Unit 4 Groups Part A

Define Algebraic structure.

The operations and relations on the set S define a structure on the elements of S, an algebraic system is called an algebraic structure.

Define Semi-group

Let S be a nonempty set and o be a binary operation on S. The algebraic system (S, .) is called a semigroup if the operation . is associative. In other words (S, .) is a semigroup if for any $x, y, z \in S$,

$$(x.y).z = x.(y.z).$$

Define Monoid

A semigroup (M,.) with an identity element with respect to the operation o is called a monoid. In other words, an algebraic system (M,.) is called a monoid if for any $x, y, z \in M$, (x. y). z = x. (y. z) and there exists an element $e \in M$ such that for any $x \in M$, e.x = x.e = x

Define semigroup homomorphism.

Let (S,*) and (T, Δ) be any two semigroups. A mapping $g: S \to T$ such that for any two elements $a, b \in S$, $g(a * b) = g(a) \Delta g(b)$ is called a semigroup homomorphism.

Define direct product

Let (S,*) and (T,Δ) be two semigroups. The direct product of (S,*) and (T,Δ) is the algebraic system $(S \times T, .)$ in which the operation . on $S \times T$ is defined by $(s_1, t_1).(s_2, t_2) = (s_1 * s_2, t_1 \Delta t_2)$ for any (s_1, t_1) and $(s_2, t_2) \in S \times T$.

Show that the set N of natural numbers is a semigroup under the operation $x * y = max\{x, y\}$. Is it monoid?

Given the operation $x * y = max\{x, y\}$ for any $x, y \in N$. Clearly (N,*) is closed because $x * y = max\{x, y\} \in N$ and * is associative as $(x * y) * z = max\{x * y, z\}$ $= max\{max\{x, y\}, z\}$ $= max\{x, x, y, z\}$ $= max\{x, max\{y, z\}\}$ $= max\{x, \{y * z\}\}$

Therefore, (N,*) is a semi-group. The identity e of (N,*) must satisfy the property that x * e = e * x = x. But $x * e = e * x = max\{x, e\}$ = $max\{e, x\} = x$.

Prove that "A semi-group homomorphism preserves the property of associativity. Let $a, b, c \in S$,

$$g([(a * b) * c] = g(a * b).g(c)$$

= [(g(a).g(b)).g(c)] ...(1)
$$g[a * (b * c)] = g(a).g(b * c)$$

= g(a).[g(b).g(c)] ...(2)
But in S, (a * b) * c = a * (b * c), \forall a, b, c \in S
 \therefore g[(a * b) * c] = g[a * (b * c)]
 \Rightarrow [g(a).g(b)].g(c) = g(a).[g(b).g(c)]

 \therefore The property of associativity is preserved.

Prove that a semi group homomorphism preserves idem potency.

Let $a \in S$ be an idempotent element.

 $\therefore a * a = a$

$$g(a * a) = g(a).g(a) = g(a)$$

$$\therefore g(a * a) = g(a).$$

This shows that g(a) is an idempotent element in T. The property of idem potency is preserved under semi group homomorphism.

Prove that A semigroup homomorphism preserves commutativity.

Let $a, b \in S$ Assume that a * b = b * a

$$g(a * b) = g(b * a)$$

$$g(a).g(b) = g(b).g(a).$$

This means that the operation . is commutative in T

The semigroup homomorphism preserves commutativity.

Define group.

A non-empty set G, together with a binary operation * is said to be a group if it satisfies the following axioms.

i) $\forall a, b \in G \Rightarrow a^*b \in G$ (Closure Property)

ii) For any $a, b, c \in G$, (a * b) * c = a * (b * c) (Associative property)

iii) There exists an element e in G such that a * e = e * a = a,

 $\forall a \in G \text{ (Identity)}$

iv) For all $a \in G$ there exists an element $a - 1 \in G$ such that $a * a^{-1} = a^{-1} * a = e$ (Inverse Property)

Define Abelian group

A Group (G,*) is said to be abelian if a * b = b * a for all $a, b \in G$

Define Left coset of H in G

Let (H,*) be a subgroup of (G,*). For any $a \in G$, the set aH defined by

 $aH = \{a * h / h \in H\}$ is called the left coset of H in G determined by the element

 $a \in G$.

The element a is called the representative element of the left coset aH.

State Lagrange's theorem

The order of a subgroup of a finite group divides the order of the group. Or If G is a finite group, then $O(H) \setminus O(G)$, for all sub-group H of G.

If (G,*) is a finite group of order n, then for any $a \in G$, we have $a^n = e$, where e is the identity of the group G.

Let O(G) = n and Let $a \in G$ Then order of the subgroup $\langle a \rangle$ is the order of the element a. If $O(\langle a \rangle) = m$, then $a^m = e$ and by Lagrange's theorem, we get $m \setminus n$. Let n = mk Then $a^m = a^{mk} = (a^m)^k = e^k = e$.

Let $G = \{1, a, a^2, a^3\}$ where $(a^4 = 1)$ be a group and $H = \{1, a^2\}$ is a subgroup of G under multiplication. Find all the cosets of H.

Let us find the right cosets of H in G.

$$H1 = \{1, a^2\} = H$$

$$Ha = \{a, a^3\}$$

$$Ha^2 = \{a^2, a^4\} = \{a^2, 1\} = H$$

$$and Ha^3 = \{a^3, a^5\} = \{a^3, a\} = Ha$$

$$H = Ha^2 = \{1, a^2\} and Ha = Ha^3 = \{a, a^3\} are$$

 \therefore H.1 = H = Ha² = {1, a²} and Ha = Ha³ = {a, a³} are distinct right cosets of H in G. Similarly, we can find the left cosets of H in G.

Find the left cosets of $\{[0], [2]\}$ in the group $(Z_4, +_4)$.

Let $Z_4 = \{[0], [1], [2], [3]\}$ be a group and $H = \{[0], [2]\}$ be a sub-group of Z_4 under $+_4$.

The left cosets of *H* are

$$\begin{bmatrix} 0 \end{bmatrix} + H = \{ [0], [2] \} \\ [1] + H = \{ [1], [3] \} \\ [2] + H = \{ [2], [4] \} = \{ [2], [0] \} = \{ [0], [2] \} = H \\ [3] + H = \{ [3], [5] \} = \{ [3], [1] \} = \{ [1], [3] \} = [1] + H \\ [0] + H = [2] + H = H \text{ and } [1] + H = [3] + H \text{ are the two distinct left cosets} \\ \text{of } H \text{ in } Z_4.$$

Define subgroup

Let (G,*) be a group and let H be a non-empty subset of G. Then H is said to be a subgroup of G if H itself is a group with respect to the operation *.

Define normal subgroup

A subgroup (H,*) of (G,*) is called a normal sub-group if for any $a \in G$, aH = Ha. (i.e.) Left coset = Right coset

Prove that every subgroup of an abelian group is normal subgroup.

Let (G,*) be an abelian group and (N,*) be a subgroup of G. Let g be any element in G and let $n \in N$. Now $g * n * g^{-1} = (n * g) * g^{-1}$ [Since G is abelian] $= n * e = n \in N$

$$\therefore \forall g \in G \text{ and } n \in N, g * n * g^{-1} \in N$$

 \therefore (*N*,*) is a normal subgroup.

Define direct product on groups

Let (G,*) and (H, Δ) be two groups. The direct product of these two groups is the algebraic structure ($G \times H$,.) in which the binary operation . on $G \times H$ is given by $(g_1, h_1). (g_2, h_2) = (g_1 * g_2, h_1 \Delta h_2)$ for any $(g_1, h_1), (g_2, h_2) \in G \times H$.

If S denotes the set of positive integers \leq 100, for any $x, y \in S$, define $x * y = min\{x, y\}$. Verify whether (S, *) is a monoid assuming that * is associative. The identity element is e = 100 exists. Since for $x \in S$, $min(x, 100) = x \Rightarrow x * 100 = x$, $\forall x \in S$

If H is a subgroup of the group G, among the right cosets of H in G. Prove that there is only one subgroup viz., H.

Let Ha be a right coset of H in G where $a \in G$. If Ha is a subgroup of G then $e \in Ha$, where e is the identity element in G. Ha is an equivalence class containing a with respect to an equivalence relation.

 $e \in Ha \Rightarrow H.e = Ha.$ But He = H

 \therefore Ha = H. This shows H is only subgroup.

Give an example of sub semi-group

For the semi group (N, +), where N is the set of natural number, the set E of all even non-negative integers (E, +) is a sub semi-group of (N, +).

Find the subgroup of order two of the group $(Z_8, +_8)$

 $H = \{ [0], [4] \}$ is a subgroup of order two of the group $G = (Z_8, +_8)$.

+8	[0]	[4]
[0]	[0]	[4]
[4]	[4]	[0]

Define Ring

An algebraic system (S, +, .) is called a ring if the binary operations + and . on S satisfy the following three properities.

i)(S, +) is an abelian group

ii)(S, .) is a semigroup

iii) The operation . is distributive over + , i.e. , for any $a, b, c \in S$,

a.(b+c) = a.b + a.c and (b+c).a = b.a + c.a

Define Subring

A commutative ring (S, +, .) is a ring is called a subring if (R, +, .) is itself with the operations + and . restricted to R.

Define Ring homomorphism

Let (R, +, .) and (S, \oplus, \odot) be rings. A mapping g:R \in S is called a ring homomorphism from (R, +, .) to (S, \oplus, \odot) if for any $a, b \in R$.

 $g(a+b) = g(a) \oplus g(b)$ and $g(a.b) = g(a) \odot g(b)$

If (R, +, .) be a ring then prove that $a \cdot 0 = 0$ for every $a \in R$ Proof:

Let $a \in R$ then a.0 = a.(0+0) = a.0 + a.0 [by Distributive Law] a.0 = 0 [Cancellation Law]

Give an example of an ring with zero-divisors.

The ring $(Z_{10}, +_{10}, .._{10})$ is not an integral domain. Since $5_{.10} = 0$, $(5 \neq 0, 2 \neq 0 \text{ in } Z_{10})$

Define Field.

The commutative ring $(R, +, \times)$ with unity is said to be a Field if it has inverse element under the binary operation \times . $(a^{-1} \times a = a \times a^{-1} = 1, \forall a \in R)$.

Part B

State and Prove Lagrange's theorem for finite groups.

Statement:

The order of a subgroup of a finite group is a divisor of the order of the group. Proof:

Let aH and bH be two left cosets of the subgroup $\{H,*\}$ in the group $\{G,*\}$. Let the two cosets aH and bH be not disjoint.

Then let *c* be an element common to *aH* and *bH* i.e., $c \in aH \cap bH$

$$: c \in aH, c = a * h_1, for some h_1 \in H \dots (1)$$

$$: c \in bH, c = b * h_2, for some h_2 \in H \dots (2)$$

From (1) and (2), we have

$$a * h_1 = b * h_2$$

 $a = b * h_2 * h_1^{-1} \dots (3)$

Let x be an element in aH $x = a * h_3$, for some $h_3 \in H$ $= b * h_2 * h_1^{-1} * h_3$, using (3) Since H is a subgroup, $h_2 * h_1^{-1} * h_3 \in H$ Hence, (3) means $x \in bH$ Thus, any element in aH is also an element in $bH \therefore aH \subseteq bH$ Similarly, we can prove that $bH \subseteq aH$ Hence aH = bHThus, if aH and bH are disjoint, they are identical. The two cosets aH and bH are disjoint or identical. ...(4) Now every element $a \in G$ belongs to one and only one left coset of H in G, For,

 $a = ae \in aH$, since $e \in H \Rightarrow a \in aH$

 $a \notin bH$, since aH and bH are disjoint i.e., a belongs to one and only left coset of H in G i.e., $aH \dots (5)$

From (4) and (5), we see that the set of left cosets of H in G form the partition of G. Now let the order of H be m.

Let $H = \{h_1, h_2, ..., h_m\}$, where h_i 's are distinct

Then $aH = \{ah_1, ah_2, ..., ah_m\}$

The elements of aH are also distinct, for, $ah_i = ah_j \Rightarrow h_i = h_j$, which is not true

true.

Thus H and aH have the same number of elements, namely m.

In fact every coset of H in G has exactly m elements.

Now let the order of the group $\{G,*\}$ be n, i.e., there are n elements in GLet the number of distinct left cosets of H in G be p.

: The total number of elements of all the left cosets = pm = the total number of elements of *G*. i.e., n = pm

i.e., m, the order of H is adivisor of n, the order of G.

Find all non-trivial subgroups of $(Z_6, +_6)$

Solution: $(Z_6, +_6), S = \{[0]\}$ under binary operation $+_6$ are trivial subgroups

+6	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

 $S_1 = \{[0], [2], [4]\}$

$+_{6}$	[0]	[2]	[4]
[0]	[0]	[2]	[4]
[2]	[2]	[4]	[0]
[4]	[4]	[0]	[2]

From the above cayley's table,

All the elements are closed under the binary operation $+_6$

Associativity is also true under the binary operation $+_6$

[0] is the identity element.

Inverse element of [2] is [4] and vise versa

Hence $S_1 = \{[0], [2], [4]\}$ is a subgroup of $(Z_6, +_6)$ $S_2 = \{[0], [3]\}$

$+_{6}$	[0]	[3]
[0]	[0]	[3]
[3]	[3]	[0]

From the above cayley's table,

All the elements are closed under the binary operation $+_6$

Associativity is also true under the binary operation $+_6$

[0] is the identity element.

Inverse element of [3] is itself.

Hence $S_2 = \{[0], [3]\}$ is a subgroup of $(Z_6, +_6)$ Therefore $S_1 = \{[0], [2], [4]\}$ and $S_2 = \{[0], [3]\}$ are non trivial subgroups of $(Z_6, +_6)$

Show that the mapping $g: (S, +) \rightarrow (T, *)$ defined by $g(a) = 3^a$, where S is the set

of all rational numbers under addition operation + and T is the set of non-zero real numbers under multiplication operation * is a homomorphism but not isomorphism. Solution:

For any $a, b \in S$,

$$g(a + b) = 3^{a+b} = 3^a * 3^b = g(a) * g(b)$$

 \therefore *g* is a homomorphism.

To prove *g* is one to one:

For any $a, b \in S$, Let $g(a) = g(b) \Rightarrow 3^a = 3^b \Rightarrow a = b$

 \therefore g is one to one To prove g is onto:

$$b = 3^{a} \Rightarrow \log b = \log 3^{a} \Rightarrow \log b = a \log 3 \Rightarrow a = \frac{\log b}{\log 3}$$
$$\therefore a = g\left(\frac{\log a}{\log 3}\right), \forall a \in T$$
here is a pre-image $\frac{\log a}{\log 3} \notin S$

 $\therefore \forall a \in T$, the theorem is the tensor of tensor of

 $\left| \because \log 3 \text{ is irrational} \Rightarrow \frac{\log a}{\log 3} \text{ is irrational} \right|$

- $\therefore g$ is not onto.
- \therefore g is not an isomorphism.

The intersection of any two subgroups of a group G is again a subgroup of G. – Prove. Proof:

Let H_1 and H_2 be two normal subgroups of a group (G,*). Then H_1 and H_2 are subgroups.

 $e \in H_1$ and $e \in H_2 \Rightarrow e \in H_1 \cap H_2$. Since *e* is the identity element of G and it is unique.

 $\begin{array}{l} \therefore H_1 \cap H_2 \text{ is non empty.} \\ \forall a, b \in H_1 \cap H_2 \Rightarrow a, b \in H_1 \text{ and } a, b \in H_2 \Rightarrow a * b^{-1} \in H_1 \text{ and } a * b^{-1} \in H_2 \\ \text{Since } H_1 \text{ and } H_2 \text{ are subgroups.} \\ \Rightarrow a * b^{-1} \in H_1 \cap H_2 \\ \therefore H_1 \cap H_2 \text{ is a subgroup} \end{array}$

Show that monoid homomorphism preserves the property of invertibility. Solution:

If $\{M, *, e\}$ and $\{T, \cdot, e'\}$ be any two monoids, where e and e' are identity elements of M and T with respect to the operations * and . respectively, then a mapping $g: M \to T$ such that, for any two elements $a, b \in M$,

g(a * b) = g(a). g(b) and g(e) = e' is called monoid homomorphism. Let $a^{-1} \in M$ be the inverse of $a \in M$ Then $g(a * a^{-1}) = g(e) = e'$ by definition. Also $g(a * a^{-1}) = g(a). g(a^{-1})$ by definition $g(a). g(a^{-1}) = e'$

Hence the inverse of $g(a) = g(a^{-1}) = (g(a))^{-1}$

 \therefore Monoid homomorphism preserves the property of invertibility.

Prove that the intersection of two normal subgroup of a group will be a normal subgroup.

Solution: Let H_1 and H_2 be two normal subgroups of a group (G,*). Then H_1 and H_2 are subgroups. Since $e \in H_1$ and $e \in H_2 \Rightarrow e \in H_1 \cap H_2$ $\therefore H_1 \cap H_2$ is non empty. $\forall a, b \in H_1 \cap H_2 \Rightarrow a, b \in H_1$ and $a, b \in H_2 \Rightarrow a * b^{-1} \in H_1$ and $a * b^{-1} \in H_2$ Since H_1 and H_2 are subgroups. $\Rightarrow a * b^{-1} \in H_1 \cap H_2$ $\therefore H_1 \cap H_2$ is a subgroup $\forall a \in G, \forall h \in H_1 \cap H_2 \Rightarrow h \in H_1$ and $h \in H_2$, $\Rightarrow a^{-1} * h * a \in H_1$ and $a^{-1} * h * a \in H_2$ Since H_1 and H_2 are normal subgroups. $\Rightarrow a^{-1} * h * a \in H_1 \cap H_2$

Let S be a non-empty set and P(S) denote the power set of S. Verify that $(P(S), \cap)$ is a group.

Solution: $\therefore P(S)$ denote the power set of S $\forall A, B \in P(S) \Rightarrow A \cap B \in P(S)$ $\therefore P(S)$ is closed. $\forall A, B, C \in P(S) \Rightarrow A \cap (B \cap C) = (A \cap B) \cap C$ $\therefore P(S) \text{ is associative}$ $\forall A \in P(S) \text{ , we have } A \cap S = A = S \cap A$ $\therefore S \in P(S) \text{ be the identity element.}$ $\forall A \in P(S) \text{ , there exists some } B \in P(S) \text{ such that}$ $A \cap B \neq S$ $\therefore \text{ Inverse does not exists for any subset except } S$ $(P(S) \cap) \text{ is not a group but it is a manual}$

 $(P(S), \cap)$ is not a group but it is a monoid.

Let (G,*) and (H,Δ) be groups and $g: G \to H$ be a homomorphism. Then prove that kernel of g is a normal sub-group of G.

Solution: Let $K = ker(g) = \{g(a) = e' \setminus a \in G, e' \in H\}$ To prove K is a subgroup of G: We know that $g(e) = e' \Rightarrow e \in K$ $\therefore K$ is a non-empty subset of G. By the definition of homomorphism $g(a * b) = g(a) \Delta g(b), \forall a, b \in G$ Let $a, b \in K \Rightarrow g(a) = e'$ and g(b) = e'Now $g(a * b^{-1}) = g(a) \Delta g(b^{-1}) = g(a) \Delta (g(b))^{-1} = e' \Delta (e')^{-1}$ $= e' \Delta e' = e'$ $\therefore a * b^{-1} \in K$ $\therefore K$ is a subgroup of G

To prove K is a normal subgroup of G:

For any $a \in G$ and $k \in K$,

$$g(a^{-1} * k * a) = g(a^{-1}) \Delta g(k) \Delta g(a) = g(a^{-1}) \Delta g(k) \Delta g(a)$$

= $g(a^{-1}) \Delta e' \Delta g(a) = g(a^{-1}) \Delta g(a) = g(a^{-1} * a) = g(e) = e'$
 $a^{-1} * k * a \in K$

 \therefore K is a normal subgroup of G

State and Prove Fundamental theorem of homomorphism.

Statement:

Let g be a homomorphism from a group (G,*) to a group (H, Δ) , and let K be the kernel of g and $H' \subseteq H$ be the image set of g in H. Then G/K is isomorphic to H'. Proof:

Since *K* is the kernel of homomorphism, it must be a normal subgroup of G. Also we can define a mapping $f: (G,*) \to (G/K, \otimes)$ where \otimes is defined as $(a * b)H = aH \otimes bH, \forall a, b \in G \dots (1)$

i.e., f(a) = aK for any $a \in G \dots (2)$ Let us define a mapping $h: G/K \to H'$ such that $h(aK) = g(a) \dots (3)$ To prove that h is well defined:

For any $a, b \in G$,

www.tranquileducation.weebly.com

$$g(a)\Delta g(b^{-1}) = e^{'} [since g is homomorphism from G to H]$$

$$g(a)\Delta (g(b))^{-1} = e^{'} [\because (g(b))^{-1} = g(b^{-1})]$$

$$g(a)\Delta (g(b))^{-1}\Delta g(b) = e^{'}\Delta g(b)$$

$$g(a)\Delta e^{'} = g(b) \Rightarrow g(a) = g(b)$$

$$h(aK) = h(bK)$$

$$aK = bK \Rightarrow h(aK) = h(bK)$$

 \therefore *h* is well defined.

To prove that h is homomorphism:

$$h(aK \otimes bK) = h((a * b)K) [from(1)]$$

= g(a * b)[from(3)]
= g(a) \Delta g(b) [since g is homomorphism from G to H]
= h(aK) \Delta h(bK) [from(3)]

 $\therefore h$ is homomorphism

To prove that h is on to:

The image set of the mapping h is the same as the image set of the mapping g, so that $h: G/K \to H'$ is on to.

To prove that h is one to one:

For any $a, b \in G$,

$$h(aK) = h(bK)$$

$$g(a) = g(b)$$

$$g(a)\Delta (g(b))^{-1} = g(b)\Delta (g(b))^{-1}$$

$$g(a)\Delta g(b^{-1}) = e' [(g(b))^{-1} = g(b^{-1}) \& g(b)\Delta (g(b))^{-1} = e'$$

$$g(a * b^{-1}) = e' [since g is homomorphism from G to H]$$

$$a * b^{-1} \in K \Rightarrow a \in Kb$$

$$\therefore aK = bK$$

 $\therefore h$ is one to one

 $\therefore h: G/K \rightarrow H'$ is isomorphic.

Show that every subgroup of a cyclic group is cyclic. Proof:

Let G be the cyclic group generated by the element a and let H be a subgroup of G. If H = G or $\{e\}$, H is cyclic. If not the elements of H are non-zero integral powers of a, since, if $a^r \in H$, its inverse $a^{-r} \in H$.

Let *m* be the least positive integer for which $a^m \epsilon H$

Now let a^n be any arbitrary element of H. Let q be the quotient and r be the remainder when n is divided by m.

Then n = mq + r, where $0 \le r < m$ Since, $a^m \epsilon H$, $(a^m)^q \epsilon H$, by closure property $a^{mq} \epsilon H \Rightarrow (a^{mq})^{-1} \epsilon H$, by existence of inverse, as H is a subgroup

 $a^{-mq} \in H.$ Now since, $a^n \in H$ and $a^{-mq} \in H \Rightarrow a^{n-mq} \in H \Rightarrow a^r \in H$

$$r = 0 \therefore n = mq$$

$$\cdot a^n = a^{mq} = (a^m)^q$$

Thus, every element $a^n \epsilon H$ is of the form $(a^m)^q$.

www.tranquileducation.weebly.com

Hence H is a cyclic subgroup generated by a^m .

State and prove Cayley's theorem on permutation groups.

Statement:

Every group G is isomorphic to a subgroup of the group of permutation S_A for some set A.

Proof:

We know that $P \subseteq S_G$ is the subgroup of permutation group S_G . We prove the result by choosing A to be G.

In fact, we prove that the mapping $\varphi: (G,*) \to (P,o)$ given by $\varphi(a) = p_a$ is an

isomorphism from G on to P.

To prove φ is homomorphism:

Let $a, b \in G$, then

$$\varphi(a * b) = p_{a*b} = p_a o p_b = \varphi(a) o \varphi(b)$$

 $\therefore \varphi$ is homomorphism

To prove φ is one to one:

$$\varphi(a) = \varphi(b)$$

$$p_a = p_b \Rightarrow p_a(e) = p_b (e)$$

$$e * a = e * b$$

$$a = b$$

 $\therefore \varphi$ is one to one

To prove φ is on to:

 $: \varphi(a) = p_a$, For every image p_a in P there is a pre image a in G.

 $\therefore \varphi$ is on to.

 $\therefore \varphi$ is isomorphism.

Prove that every finite integral domain is a field.

Proof:

Let $\{D, +, .\}$ be a finite integral domain. Then D has a finite number of distinct elements, say, $\{a_1, a_2, ..., a_n\}$.

Let $a \neq 0$ be an element of D.

Then the elements $a. a_1, a. a_2, ..., a. a_n \in D$, since D is closed under multiplication. The elements $a. a_1, a. a_2, ..., a. a_n$ are distinct, because if $a. a_i = a. a_i$, then

 $a.(a_i - a_j) = 0$. But $a \neq 0$. Hence $a_i - a_j = 0$, since D is an integral domain i.e.,

 $a_i = a_j$, which is not true, since a_1, a_2, \dots, a_n are distinct elements of D.

Hence the sets { $a. a_1, a. a_2, ..., a. a_n$ } and { $a_1, a_2, ..., a_n$ } are the same. Since $a \in D$ is in both sets, let $a. a_k = a$ for some k ... (1)Then a_k is the unity of D, detailed as follows Let $a_j = a. a_i ... (2)$ Now $a_j. a_k = a_k. a_j$, by commutativity $= a_k. (a. a_i)$ by (2) $= (a_k. a). a_i$ $= (a. a_k). a_i$ $= a. a_i$ by (1) $= a_j by (2)$ Since, a_j is an arbitrary element of D a_k is the unity of DLet it be denoted by 1. Since $1 \in D$, there exist $a \neq 0$ and $a_i \in D$ such that $a. a_i = a_i. a = 1$ a has an inverse. Hence (D, +, .) is a field.