]$	$[0]$
$[4]$	$[4]$	$[0]$	$[2]$

From the above cayley's table,
All the elements are closed under the binary operation $+_{6}$
Associativity is also true under the binary operation $+_{6}$
[0] is the identity element.
Inverse element of [2] is [4] and vise versa

Hence $S_{1}=\{[0],[2],[4]\}$ is a subgroup of $\left(Z_{6},+{ }_{6}\right)$
$S_{2}=\{[0],[3]\}$

$+_{6}$	$[0]$	$[3]$
$[0]$	$[0]$	$[3]$
$[3]$	$[3]$	$[0]$

From the above cayley's table,
All the elements are closed under the binary operation $+_{6}$
Associativity is also true under the binary operation $+_{6}$
[0] is the identity element.
Inverse element of [3] is itself.
Hence $S_{2}=\{[0],[3]\}$ is a subgroup of $\left(Z_{6},+{ }_{6}\right)$
Therefore $S_{1}=\{[0],[2],[4]\}$ and $S_{2}=\{[0],[3]\}$ are non trivial subgroups of $\left(Z_{6},+_{6}\right)$
Show that the mapping $g:(S,+) \rightarrow(T, *)$ defined by $g(a)=3^{a}$, where S is the set of all rational numbers under addition operation + and T is the set of non-zero real numbers under multiplication operation $*$ is a homomorphism but not isomorphism. Solution:
For any $a, b \in S$,

$$
g(a+b)=3^{a+b}=3^{a} * 3^{b}=g(a) * g(b)
$$

$\therefore g$ is a homomorphism.
To prove g is one to one:
For any $a, b \in S$,
Let $g(a)=g(b) \Rightarrow 3^{a}=3^{b} \Rightarrow a=b$
$\therefore g$ is one to one
To prove g is onto:

$$
\begin{gathered}
b=3^{a} \Rightarrow \log b=\log 3^{a} \Rightarrow \log b=a \log 3 \Rightarrow a=\frac{\log b}{\log 3} \\
\therefore a=g\left(\frac{\log a}{\log 3}\right), \forall a \in T
\end{gathered}
$$

$\therefore \forall a \in T$, there is a pre-image $\frac{\log a}{\log 3} \notin S$
$\left[\because \log 3\right.$ is irratioinal $\Rightarrow \frac{\log a}{\log 3}$ is irratioinal $]$
$\therefore g$ is not onto.
$\therefore g$ is not an isomorphism.

The intersection of any two subgroups of a group \mathbf{G} is again a subgroup of \mathbf{G}. -Prove. Proof:
Let H_{1} and H_{2} be two normal subgroups of a group ($G, *$).
Then H_{1} and H_{2} are subgroups.
$e \in H_{1}$ and $e \in H_{2} \Rightarrow e \in H_{1} \cap H_{2}$. Since e is the identity element of G and it is unique.

$$
\therefore H_{1} \cap H_{2} \text { is non empty. }
$$

$\forall a, b \in H_{1} \cap H_{2} \Rightarrow a, b \in H_{1}$ and $a, b \in H_{2} \Rightarrow a * b^{-1} \in H_{1}$ and $a * b^{-1} \in H_{2}$
Since H_{1} and H_{2} are subgroups.

$$
\begin{gathered}
\Rightarrow a * b^{-1} \in H_{1} \cap H_{2} \\
\therefore H_{1} \cap H_{2} \text { is a subgroup }
\end{gathered}
$$

Show that monoid homomorphism preserves the property of invertibility.

 Solution:If $\{M, *, e\}$ and $\{T, \cdot, e\}$ be any two monoids, where e and e are identity elements of M and T with respect to the operations $*$ and. respectively, then a mapping $g: M \rightarrow T$ such that, for any two elements $a, b \in M$,
$g(a * b)=g(a) . g(b)$ and $g(e)=e^{\prime}$ is called monoid homomorphism.
Let $a^{-1} \in M$ be the inverse of $a \in M$
Then $g\left(a * a^{-1}\right)=g(e)=e^{\prime}$ by definition.
Also $g\left(a * a^{-1}\right)=g(a) \cdot g\left(a^{-1}\right)$ by definition

$$
g(a) \cdot g\left(a^{-1}\right)=e^{\prime}
$$

Hence the inverse of $g(a)=g\left(a^{-1}\right)=(g(a))^{-1}$
\therefore Monoid homomorphism preserves the property of invertibility.
Prove that the intersection of two normal subgroup of a group will be a normal subgroup.
Solution:
Let H_{1} and H_{2} be two normal subgroups of a group ($G, *$).
Then H_{1} and H_{2} are subgroups.
Since $e \in H_{1}$ and $e \in H_{2} \Rightarrow e \in H_{1} \cap H_{2}$

$$
\therefore H_{1} \cap H_{2} \text { is non empty. }
$$

$\forall a, b \in H_{1} \cap H_{2} \Rightarrow a, b \in H_{1}$ and $a, b \in H_{2} \Rightarrow a * b^{-1} \in H_{1}$ and $a * b^{-1} \in H_{2}$ Since H_{1} and H_{2} are subgroups.

$$
\Rightarrow a * b^{-1} \in H_{1} \cap H_{2}
$$

$\therefore H_{1} \cap H_{2}$ is a subgroup
$\forall a \in G, \forall h \in H_{1} \cap H_{2} \Rightarrow h \in H_{1}$ and $h \in H_{2}$,
$\Rightarrow a^{-1} * h * a \in H_{1}$ and $a^{-1} * h * a \in H_{2}$ Since H_{1} and H_{2} are normal subgroups.

$$
\Rightarrow a^{-1} * h * a \in H_{1} \cap H_{2}
$$

$\therefore H_{1} \cap H_{2}$ is a normal subgroup
Let S be a non-empty set and $P(S)$ denote the power set of S. Verify that $\quad(P(S), \cap)$ is a group.
Solution:
$\because P(S)$ denote the power set of S
$\forall A, B \in P(S) \Rightarrow A \cap B \in P(S)$
$\therefore P(S)$ is closed.
$\forall A, B, C \in P(S) \Rightarrow A \cap(B \cap C)=(A \cap B) \cap C$
$\therefore P(S)$ is associative
$\forall A \in P(S)$, we have $A \cap S=A=S \cap A$
$\therefore S \in P(S)$ be the identity element.
$\forall A \in P(S)$, there exists some $B \in P(S)$ such that

$$
A \cap B \neq S
$$

\therefore Inverse does not exists for any subset except S
$(P(S), \mathrm{n})$ is not a group but it is a monoid.
Let $(\boldsymbol{G}, *)$ and (H, Δ) be groups and $\boldsymbol{g}: \boldsymbol{G} \rightarrow \boldsymbol{H}$ be a homomorphism. Then prove that kernel of g is a normal sub-group of G.

Solution:

Let $K=\operatorname{ker}(g)=\left\{g(a)=e^{\prime} \backslash a \in G, e^{\prime} \in H\right\}$
To prove K is a subgroup of G :
We know that $g(e)=e^{\prime} \Rightarrow e \in K$
$\therefore K$ is a non-empty subset of G.
By the definition of homomorphism $g(a * b)=g(a) \Delta g(b), \forall a, b \in G$
Let $a, b \in K \Rightarrow g(a)=e^{\prime}$ and $g(b)=e^{\prime}$
Now $g\left(a * b^{-1}\right)=g(a) \Delta g\left(b^{-1}\right)=g(a) \Delta(g(b))^{-1}=e^{\prime} \Delta\left(e^{\prime}\right)^{-1}$

$$
=e^{\prime} \Delta e^{\prime}=e^{\prime}
$$

$$
\therefore a * b^{-1} \in K
$$

$\therefore K$ is a subgroup of G
To prove K is a normal subgroup of G :
For any $a \in G$ and $k \in K$,

$$
\begin{gathered}
g\left(a^{-1} * k * a\right)=g\left(a^{-1}\right) \Delta g(k) \Delta g(a)=g\left(a^{-1}\right) \Delta g(k) \Delta g(a) \\
=g\left(a^{-1}\right) \Delta e^{\prime} \Delta g(a)=g\left(a^{-1}\right) \Delta g(a)=g\left(a^{-1} * a\right)=g(e)=e^{\prime} \\
a^{-1} * k * a \in K
\end{gathered}
$$

$\therefore K$ is a normal subgroup of G

State and Prove Fundamental theorem of homomorphism.

Statement:
Let g be a homomorphism from a group ($G, *$) to a group (H, Δ), and let K be the kernel of g and $H^{\prime} \subseteq H$ be the image set of g in H. Then G / K is isomorphic to H^{\prime}.
Proof:
Since K is the kernel of homomorphism, it must be a normal subgroup of G. Also we can define a mapping $f:(G, *) \rightarrow(G / K, \otimes)$ where \otimes is defined as $(a * b) H=a H \otimes$ $b H, \forall a, b \in G \ldots$ (1)
i.e., $f(a)=a K \quad$ for any $a \in G$.

Let us define a mapping $h: G / K \rightarrow H^{\prime}$ such that $h(a K)=g(a) \ldots$ (3)
To prove that h is well defined:
For any $a, b \in G$,

$$
\begin{gathered}
\therefore a K=b K \\
a * b^{-1} \in K \Rightarrow a \in K b
\end{gathered}
$$

$$
g\left(a * b^{-1}\right)=e^{\prime}[\text { since } k \text { is kernel of homomorphism from } G \text { to } H]
$$

$$
\begin{gathered}
g(a) \Delta g\left(b^{-1}\right)=e^{\prime}[\text { since } g \text { is homomorphism from } G \text { to } H] \\
g(a) \Delta(g(b))^{-1}=e^{\prime}\left[\because(g(b))^{-1}=g\left(b^{-1}\right)\right] \\
g(a) \Delta(g(b))^{-1} \Delta g(b)=e^{\prime} \Delta g(b) \\
g(a) \Delta e^{\prime}=g(b) \Rightarrow g(a)=g(b) \\
h(a K)=h(b K) \\
a K=b K \Rightarrow h(a K)=h(b K)
\end{gathered}
$$

$\therefore h$ is well defined.
To prove that h is homomorphism:

$$
\begin{gathered}
h(a K \otimes b K)=h((a * b) K)[\text { from }(1)] \\
=g(a * b)[\text { from }(3)] \\
=g(a) \Delta g(b)[\text { since } g \text { is homomorphism from } G \text { to } H] \\
=h(a K) \Delta h(b K)[\text { from }(3)]
\end{gathered}
$$

$\therefore h$ is homomorphism
To prove that h is on to:
The image set of the mapping h is the same as the image set of the mapping g, so that $h: G / K \rightarrow H^{\prime}$ is on to.
To prove that h is one to one:
For any $a, b \in G$,

$$
\begin{aligned}
& h(a K)=h(b K) \\
& g(a)=g(b) \\
& g(a) \Delta(g(b))^{-1}=g(b) \Delta(g(b))^{-1} \\
& g(a) \Delta g\left(b^{-1}\right)=e^{\prime} \quad\left[(g(b))^{-1}\right.\left.=g\left(b^{-1}\right) \& g(b) \Delta(g(b))^{-1}=e^{\prime}\right] \\
& g\left(a * b^{-1}\right)=e^{\prime}[\text { since } g \text { is homomorphism from } G \text { to } H] \\
& a * b^{-1} \in K \Rightarrow a \in K b \\
& \therefore a K=b K
\end{aligned}
$$

$\therefore h$ is one to one
$\therefore h: G / K \rightarrow H^{\prime}$ is isomorphic.

Show that every subgroup of a cyclic group is cyclic.

Proof:

Let G be the cyclic group generated by the element a and let H be a subgroup of G. If $H=G$ or $\{e\}, H$ is cyclic. If not the elements of H are non-zero integral powers of a, since, if $a^{r} \in H$, its inverse $a^{-r} \in H$.
Let m be the least positive integer for which $a^{m} \in H$
Now let a^{n} be any arbitrary element of H. Let q be the quotient and r be the remainder when n is divided by m.
Then $n=m q+r$, where $0 \leq r<m$
Since, $a^{m} \in H,\left(a^{m}\right)^{q} \in H$, by closure property

$$
a^{m q} \in H \Rightarrow\left(a^{m q}\right)^{-1} \in H, \text { by existence of inverse, as } H \text { is a subgroup }
$$

$$
a^{-m q} \in H
$$

Now since, $a^{n} \in H$ and $a^{-m q} \in H \Rightarrow a^{n-m q} \in H \Rightarrow a^{r} \in H$

$$
\begin{gathered}
r=0 \therefore n=m q \\
\therefore a^{n}=a^{m q}=\left(a^{m}\right)^{q}
\end{gathered}
$$

Thus, every element $a^{n} \in H$ is of the form $\left(a^{m}\right)^{q}$.

Hence H is a cyclic subgroup generated by a^{m}.

State and prove Cayley's theorem on permutation groups.

Statement:
Every group G is isomorphic to a subgroup of the group of permutation S_{A} for some set A.

Proof:
We know that $P \subseteq S_{G}$ is the subgroup of permutation group S_{G}. We prove the result by choosing A to be G.
In fact, we prove that the mapping $\varphi:(G, *) \rightarrow(P, o)$ given by $\varphi(a)=p_{a}$ is an isomorphism from G on to P.
To prove φ is homomorphism:
Let $a, b \in G$, then

$$
\varphi(a * b)=p_{a * b}=p_{a} o p_{b}=\varphi(a) o \varphi(b)
$$

$\therefore \varphi$ is homomorphism
To prove φ is one to one:

$$
\begin{gathered}
\varphi(a)=\varphi(b) \\
p_{a}=p_{b} \Rightarrow p_{a}(e)=p_{b}(e) \\
e * a=e * b \\
a=b
\end{gathered}
$$

$\therefore \varphi$ is one to one
To prove φ is on to:
$\because \varphi(a)=p_{a}$, For every image p_{a} in P there is a pre image a in G.
$\therefore \varphi$ is on to.
$\therefore \varphi$ is isomorphism.

Prove that every finite integral domain is a field.

Proof:
Let $\{D,+,$.$\} be a finite integral domain. Then D$ has a finite number of distinct elements, say, $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Let $a \neq 0$ be an element of D.
Then the elements $a . a_{1}, a . a_{2}, \ldots, a . a_{n} \in D$, since D is closed under multiplication. The elements $a . a_{1}, a . a_{2}, \ldots, a . a_{n}$ are distinct, because if $a . a_{i}=a . a_{j}$, then
a. $\left(a_{i}-a_{j}\right)=0$. But $a \neq 0$. Hence $a_{i}-a_{j}=0$, since D is an integral domain i.e.,
$a_{i}=a_{j}$, which is not true, since $a_{1}, a_{2}, \ldots, a_{n}$ are distinct elements of D.
Hence the sets $\left\{a . a_{1}, a . a_{2}, \ldots, a . a_{n}\right\}$ and $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ are the same.
Since $a \in D$ is in both sets, let $a . a_{k}=a$ for some $k \ldots$... (1)
Then a_{k} is the unity of D, detailed as follows
Let $a_{j}=a . a_{i} \ldots$ (2)
Now $a_{j} \cdot a_{k}=a_{k} \cdot a_{j}$, by commutativity
$=a_{k} .\left(a . a_{i}\right)$ by (2)

$$
\begin{gathered}
=\left(a_{k} \cdot a\right) \cdot a_{i} \\
=\left(a \cdot a_{k}\right) \cdot a_{i} \\
=a \cdot a_{i} b y(1)
\end{gathered}
$$

$$
=a_{j} b y(2)
$$

Since, a_{j} is an arbitrary element of D
a_{k} is the unity of D
Let it be denoted by 1 .
Since $1 \in D$, there exist $a \neq 0$ and $a_{i} \in D$ such that $a . a_{i}=a_{i} . a=1$ a has an inverse.
Hence $(D,+,$.$) is a field.$

