
Anna University, Chennai, April/May 2011 

 

www.tranquileducation.weebly.com  1 
 

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 
Fifth Semester 

Computer Science and Engineering 
MA2265 – DISCRETE MATHEMATICS 

(Regulation 2008) 
 

Part - A 
1. Without using truth table show that 𝐏 →  𝐐 → 𝐏 ⇒∼ 𝐏 →  𝐏 → 𝐐  

Sol: P →  Q → P ⇒∼ P →  P → Q  

To prove:    P →  Q → P  →  ∼ P →  P → Q   is a tautology 

⇔∼  ∼ P ∨  ∼ Q ∨ P  ∨  ∼∼ P ∨  ∼ P ∨ Q   

⇔∼  ∼ P ∨  ∼ Q ∨ P  ∨  P ∨  ∼ P ∨ Q   

⇔∼  ∼ P ∨  P ∨∼ Q  ∨   P ∨∼ P ∨ Q  

⇔∼   P ∨∼ P ∨∼ Q ∨  T ∨ Q  

⇔∼  T ∨∼ Q ∨ T 

⇔ T 

∴  P →  Q → P  →  ∼ P →  P → Q   is a tautology 

∴ P →  Q → P ⇒∼ P →  P → Q  

 

2. Show that  𝐏 →  𝐐 → 𝐑  →   𝐏 → 𝐐 →  𝐏 → 𝐑   is a tautology. 

Solution: 

Let 𝑆: P →  Q → R →   P → Q →  P → R   

      A: P →  Q → R  

      B:  P → Q →  P → R  

 

𝐏 𝑸 𝑹 𝐏 → 𝐐 𝐏 → 𝐑 𝐐 → 𝐑 𝑨 𝐁 𝑺 

T T T T T T T T T 

T F T F T T T T T 

F T T T T T T T T 

F F T T T T T T T 

T T F T F F F F T 

T F F F F T T T T 

F T F T T F T T T 

F F F T T T T T T 

 

Since all the values in last column are true.   P →  Q → R  →   P → Q →  P → R   is a tautology. 

 

3. If seven colours are used to paint 50 bicycles, then show that at least 8 bicycles will be the same 
colour.  
Solution: 
By Pigeon principle,  

If there are n pigeons and k holes, then there is at least one hole contains at least  
𝑘−1

𝑛
 + 1 pigeons. 
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Here 𝑘 = 50, 𝑛 = 7 

 
𝑘 − 1

𝑛
 + 1 =  

50 − 1

7
 + 1 =  

49

7
 + 1 = 7 + 1 = 8 

∴There is at least 8 bicycles will be the same colour. 
 
 4. Solve the recurrence relation 𝒚 𝒏 − 𝟖𝒚 𝒏 − 𝟏 + 𝟏𝟔𝒚 𝒏 − 𝟐 = 𝟎 for 𝒏 ≥ 𝟐 , where  
       𝒚 𝟐 = 𝟏𝟔 and 𝒚 𝟑 = 𝟖𝟎. 
Solution: 

𝑦 𝑛 − 8𝑦 𝑛 − 1 + 16𝑦 𝑛 − 2 = 0 … (1) 
Let 𝑦𝑛 = 𝑟𝑛  be the solution of (1). 

 1 ⇒ 𝑟𝑛 − 8𝑟𝑛−1 + 16𝑟𝑛−2 = 0 

𝑟𝑛  1 −
8

𝑟
+

16

𝑟2
= 0  

𝑟𝑛

𝑟2
 𝑟2 − 8𝑟 + 16 = 0  

The characteristic equation is 𝑟2 − 8𝑟 + 16 = 0 
 𝑟 − 4 2 = 0 ⇒ 𝑟 = 4,4 

Hence the solution to this recurrence relation is 
𝑦𝑛 = 𝛼14𝑛 + 𝛼2𝑛4𝑛 … 2  

𝑦2 = 16 ⇒ 𝛼1 + 2𝛼2 = 1 … 3  

𝑦3 = 80 ⇒ 𝛼1 + 3𝛼2 =
5

4
… 4  

Solving (3) and (4), we get 

𝛼1 =
1

2
, 𝛼2 =

1

4
 

Substituting 𝛼1 =
1

2
, 𝛼2 =

1

4
 in (2), 

𝑦𝑛 =
1

2
4𝑛 +

1

4
𝑛4𝑛  

 
5. Define Pseudo graph.   
Answer: 
A graph with self loops and parallel edges is called Pseudo graphs. 
 
6. Draw a complete bipartite graph of 𝑲𝟐,𝟑 and 𝑲𝟑,𝟑.  
 Solution: 

 

𝑣1 𝑣2 

𝑣3 𝑣4 𝑣5 

𝐾2,3  

𝑣2 

𝑣4 𝑣5 𝑣6 

𝐾3,3  

𝑣1 𝑣3 
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7. If 𝒂 and 𝒃 are any two elements of a group (𝑮,∗), show that 𝑮 is an Abelian group if and only if 

      𝒂 ∗ 𝒃 𝟐 = 𝒂𝟐 ∗ 𝒃𝟐.  
Proof: 
Let  𝐺,∗  be a group and  𝑎 ∗ 𝑏 2 = 𝑎2 ∗ 𝑏2  
                                              ⇒  𝑎 ∗ 𝑏 ∗  𝑎 ∗ 𝑏 =  𝑎 ∗ 𝑎 ∗  𝑏 ∗ 𝑏  

⇒ 𝑎 ∗  𝑏 ∗ 𝑎 ∗ 𝑏 = 𝑎 ∗  𝑎 ∗ 𝑏 ∗ 𝑏  𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
⇒ 𝑏 ∗ 𝑎 = 𝑎 ∗ 𝑏  𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑅𝑖𝑔𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤𝑠  

                                             ⇒ (𝐺,∗) is abelian. 
Conversely, let  𝐺,∗  be abelian. 

 𝑎 ∗ 𝑏 2 =  𝑎 ∗ 𝑏 ∗  𝑎 ∗ 𝑏  
= 𝑎 ∗  𝑏 ∗ 𝑎 ∗ 𝑏 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
= 𝑎 ∗  𝑎 ∗ 𝑏 ∗ 𝑏  ∵ 𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛  

=  𝑎 ∗ 𝑎 ∗  𝑏 ∗ 𝑏  𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  
∴  𝑎 ∗ 𝑏 2 = 𝑎2 ∗ 𝑏2  

 
8. Let  𝑴,∗,𝒆𝑴  be a monoid and 𝒂 ∈ 𝑴. If 𝒂 is invertible, then show that its inverse is unique.  
Proof: 
Let 𝑎1 ∈ 𝑀 and 𝑎2 ∈ 𝑀 are the two distinct inverses for 𝑎 ∈ 𝑀. 

𝑎1 ∗ 𝑎 = 𝑎 ∗ 𝑎1 = 𝑒𝑀 … 1  
𝑎2 ∗ 𝑎 = 𝑎 ∗ 𝑎2 = 𝑒𝑀 … 2  

𝑎1 ∗ 𝑎 = 𝑎2 ∗ 𝑎   𝑓𝑟𝑜𝑚  1  𝑎𝑛𝑑 (2)  
𝑎1 = 𝑎2  𝑅𝑖𝑔𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤  

 
9. Check whether the posets  (𝟏, 𝟑,𝟔, 𝟗),𝑫 and  (𝟏, 𝟓,𝟐𝟓,𝟏𝟐𝟓),𝑫  are lattices or not. Justify your 
claim.  
Solution: 

 
 
 (1,3,6,9), 𝐷  is not a lattice, since 𝐿𝑈𝐵 6,9  does not exist. 
 (1,5,25,125), 𝐷  is a lattice, since every pair of elements in it has both 𝐿𝑈𝐵 and 𝐺𝐿𝐵. 
 
10. Show that in a Boolean algebra 𝒂𝒃′ + 𝒂′𝒃 = 𝟎 if and only if 𝒂 = 𝒃.  
Proof: 
Let 𝑎 = 𝑏 

⇒ 𝑎𝑏′ + 𝑎′𝑏 = 𝑏𝑏′ + 𝑎𝑎′ 
⇒ 𝑎𝑏′ + 𝑎′𝑏 = 0 + 0 

⇒ 𝑎𝑏′ + 𝑎′𝑏 = 0 

125 

25 

5 

1 

1 

3 

9 6 
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Conversely, 𝑎𝑏′ + 𝑎′𝑏 = 0 
⇒ 𝑎 + 𝑎𝑏′ + 𝑎′𝑏 = 𝑎 + 0 

⇒ 𝑎 + 𝑎′𝑏 = 𝑎 
⇒  𝑎 + 𝑎′  𝑎 + 𝑏 = 𝑎 

⇒ 1 𝑎 + 𝑏 = 𝑎 ⇒  𝑎 + 𝑏 = 𝑎…  1  

𝑎𝑏′ + 𝑎′𝑏 = 0 ⇒ 𝑎𝑏′ + 𝑎′𝑏 + 𝑏 = 0 + 𝑏 
⇒ 𝑎𝑏′ + 𝑏 = 𝑏 

⇒  𝑎 + 𝑏  𝑏′ + 𝑏 = 𝑏 
⇒  𝑎 + 𝑏 1 = 𝑏 ⇒  𝑎 + 𝑏 = 𝑏 

𝑎 + 𝑏 = 𝑏… (2) 

From (1) and (2) we get 

𝑎 = 𝑏 

11.a) i) Use indirect method of proof to prove that  
 (𝒙) (𝑷(𝒙) ⋁ 𝑸(𝒙))  ⇒  𝒙 𝑷 𝒙  ⋁  (∃𝒙)𝑸(𝒙) 

Solution: 
Let us prove this by indirect method 

Let us assume that ¬  𝑥 𝑃 𝑥 ⋁  (∃𝑥)𝑄(𝑥)  as additional premise 

1. ¬  𝑥 𝑃 𝑥 ⋁   ∃𝑥 𝑄 𝑥                                       𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 
2. ¬ 𝑥  𝑃 𝑥 ⋀  ¬  ∃𝑥 𝑄 𝑥                                    1, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤              
3. ¬ 𝑥  𝑃 𝑥                                                                𝑅𝑢𝑙𝑒 𝑇, 2 
4.  ∃𝑥 ¬ 𝑃 𝑥                                                             3, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤 
5. ¬ 𝑃 𝑎                                                                     𝑅𝑢𝑙𝑒 𝐸𝑆, 4              
6. ¬  ∃𝑥 𝑄 𝑥                                                           𝑅𝑢𝑙𝑒 𝑇, 2           

      7.  𝑥 ¬ 𝑄 𝑥                                                              6, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤  
      8.  ¬𝑄 𝑎                                                                   𝑅𝑢𝑙𝑒 𝑈𝑆, 7   
      9. ¬ 𝑃 𝑎 ⋀ ¬𝑄 𝑎                                                   5,8, 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛   

      10. ¬  𝑃 𝑎 ⋁ 𝑄 𝑎                                                9, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤         
      11. (𝑥) (𝑃(𝑥) ⋁ (𝑄(𝑥))                                         𝑅𝑢𝑙𝑒 𝑃         
      12.  𝑃 𝑎 ⋁ 𝑄 𝑎                                                      𝑅𝑢𝑙𝑒 𝑈𝑆, 11         
      13. ¬  𝑃 𝑎 ⋁ 𝑄 𝑎   ⋀  𝑃 𝑎 ⋁ 𝑄 𝑎                11,12, 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛        

      14.  𝐹                                                                         𝑅𝑢𝑙𝑒 𝑇, 13        
 

ii) Without using truth table find the PCNF and PDNF of 

              𝐏 →  𝐐 ∧ 𝐏 ∧  ∼ 𝐏 →  ∼ 𝐐 ∧∼ 𝐑   

Solution: Let S ⇔ P →  Q ∧ P ∧  ∼ P →  ∼ Q ∧∼ R   

                            ⇔∼ P ∨  Q ∧ P ∧  ∼∼ P ∨  ∼ Q ∧∼ R   

                            ⇔∼ P ∨  Q ∧ P ∧  P ∨  ∼ Q ∧∼ R   

                            ⇔  ∼ P ∨ Q ∧  ∼ P ∨ P ∧  P ∨∼ Q ∧  P ∨∼ R  
                            ⇔  ∼ P ∨ Q ∧ T ∧  P ∨∼ Q ∧  P ∨∼ R  
                            ⇔  ∼ P ∨ Q ∧  P ∨∼ Q ∧  P ∨∼ R  
                            ⇔  ∼ P ∨ Q ∨ F ∧  P ∨∼ Q ∨ F ∧  P ∨ F ∨∼ R  

                            ⇔  ∼ P ∨ Q ∨  R ∧∼ R  ∧  P ∨∼ Q ∨  R ∧∼ R  ∧  P ∨  Q ∧∼ Q ∨∼ R  

                           ⇔  ∼ P ∨ Q ∨ R ∧  ∼ P ∨ Q ∨∼ R ∧  P ∨∼ Q ∨ R ∧  P ∨∼ Q ∨∼ R  
                                  ∧  P ∨ Q ∨∼ R    ∧  P ∨∼ Q ∨∼ R  

      ⇔  ∼ P ∨ Q ∨ R ∧  ∼ P ∨ Q ∨∼ R ∧  P ∨∼ Q ∨ R ∧  P ∨∼ Q ∨∼ R  
                                             ∧  P ∨ Q ∨∼ R  is a PCNF 
                   ∼ S ⇔ Remaining maxterms in S 
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                   ∼ S ⇔  P ∨ Q ∨ R ∧  ∼ P ∨∼ Q ∨ R ∧  ∼ P ∨∼ Q ∨∼ R            
                ∼∼ S ⇔  ∼ P ∧∼ Q ∧∼ R ∨  P ∧ Q ∧∼ R ∨  P ∧ Q ∧ R  is a PDNF. 
 
b)i) Show that:  𝑷 → 𝑸 ∧  𝑹 → 𝑺 ,  𝑸 ∧ 𝑴 ∧  𝑺 → 𝑵 , ∼  𝑴 ∧ 𝑵  and 𝑷 → 𝑹 ⇒∼ 𝑷. 
Solution:  

1.  𝑃 → 𝑄 ∧  𝑅 → 𝑆                                                  𝑅𝑢𝑙𝑒 𝑃 
2.  𝑄 ∧ 𝑀 ∧  𝑆 → 𝑁                                                  𝑅𝑢𝑙𝑒 𝑃 
3. ∼  𝑀 ∧ 𝑁                                                                 𝑅𝑢𝑙𝑒 𝑃 
4. 𝑃 → 𝑅                                                                       𝑅𝑢𝑙𝑒 𝑃 
5. 𝑃 → 𝑄                                                                      𝑅𝑢𝑙𝑒 𝑇, 1, 𝑃 ∧ 𝑄 ⇒ 𝑃              
6. 𝑅 → 𝑆                                                                      𝑅𝑢𝑙𝑒 𝑇, 1, 𝑃 ∧ 𝑄 ⇒ 𝑄          

      7. 𝑄 ∧ 𝑀                                                                       𝑅𝑢𝑙𝑒 𝑇, 2, 𝑃 ∧ 𝑄 ⇒ 𝑃  
      8.  𝑆 → 𝑁                                                                     𝑅𝑢𝑙𝑒 𝑇, 2, 𝑃 ∧ 𝑄 ⇒ 𝑄   
      9. ∼ 𝑀 ∨∼ 𝑁                                                             𝑅𝑢𝑙𝑒 𝑇, 3, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤    
      10. 𝑃 → 𝑆                                                                   𝑅𝑢𝑙𝑒 𝑇, 4,6, 𝐶𝑎𝑖𝑛 𝑟𝑢𝑙𝑒         
      11. 𝑃 → 𝑁                                                                  𝑅𝑢𝑙𝑒 𝑇, 10,8, 𝐶𝑎𝑖𝑛 𝑟𝑢𝑙𝑒        
      12.  𝑀                                                                         𝑅𝑢𝑙𝑒 𝑇, 7, 𝑃 ∧ 𝑄 ⇒ 𝑄         
      13. ∼ 𝑁                                                                      𝑅𝑢𝑙𝑒 𝑇, 9,12, 𝐷𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 𝑆𝑦𝑙𝑙𝑜𝑔𝑖𝑠𝑚 

             14. ∼ 𝑃                                                                      𝑅𝑢𝑙𝑒 𝑇, 11,13, 𝑀𝑜𝑑𝑢𝑠 𝑡𝑜𝑙𝑙𝑒𝑛𝑠        
 
ii) Verify that validating of the following inference.  
If one person is more successful than another, then he has worked harder to deserve success.  
Ram has not worked harder than Siva. Therefore, Ram is not more successful than Siva.  
Solution: 
Let 𝑆 𝑥, 𝑦 : 𝑥 𝑖𝑠 𝑚𝑜𝑟𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑎𝑛 𝑦. 
𝐻 𝑥, 𝑦 : 𝑥 𝑤𝑜𝑟𝑘𝑠 𝑎𝑟𝑑𝑒𝑟 𝑡𝑎𝑛 𝑦. 
If one person is more successful than another, then he has worked harder to deserve success. 

∃𝑥∃𝑦 𝑆 𝑥, 𝑦 → 𝐻(𝑥, 𝑦)  

Ram has not worked harder than Siva. 

∼ 𝐻 𝑎, 𝑏        𝑤𝑒𝑟𝑒 𝑎 𝑖𝑠 𝑅𝑎𝑚 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝑆𝑖𝑣𝑎   

Ram is not more successful than Siva. 

∼ 𝑆 𝑎, 𝑏  

The inference is  

∃𝑥∃𝑦 𝑆 𝑥, 𝑦 → 𝐻(𝑥, 𝑦) , ∼ 𝐻 𝑎, 𝑏 ⇒∼ 𝑆 𝑎, 𝑏  

1. ∃𝑥∃𝑦 𝑆 𝑥, 𝑦 → 𝐻(𝑥, 𝑦)                                        𝑅𝑢𝑙𝑒 𝑃 
2.  ∼ 𝐻 𝑎, 𝑏                                                                𝑅𝑢𝑙𝑒 𝑃 
3. ∃𝑦 𝑆 𝑎, 𝑦 → 𝐻(𝑎, 𝑦)                                            𝑅𝑢𝑙𝑒 𝑇, 1, 𝐸𝑆 
4. 𝑆 𝑎, 𝑏 → 𝐻 𝑎, 𝑏                                                   𝑅𝑢𝑙𝑒 𝑇, 1, 𝐸𝑆 

              5. ∼ 𝑆 𝑎, 𝑏                                                                 𝑅𝑢𝑙𝑒 𝑇, 2,4, 𝑀𝑜𝑑𝑢𝑠 𝑡𝑜𝑙𝑙𝑒𝑛𝑠               

 

12.a)i) Use Mathematical induction show that   

 𝒌𝟐 =
𝒏 𝒏 + 𝟏  𝟐𝒏 + 𝟏 

𝟔

𝒏

𝒌=𝟏

 

Solution: 

𝐿𝑒𝑡 𝑃 𝑛 : 12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛 𝑛 + 1  2𝑛 + 1 

6
                    … (1) 
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𝑃 1 : 12 =
1 1 + 1  2 + 1 

6
 

1 =
6

6
⇒ 1 = 1 

∴ 𝑃(1) is true. 
Let us assume that 𝑃(𝑛)  is true. Now we have to prove that 𝑃(𝑛 + 1) is true. 
To prove: 

𝑃 𝑛 + 1 : 12 + 22 + 32 + ⋯ +  𝑛 + 1 2 =
 𝑛 + 1  𝑛 + 2  2𝑛 + 3 

6
 

12 + 22 + 32 + ⋯+ 𝑛2 +  𝑛 + 1 2 =
𝑛 𝑛 + 1  2𝑛 + 1 

6
+  𝑛 + 1 2            (𝑓𝑟𝑜𝑚  1 ) 

=
𝑛 𝑛 + 1  2𝑛 + 1 + 6 𝑛 + 1 2

6
 

=
 𝑛 + 1  𝑛 2𝑛 + 1 + 6 𝑛 + 1  

6
 

=
 𝑛 + 1  2𝑛2 + 𝑛 + 6𝑛 + 6 

6
 

=
 𝑛 + 1  2𝑛2 + 7𝑛 + 6 

6
 

12 + 22 + 32 + ⋯ + 𝑛2 +  𝑛 + 1 2 =
 𝑛 + 1  𝑛 + 2  2𝑛 + 3 

6
 

 
∴ 𝑃 𝑛 + 1  is true. 
∴ By induction method,  

𝑃 𝑛 : 12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛 𝑛 + 1  2𝑛 + 1 

6
 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 

 
ii) There are 2500 students in a college, of these 1700 have taken a course in C, 1000 have taken a 
course in Pascal and 550 have taken a course in Networking. Further 750 have taken courses in both C 
and Pascal. 400 have taken courses in both C and Networking, and 275 have taken courses in both 
Pascal and Networking. If 200 of these students have taken courses in C, Pascal and Networking.  
(1) How many of these 2500 students have taken a course in any of these three courses C, Pascal and 
Networking?  
(2) How many of these 2500 students have not taken a course in any of these three courses C, Pascal 
and Networking?  
Solution:  

Let U denote the number of students in a college. 
Let A denote the number of students taken a course in C. 
Let B denote the number of students taken a course in PASCAL. 
Let C denote the number of students taken a course in Networking. 
 𝑈 = 2500,  𝐴 = 1700,  𝐵 = 1000,  𝐶 = 550,  𝐴 ∩ 𝐵 = 750,  𝐴 ∩ 𝐶 = 400, 
 𝐵 ∩ 𝐶 = 275,  𝐴 ∩ 𝐵 ∩ 𝐶 = 200 
(1) The number of students has taken a course in any of these three courses C, Pascal and 
Networking 
𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡𝑎𝑡  
 𝐴 ∪ 𝐵 ∪ 𝐶 =  𝐴 +  𝐵 +  𝐶 −  𝐴 ∩ 𝐵 −  𝐴 ∩ 𝐶 −  𝐵 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶| 
= 1700 + 1000 + 550 − 750 − 400 − 275 + 200 
 𝐴 ∪ 𝐵 ∪ 𝐶 = 2025. 
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(2) The number of students has not taken a course in any of these three courses C, Pascal and 
Networking is 
  𝐴 ∪ 𝐵 ∪ 𝐶 ′ =  𝑈 −   𝐴 ∪ 𝐵 ∪ 𝐶  = 2500 − 2025 = 475 

 

 b) i) Using generating function solve 𝒚𝒏+𝟐 − 𝟓𝒚𝒏+𝟏 + 𝟔𝒚𝒏 = 𝟎 ,𝒏 ≥ 𝟎 with 𝐲𝐨 = 𝟏 and  

               𝐲𝟏 = 𝟏.         

Solution:  

𝐿𝑒𝑡 𝐺 𝑥 =  𝑦𝑛𝑥𝑛

∞

𝑛=0

… (1) where 𝐺 𝑥  is the generating function for the sequence  𝑦𝑛 . 

Given 𝑦𝑛+2 − 5𝑦𝑛+1 + 6𝑦𝑛 = 0  

Multiplying by 𝑥𝑛  and summing from 0 to ∞, we have 

 𝑦𝑛+2𝑥
𝑛

∞

𝑛=0

− 5  𝑦𝑛+1𝑥
𝑛

∞

𝑛=0

+ 6  𝑦𝑛𝑥𝑛

∞

𝑛=0

= 0  

1

𝑥2
 𝑦𝑛+2𝑥

𝑛+2 

∞

𝑛=0

−
5

𝑥
 𝑦𝑛+1𝑥

𝑛+1

∞

𝑛=0

+ 6  𝑦𝑛𝑥𝑛

∞

𝑛=0

= 0 

1

𝑥2
 𝐺 𝑥 − 𝑦1𝑥 − 𝑦0 −

5

𝑥
 𝐺 𝑥 − 𝑦0 + 6𝐺 𝑥 = 0            [𝑓𝑟𝑜𝑚  1 ] 

𝐺 𝑥  
1

𝑥2
−

5

𝑥
+ 6 −

𝑦1

𝑥
−

𝑦0

𝑥2
+

5𝑦0

𝑥
= 0 

𝐺 𝑥  
1

𝑥2
−

5

𝑥
+ 6 −

1

𝑥
−

1

𝑥2
+

5

𝑥
= 0 ⇒ 𝐺 𝑥  

6𝑥2 − 5𝑥 + 1

𝑥2
 =

1

𝑥2
−

4

𝑥
 

𝐺 𝑥  
6𝑥2 − 5𝑥 + 1

𝑥2
 =

1 − 4𝑥

𝑥2
 

𝐺 𝑥 =
1 − 4𝑥

6𝑥2 − 5𝑥 + 1
=

1 − 4𝑥

 3𝑥 − 1  2𝑥 − 1 
 

1 − 4𝑥

 3𝑥 − 1  2𝑥 − 1 
=

𝐴

 3𝑥 − 1 
+

𝐵

 2𝑥 − 1 
 

1 − 4𝑥 = 𝐴 2𝑥 − 1 + 𝐵 3𝑥 − 1 …  2  

Put 𝑥 =
1

2
 in (2) 

1 − 4  
1

2
 = 𝐵  

3

2
− 1 ⇒

1

2
𝐵 = −1 ⇒ 𝐵 = −2 

Put 𝑥 =
1

3
 in (2) 

1 − 4  
1

3
 = 𝐴  

2

3
− 1 ⇒ −  

1

3
𝐴 = −

1

3
⇒ 𝐴 = 1 

𝐺 𝑥 =
1

 3𝑥 − 1 
−

2

 2𝑥 − 1 
= −

1

 1 − 3𝑥 
+

2

 1 − 2𝑥 
 

 

 𝑦𝑛𝑥𝑛

∞

𝑛=0

= −  3𝑛𝑥𝑛

∞

𝑛=0

+ 2  2𝑛𝑥𝑛

∞

𝑛=0

 

𝑦𝑛 = Coefficient of 𝑥𝑛  in 𝐺(𝑥) 

𝑦𝑛 = −3𝑛 + 2𝑛+1 
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ii) A box contains six white balls and five red balls. Find the number of ways four balls can be  
drawn from the box if  
(1) They can be any colour  
(2) Two must be white and two red  
(3) They must all be the same colour.  
Solution: 

Total number of balls = 6 + 5 = 11 

(1) The number of ways four balls can be drawn from the box if they can be any colour is 

11𝐶4 =
11 × 10 × 9 × 8

4!
= 330 

(2) The number of ways four balls can be drawn from the box if two must be white and two red 

6𝐶2 × 5𝐶2 =
6 × 5

2!
×

5 × 4

2!
= 15 × 10 = 150 

(3) The number of ways four balls can be drawn from the box if they must all be the same colour. 

6𝐶4 + 5𝐶4 = 6𝐶2 + 5𝐶1 =
6 × 5

2!
+ 5 = 15 + 5 = 20 

 
13. a) i) Examine whether the following pair of graphs are isomorphic. If not isomorphic, give the 
reasons.  
 

 
Solution:  
In 𝐺, the number of vertices is 5, the number of edges is 8. 

deg(𝑢1) = 3 , deg(𝑢2) = 4 , deg(𝑢3) = 2 , deg(𝑢4) = 4 , deg(𝑢5) = 3  
In 𝐺′, the number of vertices is 5, the number of edges is 8. 

deg(𝑣1) = 3 , deg(𝑣2) = 2 , deg(𝑣3) = 4 , deg(𝑣4) = 3 , deg(𝑣5) = 4 
There are same number of vertices and edges in both the graph 𝐺 and 𝐺 ′ . 
Here in both graphs 𝐺 and 𝐺′, two vertices are of degree 3, two vertices are of degree 4, and one vertex 
is of degree 2.  

𝑢1 → 𝑣1,𝑢2 → 𝑣5,𝑢3 → 𝑣2,𝑢4 → 𝑣3, 𝑢5 → 𝑣4 
There is one to one correspondences between the graphs 𝐺 and 𝐺 ′ . 
∴ The graphs 𝐺and 𝐺′ are isomorphic. 
 
ii) Let 𝑮 be a simple undirected graph with 𝒏 vertices. Let 𝒖 and 𝒗 be two non adjacent vertices in 𝑮 
such that 𝐝𝐞𝐠 𝒖 + 𝐝𝐞𝐠 𝒗 ≥ 𝒏 in  . Show that G is Hamiltonian if and only if 𝑮 + 𝒖𝒗 is Hamiltonian. 
Solution: 

𝑢1 𝑢2 

𝑢3 

𝑢4 𝑢5 

𝑣1 𝑣2 

𝑣3 𝑣4 

𝑣5 

𝐺 𝐺′ 
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If 𝐺 is Hamiltonian, then obviously 𝐺 + 𝑢𝑣 is Hamiltonian. 
Conversely, suppose that 𝐺 + 𝑢𝑣 is Hamiltonian, but 𝐺 is not. 

[ Dirac theorem : If 𝐺 is a simple graph with at least three vertices and δ G ≥
 V G  

2
 then 𝐺 is 

Hamiltonian.] 
Then by Dirac theorem, we have 

deg 𝑢 <
𝑛

2
 𝑎𝑛𝑑 deg 𝑣 <

𝑛

2
 

∴ deg 𝑢 + deg 𝑣 <
𝑛

2
+

𝑛

2
 

∴ deg 𝑢 + deg 𝑣 < 𝑛 
which is a contradiction to our assumption 𝐺is not Hamiltonian. 
∴ 𝐺 is Hamiltonian. 
Thus 𝐺 + 𝑢𝑣 is Hamiltonian implies 𝐺 is Hamiltonian. 
 
b)i) Draw the graph with 5 vertices, 𝑨, 𝑩, 𝑪,𝑫, 𝑬 such that 𝒅𝒆𝒈(𝑨)  =  𝟑 , 𝑩 is an odd vertex,  
     𝒅𝒆𝒈(𝑪)  =  𝟐 and 𝑫and 𝑬 are adjacent.                                                                                                      

 
ii) Find the all the connected sub graph obtained form the graph given in the following Figure, by  
deleting each vertex. List out the simple paths from 𝑨 to in each sub graph.  

 
Solution: 
The connected sub graph obtained form the graph given in the Figure, by deleting each vertex are 

𝐴 𝐶 

𝐹 𝐸 𝐷 

𝐴 𝐵 

𝐶 𝐷 
𝐸 

𝐵 
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The simple paths from 𝑨 to in each sub graph is 
(1) 𝐴 → 𝐹 → 𝐸 → 𝐷 → 𝐶, 𝐴 → 𝐹 → 𝐸 → 𝐶 → 𝐷 
(2)  𝐴 → 𝐹 → 𝐸 → 𝐷 
(3)  𝐴 → 𝐹 → 𝐸 
(4) 𝐴 → 𝐹 
 
14.a) i) If ∗ is a binary operation on the set R of real numbers defined by  𝒂 ∗ 𝒃 = 𝒂 + 𝒃 + 𝟐𝒂𝒃, 
(1) Show that  𝑹,∗  is a semigroup , 
(2) Find the identity element if it exists  
(3) Which elements has inverse and what are they?  
Solution: 
(1) i) Closure: ∀𝑎, 𝑏 ∈ 𝑅, 𝑎 + 𝑏 + 2𝑎𝑏 ∈ 𝑅 ⇒ 𝑎 ∗ 𝑏 ∈ 𝑅 
                ∴ 𝑅 is closed under binary operation ∗. 
ii) Associative: ∀𝑎, 𝑏, 𝑐 ∈ 𝑅, 

𝑎 ∗  𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 + 𝑐 + 2𝑏𝑐  
= 𝑎 +  𝑏 + 𝑐 + 2𝑏𝑐 + 2𝑎 𝑏 + 𝑐 + 2𝑏𝑐 = 𝑎 + 𝑏 + 𝑐 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑎𝑐 + 4𝑎𝑏𝑐 

=  𝑎 + 𝑏 + 2𝑎𝑏 + 2 𝑎 + 𝑏 + 2𝑎𝑏 𝑐 + 𝑐 
=  𝑎 + 𝑏 + 2𝑎𝑏 ∗ 𝑐 =  𝑎 ∗ 𝑏 ∗ 𝑐 
∴ 𝑎 ∗  𝑏 ∗ 𝑐 = 𝑎 ∗  𝑏 + 𝑐 + 2𝑏𝑐  

∴ 𝑅 is associative under binary operation ∗. 
iii) Identity: Let 𝑒 ∈ 𝑅 be the identity element in 𝑅 

∀𝑎 ∈ 𝑅, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 
𝑎 + 𝑒 + 2𝑎𝑒 = 𝑎 ⇒ 𝑒 + 2𝑎𝑒 = 0 ⇒ 𝑒 = 0 ∈ 𝑅 

∴ 0 ∈ 𝑅 is the identity element. 
∴  𝑅,∗  is a semigroup. 
(2) 0 ∈ 𝑅 is the identity element. 
(3) Let 𝑎′ ∈ 𝑅 be the inverse element of 𝑎 ∈ 𝑅 

∀𝑎 ∈ 𝑅, 𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒 

𝑎 + 𝑎′ + 2𝑎𝑎′ = 0 ⇒ 𝑎′ 1 + 2𝑎 = −𝑎 ⇒ 𝑎′ = −
𝑎

1 + 2𝑎
∈ 𝑅 

𝐴 

𝐹 𝐸 

𝐴 

𝐹 

𝐴 

𝐴 

𝐹 𝐸 𝐷 

𝐴 𝐶 

𝐹 𝐸 𝐷 



Anna University, Chennai, April/May 2011 

 

www.tranquileducation.weebly.com  11 
 

∴ 𝑎′ = −
𝑎

1+2𝑎
∈ 𝑅 −  

1

2
  is the inverse element for ∀𝑎 ∈ 𝑅 −  

1

2
 . 

 
ii) Define the Dihedral group  𝑫𝟒,∗  and give its composition table. Hence find the identity  
element and inverse of each element. 
Solution:  
 The set of transformations due to all rigid motions of a square resulting in identical squares but with 
different vertex names under the binary operation of right composition ∗ is a group, called dihedral 
group of order 8 and denoted by  𝐷4,∗ . 
By rigid motion, we mean the rotation of the square about its centre through angles 90𝑜 , 180𝑜 , 270𝑜 , 
360𝑜  in the anticlockwise direction and reflection of the square about 4 lines of symmetry is as given in 
the figure below. 

 

𝑟1 = 𝑟 90𝑜 =  
1 2 3 4
4 1 2 3

 ,  𝑟2 = 𝑟 180𝑜 =  
1 2 3 4
3 4 1 2

  

𝑟3 = 𝑟 270𝑜 =  
1 2 3 4
2 3 4 1

 ,  𝑟4 = 𝑟 360𝑜 =  
1 2 3 4
1 2 3 4

  

𝑟5 = 𝑟 𝑥𝑥 =  
1 2 3 4
2 1 4 3

 ,  𝑟6 = 𝑟 𝑦𝑦 =  
1 2 3 4
4 3 2 1

  

𝑟7 = 𝑟 1 3 =  
1 2 3 4
1 4 3 2

 ,  𝑟8 = 𝑟 2 4 =  
1 2 3 4
3 2 1 4

  

The composition table is given below 

∗ 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 
𝑟1 𝑟2 𝑟3 𝑟4 𝑟1 𝑟8 𝑟7 𝑟5 𝑟6 
𝑟2 𝑟3 𝑟4 𝑟1 𝑟2 𝑟6 𝑟5 𝑟8 𝑟7 
𝑟3 𝑟4 𝑟1 𝑟2 𝑟3 𝑟7 𝑟8 𝑟6 𝑟5 
𝑟4 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 
𝑟5 𝑟7 𝑟6 𝑟8 𝑟5 𝑟4 𝑟2 𝑟1 𝑟3 
𝑟6 𝑟8 𝑟5 𝑟7 𝑟6 𝑟2 𝑟4 𝑟3 𝑟1 
𝑟7 𝑟6 𝑟8 𝑟5 𝑟7 𝑟3 𝑟1 𝑟4 𝑟2 
𝑟8 𝑟5 𝑟7 𝑟6 𝑟8 𝑟1 𝑟3 𝑟2 𝑟4 

Here 𝑟4 ∗ 𝑟𝑘 = 𝑟𝑘 ,𝑘 = 1,2,3, … ,8. 
∴ 𝑟4 is the identity element of  𝐷4 ,∗ . 
The inverses of 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8 are respectively 𝑟3, 𝑟2, 𝑟1, 𝑟4, 𝑟5, 𝑟6, 𝑟7  and 𝑟8. 
 
b) i) Let  (𝑮,∗) and (𝑯, ∆) be groups and 𝒈: 𝑮 →  𝑯 be a homomorphism. Then prove that kernel of 𝒈 
is a sub-group of 𝑮. 
Solution: 
Let 𝐾 = 𝑘𝑒𝑟 𝑔 = {𝑔 𝑎 = 𝑒′ \𝑎 ∈ 𝐺, 𝑒′ ∈ 𝐻} 
To prove 𝐾 is a subgroup of 𝐺: 
We know that 𝑔 𝑒 = 𝑒′ ⇒ 𝑒 ∈ 𝐾 

𝑦 

𝑦 

 𝑥 𝑥 

1 4 

2 3 
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∴ 𝐾 is a non-empty subset of 𝐺. 
By the definition of homomorphism 𝑔 𝑎 ∗ 𝑏 = 𝑔 𝑎  ∆ 𝑔 𝑏 , ∀𝑎, 𝑏 ∈ 𝐺 
Let 𝑎, 𝑏 ∈ 𝐾 ⇒ 𝑔 𝑎 = 𝑒′  𝑎𝑛𝑑 𝑔 𝑏 = 𝑒′   

Now 𝑔 𝑎 ∗ 𝑏−1 = 𝑔 𝑎  ∆ 𝑔 𝑏−1 = 𝑔 𝑎  ∆  𝑔 𝑏  
−1

= 𝑒′∆  𝑒′ −1 

= 𝑒′∆ 𝑒′ = 𝑒′ 
∴ 𝑎 ∗ 𝑏−1 ∈ 𝐾 

∴ 𝐾 is a subgroup of 𝐺 
 
ii) State and Prove Lagrange’s theorem for finite groups. 
Statement: 
The order of a subgroup of a finite group is a divisor of the order of the group. 
Proof: 
Let 𝑎𝐻 and 𝑏𝐻 be two left cosets of the subgroup {𝐻,∗} in the group {𝐺,∗}. 
Let the two cosets 𝑎𝐻 and 𝑏𝐻 be not disjoint. 
Then let 𝑐 be an element common to 𝑎𝐻 and 𝑏𝐻 i.e., 𝑐 ∈ 𝑎𝐻 ∩  𝑏𝐻 

∵ 𝑐 ∈ 𝑎𝐻, 𝑐 = 𝑎 ∗ 1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 1 ∈ 𝐻 … (1) 
∵ 𝑐 ∈ 𝑏𝐻, 𝑐 = 𝑏 ∗ 2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 2 ∈ 𝐻 … (2) 

From (1) and (2), we have 
𝑎 ∗ 1 = 𝑏 ∗ 2 

𝑎 = 𝑏 ∗ 2 ∗ 1
−1 … (3) 

             Let 𝑥 be an element in 𝑎𝐻 
             𝑥 = 𝑎 ∗  3, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 3 ∈ 𝐻 

= 𝑏 ∗ 2 ∗ 1
−1 ∗  3, 𝑢𝑠𝑖𝑛𝑔 (3) 

             Since H is a subgroup, 2 ∗ 1
−1 ∗  3 ∈ 𝐻 

             Hence, (3) means 𝑥 ∈ 𝑏𝐻 
             Thus, any element in 𝑎𝐻 is also an element in 𝑏𝐻. ∴  𝑎𝐻 ⊆ 𝑏𝐻 
              Similarly, we can prove that 𝑏𝐻 ⊆ 𝑎𝐻 
              Hence 𝑎𝐻 = 𝑏𝐻 
              Thus, if 𝑎𝐻 and 𝑏𝐻 are disjoint, they are identical. 
              The two cosets 𝑎𝐻 and 𝑏𝐻 are disjoint or identical. …(4) 
              Now every element 𝑎 ∈ 𝐺 belongs to one and only one left coset of 𝐻 in 𝐺, 
             For,  
             𝑎 = 𝑎𝑒 ∈ 𝑎𝐻, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∈ 𝐻 ⇒ 𝑎 ∈ 𝑎𝐻 

              𝑎 ∉ 𝑏𝐻, since 𝑎𝐻 and 𝑏𝐻 are disjoint i.e., 𝑎 belongs to one and only left coset of     
              𝐻 in 𝐺 i.e., 𝑎𝐻… (5) 
             From (4) and (5), we see that the set of left cosets of 𝐻 in 𝐺 form the partition of  
             𝐺. Now let the order of 𝐻 be 𝑚. 
             Let 𝐻 =  1,2, … , 𝑚  ,𝑤𝑒𝑟𝑒 𝑖 ′𝑠 are distinct 
             Then 𝑎𝐻 =  𝑎1,𝑎2,… , 𝑎𝑚   
              The elements of 𝑎𝐻  are also distinct, for, 𝑎𝑖 = 𝑎𝑗 ⇒ 𝑖 = 𝑗 , which is not  

              true. 
              Thus 𝐻 and 𝑎𝐻 have the same number of elements, namely 𝑚. 
              In fact every coset of 𝐻 in 𝐺 has exactly 𝑚 elements. 
              Now let the order of the group {𝐺,∗} be 𝑛, i.e., there are 𝑛 elements in 𝐺 
              Let the number of distinct left cosets of 𝐻 in 𝐺 be 𝑝. 
              ∴ The total number of elements of all the left cosets = 𝑝𝑚 = the total number 
              of elements of 𝐺. i.e., 𝑛 = 𝑝𝑚  
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              i.e., 𝑚, the order of 𝐻 is adivisor of 𝑛, the order of 𝐺. 
 
15. a) i) Show that every distributive lattice is a modular. Whether the converse is true? Justify your 
answer 
Solution: 
Let 𝑎, 𝑏, 𝑐 ∈ 𝐿 and assume that 𝑎 ≤ 𝑐, 𝑡𝑒𝑛  

𝑎⨁ 𝑏 ∗ 𝑐 =  𝑎⨁𝑏 ∗ (𝑎⨁𝑐) 
=  𝑎⨁𝑏 ∗ 𝑐 

∴Every distributive lattice is modular. 
   For example let us consider the following lattice 

    
Here in this Lattice, 

∀𝑎, 𝑏, 𝑐 ∈ 𝐿, 𝑎 ≤ 𝑏 ⇒ 𝑎⨁ 𝑏 ∗ 𝑐 =  𝑎⨁𝑏 ∗ 𝑐 
                  ∴The above lattice is modular. 

𝑎 ∗  𝑏⨁𝑐 = 𝑎 ∗ 1 = 𝑎… (1) 
 𝑎 ∗ 𝑏 ⨁ 𝑎 ∗ 𝑐 = 0⨁0 = 0 … (2) 

                  From (1) and (2) we get 𝑎 ∗  𝑏⨁𝑐 ≠  𝑎 ∗ 𝑏 ⨁ 𝑎 ∗ 𝑐  
                  ∴The above lattice is not distributive. 
                  ∴ Every distributive lattice is a modular but its converse is not true. 
 
ii) Prove that the direct product of any two distributive lattices is a distributive lattice. 
Solution: 
Let  𝐿,∗, ⨁  𝑎𝑛𝑑  𝑆,∧,∨  𝑏𝑒 𝑡𝑤𝑜 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑙𝑒𝑡  𝐿 × 𝑆, . , +  
𝑏𝑒 𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑠. 
For any  𝑎1,𝑏1 ,  𝑎2, 𝑏2  𝑎𝑛𝑑  𝑎3, 𝑏3 ∈ 𝐿 × 𝑆 

 𝑎1,𝑏1 .   𝑎2,𝑏2 +  𝑎3, 𝑏3  =  𝑎1,𝑏1 .  𝑎2⨁𝑎3,𝑏2 ∨ 𝑏3  

=  𝑎1 ∗  𝑎2⨁𝑎3 ,𝑏1 ∧  𝑏2 ∨ 𝑏3   

=   𝑎1 ∗ 𝑎2 ⨁ 𝑎1 ∗ 𝑎3 ,  𝑏1 ∧ 𝑏2 ∨  𝑏1 ∧ 𝑏3   

=  𝑎1,𝑏1 .  𝑎2, 𝑏2 +  𝑎1, 𝑏1 .  𝑎3, 𝑏3  
∴The direct product of any two distributive lattices is a distributive lattice. 
 
b)i) Draw the Hasse diagram for  
 𝟏  𝑷𝟏  =  𝟐,𝟑,𝟔, 𝟏𝟐,𝟐𝟒     𝟐  𝑷𝟐  =  𝟏,𝟐, 𝟑,𝟒, 𝟔,𝟏𝟐  and ≤ is a relation be such that  𝒙 ≤ 𝒚  
      𝒊𝒇𝒇 𝒙 | 𝒚.  
Solution:   
The Hasse diagram for 𝑃1 is  

𝒄 𝒃 𝒂 

0 

1 
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The Hasse diagram for 𝑃2 is  
 

 
ii) Prove that 𝑫𝟏𝟏𝟎 , the set of all positive divisors of a positive integer 110, is a Boolean algebra 110  
and find all its sub algebras. 
Solution: 

𝐷110 =  1,2,5,10,11,22,55,110  

 
Since set all divisors 𝐷 satisfies reflexive, anti-symmetric and transitive properties, 𝐷 is a partial order 
relation. 
∴  𝐷110 , 𝐷  is a Poset. 
From the Hasse diagram, we observe that every element in the Poset  𝐷110 , 𝐷  has a least upper bound 
and greatest lower bound. ∴  𝐷110 , 𝐷  is a Lattice. 
Here 1 is the least element and 110 is the greatest element. 

𝟐 𝟓 𝟏𝟏 

𝟓𝟓 𝟐𝟐 𝟏𝟎 

𝟏𝟏𝟎 

1 

2 

6 

3 

4 

12 

1 

2 

24 

3 

6 

12 
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From the Hasse diagram, we observe that ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐷110 , 𝑎 ∨  𝑏 ∧ 𝑐 =  𝑎 ∨ 𝑏 ∧  𝑎 ∨ 𝑐   
and 𝑎 ∧  𝑏 ∨ 𝑐 =  𝑎 ∧ 𝑏 ∨  𝑎 ∧ 𝑐    
∴ 𝐷110  is a distributive Lattice. 
The complement of 1 is 110.    ∵ 1 ∧ 110 = 1 & 1 ∨ 110 = 110   
The complement of 2 is 55.      ∵ 2 ∧ 55 = 1 & 2 ∨ 55 = 110   
The complement of 5 is 22.      ∵ 5 ∧ 22 = 1 & 22 ∨ 5 = 110   
The complement of 10 is 11.    ∵ 10 ∧ 11 = 1 & 10 ∨ 11 = 110   
The complement of 11 is 10. 
The complement of 22 is 5. 
The complement of 55 is 2. 
The complement of 110 is 1. 
∵ Every element in 𝐷110  has atleast one complement, 𝐷110  is a complemented Lattice. 
The sub Boolean algebras are 
𝑖)  1,110  
𝑖𝑖)  1,2,5,10,11,22,55,110  
𝑖𝑖𝑖)  1,2,5,110  
𝑖𝑣)  1,2,11,110  
𝑣)  1,5,11,110  
𝑣𝑖)  1,10,22,110  
𝑣𝑖𝑖)  1,10,55,110  
𝑣𝑖𝑖𝑖)  1,22,11,110  
 
 
 


