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Preface

The ever-increasing demand on engineers to lower production costs to withstand global
competition has prompted engineers to look for rigorous methods of decision mak-
ing, such as optimization methods, to design and produce products and systems both
economically and efficiently. Optimization techniques, having reached a degree of
maturity in recent years, are being used in a wide spectrum of industries, including
aerospace, automotive, chemical, electrical, construction, and manufacturing industries.
With rapidly advancing computer technology, computers are becoming more powerful,
and correspondingly, the size and the complexity of the problems that can be solved
using optimization techniques are also increasing. Optimization methods, coupled with
modern tools of computer-aided design, are also being used to enhance the creative
process of conceptual and detailed design of engineering systems.

The purpose of this textbook is to present the techniques and applications of engi-
neering optimization in a comprehensive manner. The style of the prior editions has
been retained, with the theory, computational aspects, and applications of engineering
optimization presented with detailed explanations. As in previous editions, essential
proofs and developments of the various techniques are given in a simple manner
without sacrificing accuracy. New concepts are illustrated with the help of numerical
examples. Although most engineering design problems can be solved using nonlin-
ear programming techniques, there are a variety of engineering applications for which
other optimization methods, such as linear, geometric, dynamic, integer, and stochastic
programming techniques, are most suitable. The theory and applications of all these
techniques are also presented in the book. Some of the recently developed methods of
optimization, such as genetic algorithms, simulated annealing, particle swarm optimiza-
tion, ant colony optimization, neural-network-based methods, and fuzzy optimization,
are also discussed. Favorable reactions and encouragement from professors, students,
and other users of the book have provided me with the impetus to prepare this fourth
edition of the book. The following changes have been made from the previous edition:

e Some less-important sections were condensed or deleted.

e Some sections were rewritten for better clarity.

e Some sections were expanded.

o A new chapter on modern methods of optimization is added.

o Several examples to illustrate the use of Matlab for the solution of different types
of optimization problems are given.

Features

Each topic in Engineering Optimization: Theory and Practice is self-contained, with all
concepts explained fully and the derivations presented with complete details. The com-
putational aspects are emphasized throughout with design examples and problems taken

xvii



xviii  Preface

Contents

from several fields of engineering to make the subject appealing to all branches of
engineering. A large number of solved examples, review questions, problems,
project-type problems, figures, and references are included to enhance the presentation
of the material.

Specific features of the book include:

e More than 130 illustrative examples accompanying most topics.

o More than 480 references to the literature of engineering optimization theory and
applications.

e More than 460 review questions to help students in reviewing and testing their
understanding of the text material.

e More than 510 problems, with solutions to most problems in the instructor’s
manual.

e More than 10 examples to illustrate the use of Matlab for the numerical solution
of optimization problems.

o Answers to review questions at the web site of the book, www.wiley.com/rao.

I used different parts of the book to teach optimum design and engineering opti-
mization courses at the junior/senior level as well as first-year-graduate-level at Indian
Institute of Technology, Kanpur, India; Purdue University, West Lafayette, Indiana; and
University of Miami, Coral Gables, Florida. At University of Miami, I cover Chapters 1,
2,3,5,6, and 7 and parts of Chapters 8, 10, 12, and 13 in a dual-level course entitled
Mechanical System Optimization. In this course, a design project is also assigned to
each student in which the student identifies, formulates, and solves a practical engineer-
ing problem of his/her interest by applying or modifying an optimization technique.
This design project gives the student a feeling for ways that optimization methods work
in practice. The book can also be used, with some supplementary material, for a sec-
ond course on engineering optimization or optimum design or structural optimization.
The relative simplicity with which the various topics are presented makes the book
useful both to students and to practicing engineers for purposes of self-study. The book
also serves as a reference source for different engineering optimization applications.
Although the emphasis of the book is on engineering applications, it would also be use-
ful to other areas, such as operations research and economics. A knowledge of matrix
theory and differential calculus is assumed on the part of the reader.

The book consists of fourteen chapters and three appendixes. Chapter 1 provides an
introduction to engineering optimization and optimum design and an overview of opti-
mization methods. The concepts of design space, constraint surfaces, and contours of
objective function are introduced here. In addition, the formulation of various types of
optimization problems is illustrated through a variety of examples taken from various
fields of engineering. Chapter 2 reviews the essentials of differential calculus useful
in finding the maxima and minima of functions of several variables. The methods of
constrained variation and Lagrange multipliers are presented for solving problems with
equality constraints. The Kuhn—Tucker conditions for inequality-constrained problems
are given along with a discussion of convex programming problems.



Preface  xix

Chapters 3 and 4 deal with the solution of linear programming problems. The
characteristics of a general linear programming problem and the development of the
simplex method of solution are given in Chapter 3. Some advanced topics in linear
programming, such as the revised simplex method, duality theory, the decomposition
principle, and post-optimality analysis, are discussed in Chapter 4. The extension of
linear programming to solve quadratic programming problems is also considered in
Chapter 4.

Chapters 5—7 deal with the solution of nonlinear programming problems. In
Chapter 5, numerical methods of finding the optimum solution of a function of a single
variable are given. Chapter 6 deals with the methods of unconstrained optimization.
The algorithms for various zeroth-, first-, and second-order techniques are discussed
along with their computational aspects. Chapter 7 is concerned with the solution of
nonlinear optimization problems in the presence of inequality and equality constraints.
Both the direct and indirect methods of optimization are discussed. The methods
presented in this chapter can be treated as the most general techniques for the solution
of any optimization problem.

Chapter 8 presents the techniques of geometric programming. The solution tech-
niques for problems of mixed inequality constraints and complementary geometric
programming are also considered. In Chapter 9, computational procedures for solving
discrete and continuous dynamic programming problems are presented. The problem
of dimensionality is also discussed. Chapter 10 introduces integer programming and
gives several algorithms for solving integer and discrete linear and nonlinear optimiza-
tion problems. Chapter 11 reviews the basic probability theory and presents techniques
of stochastic linear, nonlinear, and geometric programming. The theory and applica-
tions of calculus of variations, optimal control theory, and optimality criteria methods
are discussed briefly in Chapter 12. Chapter 13 presents several modern methods of
optimization including genetic algorithms, simulated annealing, particle swarm opti-
mization, ant colony optimization, neural-network-based methods, and fuzzy system
optimization. Several of the approximation techniques used to speed up the conver-
gence of practical mechanical and structural optimization problems, as well as parallel
computation and multiobjective optimization techniques are outlined in Chapter 14.
Appendix A presents the definitions and properties of convex and concave functions.
A brief discussion of the computational aspects and some of the commercial optimiza-
tion programs is given in Appendix B. Finally, Appendix C presents a brief introduction
to Matlab, optimization toolbox, and use of Matlab programs for the solution of opti-
mization problems.
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Introduction to Optimization

1.1 INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances. In design,
construction, and maintenance of any engineering system, engineers have to take many
technological and managerial decisions at several stages. The ultimate goal of all such
decisions is either to minimize the effort required or to maximize the desired benefit.
Since the effort required or the benefit desired in any practical situation can be expressed
as a function of certain decision variables, optimization can be defined as the process
of finding the conditions that give the maximum or minimum value of a function. It can
be seen from Fig. 1.1 that if a point x* corresponds to the minimum value of function
f(x), the same point also corresponds to the maximum value of the negative of the
function, — f(x). Thus without loss of generality, optimization can be taken to mean
minimization since the maximum of a function can be found by seeking the minimum
of the negative of the same function.

In addition, the following operations on the objective function will not change the
optimum solution x* (see Fig. 1.2):

1. Multiplication (or division) of f(x) by a positive constant c.
2. Addition (or subtraction) of a positive constant ¢ to (or from) f(x).

There is no single method available for solving all optimization problems effi-
ciently. Hence a number of optimization methods have been developed for solving
different types of optimization problems. The optimum seeking methods are also known
as mathematical programming techniques and are generally studied as a part of oper-
ations research. Operations research is a branch of mathematics concerned with the
application of scientific methods and techniques to decision making problems and with
establishing the best or optimal solutions. The beginnings of the subject of operations
research can be traced to the early period of World War II. During the war, the British
military faced the problem of allocating very scarce and limited resources (such as
fighter airplanes, radars, and submarines) to several activities (deployment to numer-
ous targets and destinations). Because there were no systematic methods available to
solve resource allocation problems, the military called upon a team of mathematicians
to develop methods for solving the problem in a scientific manner. The methods devel-
oped by the team were instrumental in the winning of the Air Battle by Britain. These
methods, such as linear programming, which were developed as a result of research
on (military) operations, subsequently became known as the methods of operations
research.

Engineering Optimization: Theory and Practice, Fourth Edition ~ Singiresu S. Rao 1
Copyright © 2009 by John Wiley & Sons, Inc.
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Figure 1.1 Minimum of f(x) is same as maximum of — f(x).
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Figure 1.2 Optimum solution of cf(x) or ¢ + f(x) same as that of f(x).

Table 1.1 lists various mathematical programming techniques together with other
well-defined areas of operations research. The classification given in Table 1.1 is not
unique; it is given mainly for convenience.

Mathematical programming techniques are useful in finding the minimum of a
function of several variables under a prescribed set of constraints. Stochastic process
techniques can be used to analyze problems described by a set of random variables
having known probability distributions. Statistical methods enable one to analyze the
experimental data and build empirical models to obtain the most accurate represen-
tation of the physical situation. This book deals with the theory and application of
mathematical programming techniques suitable for the solution of engineering design
problems.
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Table 1.1 Methods of Operations Research

Mathematical programming or Stochastic process

optimization techniques techniques Statistical methods
Calculus methods Statistical decision theory Regression analysis
Calculus of variations Markov processes Cluster analysis, pattern
Nonlinear programming Queueing theory recognition
Geometric programming Renewal theory Design of experiments
Quadratic programming Simulation methods Discriminate analysis
Linear programming Reliability theory (factor analysis)

Dynamic programming

Integer programming

Stochastic programming

Separable programming
Multiobjective programming
Network methods: CPM and PERT
Game theory

Modern or nontraditional optimization techniques

Genetic algorithms
Simulated annealing

Ant colony optimization
Particle swarm optimization
Neural networks

Fuzzy optimization

1.2 HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton, Lagrange,
and Cauchy. The development of differential calculus methods of optimization was
possible because of the contributions of Newton and Leibnitz to calculus. The founda-
tions of calculus of variations, which deals with the minimization of functionals, were
laid by Bernoulli, Euler, Lagrange, and Weirstrass. The method of optimization for con-
strained problems, which involves the addition of unknown multipliers, became known
by the name of its inventor, Lagrange. Cauchy made the first application of the steep-
est descent method to solve unconstrained minimization problems. Despite these early
contributions, very little progress was made until the middle of the twentieth century,
when high-speed digital computers made implementation of the optimization proce-
dures possible and stimulated further research on new methods. Spectacular advances
followed, producing a massive literature on optimization techniques. This advance-
ment also resulted in the emergence of several well-defined new areas in optimization
theory.

It is interesting to note that the major developments in the area of numerical meth-
ods of unconstrained optimization have been made in the United Kingdom only in the
1960s. The development of the simplex method by Dantzig in 1947 for linear program-
ming problems and the annunciation of the principle of optimality in 1957 by Bellman
for dynamic programming problems paved the way for development of the methods
of constrained optimization. Work by Kuhn and Tucker in 1951 on the necessary and



4

Introduction to Optimization

sufficiency conditions for the optimal solution of programming problems laid the foun-
dations for a great deal of later research in nonlinear programming. The contributions
of Zoutendijk and Rosen to nonlinear programming during the early 1960s have been
significant. Although no single technique has been found to be universally applica-
ble for nonlinear programming problems, work of Carroll and Fiacco and McCormick
allowed many difficult problems to be solved by using the well-known techniques of
unconstrained optimization. Geometric programming was developed in the 1960s by
Duffin, Zener, and Peterson. Gomory did pioneering work in integer programming,
one of the most exciting and rapidly developing areas of optimization. The reason for
this is that most real-world applications fall under this category of problems. Dantzig
and Charnes and Cooper developed stochastic programming techniques and solved
problems by assuming design parameters to be independent and normally distributed.

The desire to optimize more than one objective or goal while satisfying the phys-
ical limitations led to the development of multiobjective programming methods. Goal
programming is a well-known technique for solving specific types of multiobjective
optimization problems. The goal programming was originally proposed for linear prob-
lems by Charnes and Cooper in 1961. The foundations of game theory were laid by
von Neumann in 1928 and since then the technique has been applied to solve several
mathematical economics and military problems. Only during the last few years has
game theory been applied to solve engineering design problems.

Modern Methods of Optimization. The modern optimization methods, also some-
times called nontraditional optimization methods, have emerged as powerful and pop-
ular methods for solving complex engineering optimization problems in recent years.
These methods include genetic algorithms, simulated annealing, particle swarm opti-
mization, ant colony optimization, neural network-based optimization, and fuzzy opti-
mization. The genetic algorithms are computerized search and optimization algorithms
based on the mechanics of natural genetics and natural selection. The genetic algorithms
were originally proposed by John Holland in 1975. The simulated annealing method
is based on the mechanics of the cooling process of molten metals through annealing.
The method was originally developed by Kirkpatrick, Gelatt, and Vecchi.

The particle swarm optimization algorithm mimics the behavior of social organisms
such as a colony or swarm of insects (for example, ants, termites, bees, and wasps), a
flock of birds, and a school of fish. The algorithm was originally proposed by Kennedy
and Eberhart in 1995. The ant colony optimization is based on the cooperative behavior
of ant colonies, which are able to find the shortest path from their nest to a food
source. The method was first developed by Marco Dorigo in 1992. The neural network
methods are based on the immense computational power of the nervous system to solve
perceptional problems in the presence of massive amount of sensory data through its
parallel processing capability. The method was originally used for optimization by
Hopfield and Tank in 1985. The fuzzy optimization methods were developed to solve
optimization problems involving design data, objective function, and constraints stated
in imprecise form involving vague and linguistic descriptions. The fuzzy approaches
for single and multiobjective optimization in engineering design were first presented
by Rao in 1986.
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1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering problem.
Some typical applications from different engineering disciplines indicate the wide scope
of the subject:

10.
11.

12.
13.
14.
15.

16.
17.
18.
19.

20.
21.

22.

23.

24.

. Design of aircraft and aerospace structures for minimum weight

Finding the optimal trajectories of space vehicles

Design of civil engineering structures such as frames, foundations, bridges,
towers, chimneys, and dams for minimum cost

Minimum-weight design of structures for earthquake, wind, and other types of
random loading

Design of water resources systems for maximum benefit
Optimal plastic design of structures

. Optimum design of linkages, cams, gears, machine tools, and other mechanical

components

Selection of machining conditions in metal-cutting processes for minimum pro-
duction cost

Design of material handling equipment, such as conveyors, trucks, and cranes,
for minimum cost

Design of pumps, turbines, and heat transfer equipment for maximum efficiency

Optimum design of electrical machinery such as motors, generators, and trans-
formers

Optimum design of electrical networks
Shortest route taken by a salesperson visiting various cities during one tour
Optimal production planning, controlling, and scheduling

Analysis of statistical data and building empirical models from experimental
results to obtain the most accurate representation of the physical phenomenon

Optimum design of chemical processing equipment and plants
Design of optimum pipeline networks for process industries
Selection of a site for an industry

Planning of maintenance and replacement of equipment to reduce operating
costs

Inventory control

Allocation of resources or services among several activities to maximize the
benefit

Controlling the waiting and idle times and queueing in production lines to reduce
the costs

Planning the best strategy to obtain maximum profit in the presence of a com-
petitor

Optimum design of control systems
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1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as follows.
X1
X2
Find X =1 . which minimizes f(X)
Xn
subject to the constraints
giX) <0, j=12,...,m
;X)) =0, j=12,...,p

(1.1)

where X is an n-dimensional vector called the design vector, f(X) is termed the objec-
tive function, and g;(X) and [;(X) are known as inequality and equality constraints,
respectively. The number of variables n and the number of constraints m and/or p
need not be related in any way. The problem stated in Eq. (1.1) is called a constrained
optimization problem.? Some optimization problems do not involve any constraints and
can be stated as

X
X2
Find X = { . } which minimizes f(X) (1.2)

Xn

Such problems are called unconstrained optimization problems.

1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities some of which
are viewed as variables during the design process. In general, certain quantities are
usually fixed at the outset and these are called preassigned parameters. All the other
quantities are treated as variables in the design process and are called design or decision
variables x;, i = 1,2,...,n. The design variables are collectively represented as a
design vector X = {x1, x2, ..., xn}T. As an example, consider the design of the gear
pair shown in Fig. 1.3, characterized by its face width b, number of teeth 77 and
T», center distance d, pressure angle ¥, tooth profile, and material. If center distance
d, pressure angle v, tooth profile, and material of the gears are fixed in advance,
these quantities can be called preassigned parameters. The remaining quantities can be
collectively represented by a design vector X = {x1, x2, x3}T = {b, T}, T»}". If there are
no restrictions on the choice of b, T1, and T3, any set of three numbers will constitute a
design for the gear pair. If an n-dimensional Cartesian space with each coordinate axis
representing a design variable x; (i = 1,2,...,n) is considered, the space is called

In the mathematical programming literature, the equality constraints /;(X) =0, j =1,2,..., p are often
neglected, for simplicity, in the statement of a constrained optimization problem, although several methods
are available for handling problems with equality constraints.
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s

Figure 1.3 Gear pair in mesh.

the design variable space or simply design space. Each point in the n-dimensional
design space is called a design point and represents either a possible or an impossible
solution to the design problem. In the case of the design of a gear pair, the design
point {1.0, 20, 4()}T, for example, represents a possible solution, whereas the design
point {1.0, —20, 40.5}T represents an impossible solution since it is not possible to
have either a negative value or a fractional value for the number of teeth.

1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily; rather,
they have to satisfy certain specified functional and other requirements. The restrictions
that must be satisfied to produce an acceptable design are collectively called design
constraints. Constraints that represent limitations on the behavior or performance of
the system are termed behavior or functional constraints. Constraints that represent
physical limitations on design variables, such as availability, fabricability, and trans-
portability, are known as geometric or side constraints. For example, for the gear pair
shown in Fig. 1.3, the face width b cannot be taken smaller than a certain value, due
to strength requirements. Similarly, the ratio of the numbers of teeth, 7/ T3, is dictated
by the speeds of the input and output shafts, Ny and N,. Since these constraints depend
on the performance of the gear pair, they are called behavior constraints. The values
of T and T, cannot be any real numbers but can only be integers. Further, there can
be upper and lower bounds on 77 and 75 due to manufacturing limitations. Since these
constraints depend on the physical limitations, they are called side constraints.
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1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality constraints
g;j(X) < 0. The set of values of X that satisfy the equation g;(X) = 0 forms a hyper-
surface in the design space and is called a constraint surface. Note that this is an
(n — 1)-dimensional subspace, where n is the number of design variables. The constraint
surface divides the design space into two regions: one in which g;(X) < 0 and the other
in which g;(X) > 0. Thus the points lying on the hypersurface will satisfy the constraint
gj(X) critically, whereas the points lying in the region where g;(X) >0 are infeasible
or unacceptable, and the points lying in the region where g;(X) < 0 are feasible or
acceptable. The collection of all the constraint surfaces g;(X) =0, j =1,2,...,m,
which separates the acceptable region is called the composite constraint surface.

Figure 1.4 shows a hypothetical two-dimensional design space where the infeasible
region is indicated by hatched lines. A design point that lies on one or more than one
constraint surface is called a bound point, and the associated constraint is called an
active constraint. Design points that do not lie on any constraint surface are known as
free points. Depending on whether a particular design point belongs to the acceptable
or unacceptable region, it can be identified as one of the following four types:

1. Free and acceptable point

2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Fig. 1.4.

Behavior constraint g2 =0

xXp Side constraintg3 =0

Infeasible region Feasible region
e Free point Behavior
Behavior /é)’ /& constraint
constraint 8, = 0
g,=0
d Bound acceptable
y point
o Free y
unacceptable y ) .
point 2 /Slde constraint g, = 0
/ &
<7 S <
1 < Bound unacceptable point
/
y ’/>>7>7>7> X
/]
4
/

Figure 1.4 Constraint surfaces in a hypothetical two-dimensional design space.
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1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate design
that merely satisfies the functional and other requirements of the problem. In general,
there will be more than one acceptable design, and the purpose of optimization is
to choose the best one of the many acceptable designs available. Thus a criterion
has to be chosen for comparing the different alternative acceptable designs and for
selecting the best one. The criterion with respect to which the design is optimized,
when expressed as a function of the design variables, is known as the criterion or merit
or objective function. The choice of objective function is governed by the nature of
problem. The objective function for minimization is generally taken as weight in aircraft
and aerospace structural design problems. In civil engineering structural designs, the
objective is usually taken as the minimization of cost. The maximization of mechanical
efficiency is the obvious choice of an objective in mechanical engineering systems
design. Thus the choice of the objective function appears to be straightforward in most
design problems. However, there may be cases where the optimization with respect
to a particular criterion may lead to results that may not be satisfactory with respect
to another criterion. For example, in mechanical design, a gearbox transmitting the
maximum power may not have the minimum weight. Similarly, in structural design,
the minimum weight design may not correspond to minimum stress design, and the
minimum stress design, again, may not correspond to maximum frequency design. Thus
the selection of the objective function can be one of the most important decisions in
the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied simul-
taneously. For example, a gear pair may have to be designed for minimum weight
and maximum efficiency while transmitting a specified horsepower. An optimization
problem involving multiple objective functions is known as a multiobjective program-
ming problem. With multiple objectives there arises a possibility of conflict, and one
simple way to handle the problem is to construct an overall objective function as a
linear combination of the conflicting multiple objective functions. Thus if f}(X) and
f>(X) denote two objective functions, construct a new (overall) objective function for
optimization as

FX) = a1 fiX) + a2 f2(X) (1.3)

where o and o, are constants whose values indicate the relative importance of one
objective function relative to the other.

1.4.5 Objective Function Surfaces

The locus of all points satisfying f(X) = C = constant forms a hypersurface in the
design space, and each value of C corresponds to a different member of a family of
surfaces. These surfaces, called objective function surfaces, are shown in a hypothetical
two-dimensional design space in Fig. 1.5.

Once the objective function surfaces are drawn along with the constraint surfaces,
the optimum point can be determined without much difficulty. But the main problem
is that as the number of design variables exceeds two or three, the constraint and
objective function surfaces become complex even for visualization and the problem
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timum point

(

Figure 1.5 Contours of the objective function.

has to be solved purely as a mathematical problem. The following example illustrates
the graphical optimization procedure.

Example 1.1 Design a uniform column of tubular section, with hinge joints at both
ends, (Fig. 1.6) to carry a compressive load P = 2500kg; for minimum cost. The
column is made up of a material that has a yield stress (o) of 500kg;/cm?, modulus
of elasticity (E) of 0.85 x 10°kg;/cm?, and weight density (p) of 0.0025kg;/cm?>.
The length of the column is 250 cm. The stress induced in the column should be less
than the buckling stress as well as the yield stress. The mean diameter of the column
is restricted to lie between 2 and 14cm, and columns with thicknesses outside the
range 0.2 to 0.8 cm are not available in the market. The cost of the column includes
material and construction costs and can be taken as SW + 2d, where W is the weight
in kilograms force and d is the mean diameter of the column in centimeters.

SOLUTION The design variables are the mean diameter (d) and tube thickness (¢):

[

The objective function to be minimized is given by

JX) =5W +2d = 5plrw dt + 2d = 9.82x1x2 + 2x; (E2)
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Figure 1.6 Tubular column under compression.

The behavior constraints can be expressed as

stress induced < yield stress

stress induced < buckling stress

The induced stress is given by

. P 2500
induced stress = 0; = —— =
T dt TX1X2

The buckling stress for a pin-connected column is given by

Euler buckling load  72EI 1

buckling stress = oj, = - =
cross-sectional area

where

I = second moment of area of the cross section of the column

T
=@t = at
64(" i)

= (@2 +d))(dy + d)(dy — di) = —[(d +1)* + (d — 1)"]
64 0 i 0 i 0 i 64
x[(d+1)+d—-0]d+1)—(d—1)]

- %dt(dz +12) = %xlxz(xlz +x3)

11

(E3)

(Eg)

(Es)
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Thus the behavior constraints can be restated as

saX) = 200 500 <0 (Es)
TX1X2
82(X) = jjﬁg St ;(;;);;ixlz 9 (E7)
The side constraints are given by
2<d<14
02<r=<08

which can be expressed in standard form as

g3X)=—-x1+20<0 (Eg)
g4(X)=x; —14.0<0 (Eo)
gs(X) =—-x,+02<0 (E10)
86(X) =x,—-08=<0 (Ein)

Since there are only two design variables, the problem can be solved graphically as
shown below.

First, the constraint surfaces are to be plotted in a two-dimensional design space
where the two axes represent the two design variables x; and x;. To plot the first
constraint surface, we have

2500
g1 X) = —500<0
TTX1X?
that is,
Xx1x2 > 1.593

Thus the curve xjx; = 1.593 represents the constraint surface g;(X) = 0. This curve
can be plotted by finding several points on the curve. The points on the curve can be
found by giving a series of values to x; and finding the corresponding values of x,
that satisfy the relation xjx; = 1.593:

X1 2.0 4.0 6.0 8.0 10.0 12.0 14.0
X2 0.7965 0.3983 0.2655 0.1990 0.1593 0.1328 0.1140

These points are plotted and a curve P; Q) passing through all these points is drawn as
shown in Fig. 1.7, and the infeasible region, represented by g;(X) > 0 or x;x, < 1.593,
is shown by hatched lines.” Similarly, the second constraint g»(X) < 0 can be expressed
as xlxz(xl2 + x%) > 47.3 and the points lying on the constraint surface g>(X) = 0 can
be obtained as follows for xlxz(xl2 + x22) =47.3:

"The infeasible region can be identified by testing whether the origin lies in the feasible or infeasible
region.
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Figure 1.7 Graphical optimization of Example 1.1.

X1 2 4 6 8 10 12 14
X2 241 0.716 0.219 0.0926 0.0473 0.0274 0.0172

These points are plotted as curve P, Q», the feasible region is identified, and the infea-
sible region is shown by hatched lines as in Fig. 1.7. The plotting of side constraints
is very simple since they represent straight lines. After plotting all the six constraints,
the feasible region can be seen to be given by the bounded area ABCDEA.
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Next, the contours of the objective function are to be plotted before finding the
optimum point. For this, we plot the curves given by

f(X) =9.82x1x; + 2x; = ¢ = constant

for a series of values of c¢. By giving different values to ¢, the contours of f can be
plotted with the help of the following points.

For 9.82x;x, + 2x; = 50.0:
X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X1 16.77 12.62 10.10 8.44 7.24 6.33 5.64 5.07

For 9.82x1x, + 2x1 = 40.0:

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X1 13.40 10.10 8.08 6.75 5.79 5.06 4.51 4.05

For 9.82x,x, + 2x; = 31.58 (passing through the corner point C):

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X1 10.57 7.96 6.38 5.33 4.57 4.00 3.56 3.20

For 9.82x1x, + 2x; = 26.53 (passing through the corner point B):

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X 8.88 6.69 5.36 4.48 3.84 3.36 2.99 2.69

For 9.82x1x2 + 2x; = 20.0:

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X1 6.70 5.05 4.04 3.38 2.90 2.53 2.26 2.02

These contours are shown in Fig. 1.7 and it can be seen that the objective function
cannot be reduced below a value of 26.53 (corresponding to point B) without violating
some of the constraints. Thus the optimum solution is given by point B with d* =
x{=5.44 cm and t* = xJ = 0.293 cm with fpi, = 26.53.

1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.

1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained or uncon-
strained, depending on whether constraints exist in the problem.
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Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems can be
classified into two broad categories. In the first category, the problem is to find values
to a set of design parameters that make some prescribed function of these parameters
minimum subject to certain constraints. For example, the problem of minimum-weight
design of a prismatic beam shown in Fig. 1.8a subject to a limitation on the maximum
deflection can be stated as follows:

Find X = {Z

F(X) = plbd

} which minimizes
(1.4)

subject to the constraints
8ip(X) < Sma
b>0
d=>0

where p is the density and §;, is the tip deflection of the beam. Such problems are
called parameter or static optimization problems. In the second category of problems,
the objective is to find a set of design parameters, which are all continuous functions
of some other parameter, that minimizes an objective function subject to a set of
constraints. If the cross-sectional dimensions of the rectangular beam are allowed to
vary along its length as shown in Fig. 1.8b, the optimization problem can be stated as

Find X(1) = {Zg ;} which minimizes
l
FIX()] = ,0/0 b(t) d(t)dt (1.5)
subject to the constraints
Sip[X ()] < max, 0=t=1I
b(t) >0, 0<t<l
d() >0, 0<r<l

—
<<4°

d(t) \ E

"

TTRTTTTSTST

| z

(a) (b)

Figure 1.8 Cantilever beam under concentrated load.
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Here the design variables are functions of the length parameter 7. This type of problem,
where each design variable is a function of one or more parameters, is known as a
trajectory or dynamic optimization problem [1.55].

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems can be
classified as optimal control and nonoptimal control problems.

Optimal Control Problem.  An optimal control (OC) problem is a mathematical pro-
gramming problem involving a number of stages, where each stage evolves from the
preceding stage in a prescribed manner. It is usually described by two types of vari-
ables: the control (design) and the state variables. The control variables define the
system and govern the evolution of the system from one stage to the next, and the state
variables describe the behavior or status of the system in any stage. The problem is
to find a set of control or design variables such that the total objective function (also
known as the performance index, PI) over all the stages is minimized subject to a
set of constraints on the control and state variables. An OC problem can be stated as
follows [1.55]:

I
Find X which minimizes f(X) = Z fi(xi, i) (1.6)
i=1

subject to the constraints

qixi,y)+yi =yiq1, 1=12,...1
gi(x;) <0, j=12,...,1
hi(y) <0, k=1,2,...,1

where x; is the ith control variable, y; the ith state variable, and f; the contribution
of the ith stage to the total objective function; g;, hy, and ¢; are functions of x;, y,
and x; and y;, respectively, and [ is the total number of stages. The control and state
variables x; and y; can be vectors in some cases. The following example serves to
illustrate the nature of an optimal control problem.

Example 1.2 A rocket is designed to travel a distance of 12s in a vertically upward
direction [1.39]. The thrust of the rocket can be changed only at the discrete points
located at distances of 0, s, 2s, 3s, ..., 12s. If the maximum thrust that can be devel-
oped at point i either in the positive or negative direction is restricted to a value of
F;, formulate the problem of minimizing the total time of travel under the following
assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.
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13 12s
12 11s
11 10s
10 9s
A
3¢ 2s
24¢s

140
Control  Distance from
points  starting point  Figure 1.9 Control points in the path of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of the
rocket are changed be numbered as 1, 2, 3, ..., 13 (Fig. 1.9). Denoting x; as the thrust,
v; the velocity, a; the acceleration, and m; the mass of the rocket at point i, Newton’s
second law of motion can be applied as

net force on the rocket = mass x acceleration

This can be written as

thrust — gravitational force — air resistance = mass x acceleration
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or
X; —mig — kiv; =m;a; (En

where the mass m; can be expressed as
m; =mj_1 — kas (E2)

and k; and k, are constants. Equation (E;) can be used to express the acceleration, a;,
as

X; kiv;

(E3)

m; m;

If #; denotes the time taken by the rocket to travel from point i to point i + 1, the
distance traveled between the points i and i 4+ 1 can be expressed as

1
s = vit; + Ea,-tiz

or

2 1

1 ml

1 2 [ Xi klvi
sl ——8— +tivi—s=0 (Eq)
m;

from which #; can be determined as

= | I (Es)

Of the two values given by Eq. (Es), the positive value has to be chosen for ;. The
velocity of the rocket at point i 4+ 1, v;1j, can be expressed in terms of v; as (by
assuming the acceleration between points i and i + 1 to be constant for simplicity)

Vit+] = V; +a;t; (E¢)

The substitution of Egs. (E3) and (Es) into Eq. (E¢) leads to

5 X kiv;
Vit = 4[| V; + 2s m_ — 8 — e (E7)
1 1

From an analysis of the problem, the control variables can be identified as the thrusts,
x;, and the state variables as the velocities, v;. Since the rocket starts at point 1 and
stops at point 13,

V] = V13 = 0 (ES)
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Thus the problem can be stated as an OC problem as

X1
X2
Find X = . which minimizes

subject to
miy = m; — ks, i=1,2, , 12
v,+1—\/vi2+2s(;—ii—g—kri:l>, i=1,2,...,12
lxi| < Fi, i=1,2,...,12
vl = V13 =

1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the nature of
expressions for the objective function and the constraints. According to this classi-
fication, optimization problems can be classified as linear, nonlinear, geometric, and
quadratic programming problems. This classification is extremely useful from the com-
putational point of view since there are many special methods available for the efficient
solution of a particular class of problems. Thus the first task of a designer would be
to investigate the class of problem encountered. This will, in many cases, dictate the
types of solution procedures to be adopted in solving the problem.

Nonlinear Programming Problem. 1If any of the functions among the objective and
constraint functions in Eq. (1.1) is nonlinear, the problem is called a nonlinear pro-
gramming (NLP) problem. This is the most general programming problem and all other
problems can be considered as special cases of the NLP problem.

Example 1.3 The step-cone pulley shown in Fig. 1.10 is to be designed for trans-
mitting a power of at least 0.75 hp. The speed of the input shaft is 350 rpm and the
output speed requirements are 750, 450, 250, and 150 rpm for a fixed center distance
of a between the input and output shafts. The tension on the tight side of the belt is to
be kept more than twice that on the slack side. The thickness of the belt is 7 and the
coefficient of friction between the belt and the pulleys is . The stress induced in the
belt due to tension on the tight side is s. Formulate the problem of finding the width
and diameters of the steps for minimum weight.
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Figure 1.10 Step-cone pulley.

SOLUTION The design vector can be taken as

d
dy
X=1{ds
dy

w

where d; is the diameter of the ith step on the output pulley and w is the width of the
belt and the steps. The objective function is the weight of the step-cone pulley system:

s
fX) = ,owz(dlz +di 4 di 4 di +d? 4 dy 4 d 4 dy)
T 750\ 450\
=pw=—1d} |1+ (= |1+ —=
pw4{ ‘[ +<3so>}+ 2[ +<3so>}
+d? |1+ @2+d21+ 150\ (E1)
3 350 4 350 1

where p is the density of the pulleys and d; is the diameter of the ith step on the input
pulley.
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To have the belt equally tight on each pair of opposite steps, the total length of the
belt must be kept constant for all the output speeds. This can be ensured by satisfying
the following equality constraints:

C1 —C2 =0 (EZ)
Ci—C=0 (E3)
C—C4=0 (Eg)

where C; denotes length of the belt needed to obtain output speed N; (i = 1,2, 3,4)
and is given by [1.116, 1.117]:
2
Ni 1) d?

Jle' N; <N
Ci~— |1+ — -
l 2 <+N>+ 4a

where N is the speed of the input shaft and a is the center distance between the shafts.
The ratio of tensions in the belt can be expressed as [1.116, 1.117]

T—ll. = M

T}

+ 2a

where Tli and Tzi are the tensions on the tight and slack sides of the ith step, n the
coefficient of friction, and 6; the angle of lap of the belt over the ith pulley step. The
angle of lap is given by

2a

Ni
(2-1)a
6 =7 —2sin”! [7]

and hence the constraint on the ratio of tensions becomes

N d; .
exp{,u[n—Zsin_l:(N—l)z—”}zl i=1,2,3,4 (Es)
a

The limitation on the maximum tension can be expressed as

Ty =stw,  i=1234 (Ee)

where s is the maximum allowable stress in the belt and 7 is the thickness of the belt.

The constraint on the power transmitted can be stated as (using lbs for force and ft for
linear dimensions) ' '

(T, — T, )ymd’;(350) -

33,000 -

0.75

which can be rewritten, using Tli = stw from Eq. (Eg), as

o R CRE)

350 )
X ( ) > 0.75, i=1,2,3,4 (E7)

33,000



22

Introduction to Optimization

Finally, the lower bounds on the design variables can be taken as
w =0 (Eg)
di=0, i=1234 (Eg)

As the objective function, (E;), and most of the constraints, (E;) to (Eg), are nonlinear
functions of the design variables di, d, d3, ds, and w, this problem is a nonlinear
programming problem.

Geometric Programming Problem.

Definition A function i (X) is called a posynomial if h can be expressed as the sum
of power terms each of the form

c,xf’lxé”z X xlgzn

where ¢; and a;; are constants with ¢; > 0 and x; > 0. Thus a posynomial with N terms
can be expressed as

11, al2 1 N1 _aN2 | N
hX) =cpxf x5 oxd e eyx T xgxa (1.7)

A geometric programming (GMP) problem is one in which the objective function
and constraints are expressed as posynomials in X. Thus GMP problem can be posed
as follows [1.59]:

Find X which minimizes

f(X) = Zc, ]_[x”” . >0, x;>0 (1.8)

subject to

gX) =Y ay | [[x]"] 0. au>0, x;>0, k=1.2,....m

where Ny and N; denote the number of posynomial terms in the objective and kth
constraint function, respectively.

Example 1.4 Four identical helical springs are used to support a milling machine
weighing 5000 Ib. Formulate the problem of finding the wire diameter (d), coil diameter
(D), and the number of turns (N) of each spring (Fig. 1.11) for minimum weight by
limiting the deflection to 0.1in. and the shear stress to 10,000 psi in the spring. In
addition, the natural frequency of vibration of the spring is to be greater than 100 Hz.
The stiffness of the spring (k), the shear stress in the spring (), and the natural
frequency of vibration of the spring ( f,;) are given by

_d'G
~ 8D3N

SFD
T=K;——

d*G _ J/Ggd
V 8D3N p(nd2/4)7rDN 2V/2p7 D°N
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A

N (number of turns)

——

Figure 1.11 Helical spring.

S —

where G is the shear modulus, F' the compressive load on the spring, w the weight of
the spring, p the weight density of the spring, and K the shear stress correction factor.
Assume that the material is spring steel with G = 12 x 10° psi and p = 0.3 1b/in?, and
the shear stress correction factor is K ~ 1.05.

SOLUTION The design vector is given by

X1 d
X = X2 ¢ = D
X3 N
and the objective function by
d2
£(X) = weight = ”TnDNp (E))
The constraints can be expressed as
_ 8FD’N
deflection = — = ——— < 0.1
k d*G
that is,
d*G
X)y=—>1 E
g1(X) SOFD°N (E2)

8FD
shear stress = K,—— < 10,000
nd?
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that is,

12507rd3
& X) = W > 1 (E3)

VGg

> 100
2/2pmw D*N —

natural frequency =

that is,

JGgd

X) =
8% = 00 /ron DN

(E4)

Since the equality sign is not included (along with the inequality symbol, >) in the
constraints of Egs. (E;) to (E4), the design variables are to be restricted to positive
values as

d>0, D>0, N>0 (Es)

By substituting the known data, F' = weight of the milling machine/4 = 12501b, p =
0.31b/in’, G = 12 x 10° psi, and Ky = 1.05, Egs. (E;) to (E4) become

fX) = 172(0.3)d’DN = 0.7402x7x7x3 (Ee)
d*(12 x 109
80(1250)D3N

(X) 1250nd’ ) ggp 3t s (Es)

= = 4. X1 X >

&2 1.05(1250)D 12 8
JGgd

200/2p7 D’N

g1(X) = = 120x7x, x> 1 (E7)

g3(X) = = 139.8388x x; 2x; ' > 1 (Eo)

It can be seen that the objective function, f(X), and the constraint functions, g;(X) to
g3(X), are posynomials and hence the problem is a GMP problem.

Quadratic Programming Problem. A quadratic programming problem is a nonlinear
programming problem with a quadratic objective function and linear constraints. It is
usually formulated as follows:

FX)=c+ Y qxi + )Y Qijxix; (1.9)
i=1 i=1 j=

i=1 j=1

subject to

where ¢, g;, Q;j, a;j, and b; are constants.
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Example 1.5 A manufacturing firm produces two products, A and B, using two limited
resources. The maximum amounts of resources 1 and 2 available per day are 1000 and
250 units, respectively. The production of 1 unit of product A requires 1 unit of resource
1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires 0.5
unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are
given by the relations (0.375 — 0.00005z,) and (0.75 — 0.0001u,), respectively, where
u; denotes the number of units of resource i used (i = 1, 2). The selling prices per unit
of products A and B, ps and pp, are given by

pa = 2.00 —0.0005x4 — 0.00015x5
pp = 3.50 —0.0002x4 — 0.0015xp

where x4 and xp indicate, respectively, the number of units of products A and B sold.
Formulate the problem of maximizing the profit assuming that the firm can sell all the
units it manufactures.

SOLUTION Let the design variables be the number of units of products A and B
manufactured per day:
x={al
XB

The requirement of resource 1 per day is (x4 + 0.5xp) and that of resource 2 is
(0.2x4 + 0.5xp) and the constraints on the resources are

xa +0.5xp < 1000 (Ep)
0.2x4 + 0.5x5 <250 (E2)
The lower bounds on the design variables can be taken as
x4 >0 (E3)
xp >0 (Es)
The total cost of resources 1 and 2 per day is
(xa +0.5x5)[0.375 — 0.00005(x 4 + 0.5x5)]
+ (0.2x4 + 0.5x5)[0.750 — 0.0001(0.2x4 + 0.5xp)]
and the return per day from the sale of products A and B is
x4(2.00 — 0.0005x4 — 0.00015x5) + xp(3.50 — 0.0002x4 — 0.0015x3)

The total profit is given by the total return minus the total cost. Since the objective
function to be minimized is the negative of the profit per day, f(X) is given by

F(X) = (x4 + 0.5x5)[0.375 — 0.00005(x 4 + 0.5x5)]
+ (0.2x4 + 0.5x5)[0.750 — 0.0001(0.2x4 + 0.5x5)]
— x4(2.00 — 0.0005x4 — 0.00015xp)
— x5(3.50 — 0.0002x4 — 0.0015xp) (Es)
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As the objective function [Eq. (Es5)] is a quadratic and the constraints [Egs. (E;) to
(E4)] are linear, the problem is a quadratic programming problem.

Linear Programming Problem. If the objective function and all the constraints in
Eq. (1.1) are linear functions of the design variables, the mathematical programming
problem is called a linear programming (LP) problem. A linear programming problem
is often stated in the following standard form:

X1
X2
Find X =

Xn
n
which minimizes f(X) = ) cix;
i=1
subject to the constraints (1.10)

n
Za,’jxiij, j=1,2,...,m

i=1

x>0, i=12,...,n

where ¢;, a;;, and b; are constants.

Example 1.6 A scaffolding system consists of three beams and six ropes as shown
in Fig. 1.12. Each of the top ropes A and B can carry a load of Wi, each of the
middle ropes C and D can carry a load of W;, and each of the bottom ropes E and
F can carry a load of Wj. If the loads acting on beams 1, 2, and 3 are x, x», and x3,
respectively, as shown in Fig. 1.12, formulate the problem of finding the maximum

L LS L L

A n B
e—— 3/ > 6l >
A
Beam 1
~—2l— 2 ~— 20 —
c *l‘i D
Beam 2
E 3 I~ F
Y
Beam 3

Figure 1.12 Scaffolding system with three beams.
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load (x; + x2 4 x3) that can be supported by the system. Assume that the weights of
the beams 1, 2, and 3 are w;, wy, and w3, respectively, and the weights of the ropes
are negligible.

SOLUTION Assuming that the weights of the beams act through their respective
middle points, the equations of equilibrium for vertical forces and moments for each
of the three beams can be written as

For beam 3:
T +Tr = x3+ w3
x3(30) +w3(2l) — Tr4l) =0
For beam 2:
Tc+Tp —Tg =x2+w>
o) +wa () +Te() —Tp21H) =0
For beam 1:

Ty +Tp —Tc —Tp — Tr = x1 + wy
x1(3D) + wi(31) — Tg(91) + Tc(21) + Tp(4l) + Tr(71) = 0

where 7; denotes the tension in rope i. The solution of these equations gives

Tr = 3x3+ Jws

Tg = %X3 + %w3

Tp = 3x2+ §x3 + 3wz + w3

Tc = %xz + %x3 + %wz + %w3

Tp = tx1+ 52+ 3x3 4+ Jwi + 3wz + Jw3

Ty = 3x1 4 302+ 3x3 4+ Jwi + 3wz + w3
The optimization problem can be formulated by choosing the design vector as

X1
X = X2
X3

Since the objective is to maximize the total load

SX) = —(x1 +x2+ x3) (Epn

The constraints on the forces in the ropes can be stated as
Ta =Wy (E2)
Tg =W, (E3)

Tc =W, (E4)
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Tp < W, (Es)
T < W3 (Ee)
Tr < W3 (E7)

Finally, the nonnegativity requirement of the design variables can be expressed as
x1 >0
x>0
x3=0 (Es)

Since all the equations of the problem (E;) to (Eg), are linear functions of x;, x,, and
x3, the problem is a linear programming problem.

1.5.5 Classification Based on the Permissible Values of the Design Variables

Depending on the values permitted for the design variables, optimization problems can
be classified as integer and real-valued programming problems.

Integer Programming Problem. If some or all of the design variables x;, xp, ..., x,
of an optimization problem are restricted to take on only integer (or discrete) values,
the problem is called an integer programming problem. On the other hand, if all the
design variables are permitted to take any real value, the optimization problem is
called a real-valued programming problem. According to this definition, the problems
considered in Examples 1.1 to 1.6 are real-valued programming problems.

Example 1.7 A cargo load is to be prepared from five types of articles. The weight
w;, volume v;, and monetary value ¢; of different articles are given below.

Article type w; v; Ci
1 4 9 5
2 8 7 6
3 2 4 3
4 5 3 2
5 3 8 8

Find the number of articles x; selected from the ith type (i =1, 2, 3,4, 5), so that the
total monetary value of the cargo load is a maximum. The total weight and volume of
the cargo cannot exceed the limits of 2000 and 2500 units, respectively.

SOLUTION Let x; be the number of articles of type i (i =1 to 5) selected. Since
it is not possible to load a fraction of an article, the variables x; can take only integer
values.

The objective function to be maximized is given by

F(X) = 5x1 + 6xp + 3x3 + 2x4 + 8x5 (Ep
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and the constraints by

4x1 + 8xp 4+ 2x3 + Sx4 + 3x5 < 2000 (Ey)
9x1 4 Tx2 + 4x3 4+ 3x4 4 8x5 < 2500 (E3)
x; > 0 and integral, i=1,2,...,5 (Ey)

Since x; are constrained to be integers, the problem is an integer programming
problem.

1.5.6 Classification Based on the Deterministic Nature of the Variables

Based on the deterministic nature of the variables involved, optimization problems can
be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem. A stochastic programming problem is an opti-
mization problem in which some or all of the parameters (design variables and/or
preassigned parameters) are probabilistic (nondeterministic or stochastic). According
to this definition, the problems considered in Examples 1.1 to 1.7 are deterministic
programming problems.

Example 1.8 Formulate the problem of designing a minimum-cost rectangular under-
reinforced concrete beam that can carry a bending moment M with a probability of at
least 0.95. The costs of concrete, steel, and formwork are given by C. = $200/m?, C; =
$5000/m?, and C; = $40/m? of surface area. The bending moment M is a probabilistic
quantity and varies between 1 x 10° and 2 x 10° N-m with a uniform probability. The
strengths of concrete and steel are also uniformly distributed probabilistic quantities
whose lower and upper limits are given by

fe =25 and 35 MPa
fs =500 and 550 MPa

Assume that the area of the reinforcing steel and the cross-sectional dimensions of the
beam are deterministic quantities.

SOLUTION  The breadth b in meters, the depth d in meters, and the area of reinforcing
steel A in square meters are taken as the design variables x|, x,, and x3, respectively
(Fig. 1.13). The cost of the beam per meter length is given by

f(X) = cost of steet 4 cost of concrete + cost of formwork
= A;Cs + (bd — Ag)Ce +2(b + d)Cyy (Ep)

The resisting moment of the beam section is given by [1.119]

Mg = A d 059ASfS
R — .vfs'(_- fcb)
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QU

N
[ X X |

Figure 1.13 Cross section of a reinforced concrete beam.

and the constraint on the bending moment can be expressed as [1.120]

As f
feb
where P[---] indicates the probability of occurrence of the event [- - -].

To ensure that the beam remains underreinforced,” the area of steel is bounded by
(b)
the balanced steel area A~ as

P[MR—MZO]zP[ASfS (d—0.59 )—M20:| > 0.95 (E2)

Ay < AP (E3)
where 7 600
AP = (0.542) %5 bd ———
‘ fs 600+ f;

Since the design variables cannot be negative, we have
d>0
b>0
Ay >0 (E4)

Since the quantities M, f., and f; are nondeterministic, the problem is a stochastic
programming problem.

1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and nonseparable programming
problems based on the separability of the objective and constraint functions.

If steel area is larger than Aﬁb), the beam becomes overreinforced and failure occurs all of a sudden due

to lack of concrete strength. If the beam is underreinforced, failure occurs due to lack of steel strength and
hence it will be gradual.
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Separable Programming Problem.

Definition A function f(X) is said to be separable if it can be expressed as the sum
of n single-variable functions, fi(x1), f2(x2), ..., fu(x,), that is,

fX) =" fitx) (1.11)
i=l1

A separable programming problem is one in which the objective function and the
constraints are separable and can be expressed in standard form as

n
Find X which minimizes f(X) = Y _ fi(x;) (1.12)
i=1

subject to

n
giX)=> giji)<b;, j=1.2....m
i=1

where b; is a constant.

Example 1.9 A retail store stocks and sells three different models of TV sets. The
store cannot afford to have an inventory worth more than $45,000 at any time. The
TV sets are ordered in lots. It costs $a; for the store whenever a lot of TV model j
is ordered. The cost of one TV set of model j is ¢;. The demand rate of TV model
J is d; units per year. The rate at which the inventory costs accumulate is known to
be proportional to the investment in inventory at any time, with g; = 0.5, denoting
the constant of proportionality for TV model j. Each TV set occupies an area of
s; =040 m? and the maximum storage space available is 90 m?. The data known from
the past experience are given below.

TV model j
1 2 3
Ordering cost, a; ($) 50 80 100
Unit cost, ¢; ($) 40 120 80
Demand rate, d; 800 400 1200

Formulate the problem of minimizing the average annual cost of ordering and storing
the TV sets.

SOLUTION Let x; denote the number of TV sets of model j ordered in each lot
(j = 1,2, 3). Since the demand rate per year of model j is d;, the number of times
the TV model j needs to be ordered is d;/x;. The cost of ordering TV model j per
year is thus a;d;/x;, j = 1,2, 3. The cost of storing TV sets of model j per year is
qjcjx;/2 since the average level of inventory at any time during the year is equal to
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cjx;/2. Thus the objective function (cost of ordering plus storing) can be expressed

as
ad c1x a»rd CoX azd c3X
FX) = 11+4111 i 22+4222 i 33+4333 (Ey)
X1 2 X2 2 X3 2

where the design vector X is given by

X1
X = X2 (EZ)

X3
The constraint on the worth of inventory can be stated as
c1x1 + caxo + c3x3 < 45,000 (E3)
The limitation on the storage area is given by
$1X1 + $2%2 + 53x3 < 90 (Es)
Since the design variables cannot be negative, we have
x;>0, j=12,3 (Es)

By substituting the known data, the optimization problem can be stated as follows:

Find X which minimizes

40,000 32,000 120,000
fX) = < + 10x1) + ( + 30xz> + ( + 20x3) (Eg)

X1 X2 A3

subject to
g1(X) = 40x; + 120x, + 80x3 < 45,000 (E7)
g2(X) = 0.40(x1 4+ x2 +x3) <90 (Eg)
gX)=—x1 <0 (E9)
(X)) =—x2 <0 (E10)
85(X)=—x3<0 (E1n)

It can be observed that the optimization problem stated in Egs. (E¢) to (Ejj) is a
separable programming problem.

1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization prob-
lems can be classified as single- and multiobjective programming problems. According
to this classification, the problems considered in Examples 1.1 to 1.9 are single objective
programming problems.
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Multiobjective Programming Problem. A multiobjective programming problem can
be stated as follows:

Find X which minimizes f;(X), 2(X), ..., fi(X)
subject to (1.13)
giX)<0, j=12,....m

where f1, f2, ..., fr denote the objective functions to be minimized simultaneously.

Example 1.10 A uniform column of rectangular cross section is to be constructed
for supporting a water tank of mass M (Fig. 1.14). It is required (1) to minimize the
mass of the column for economy, and (2) to maximize the natural frequency of trans-
verse vibration of the system for avoiding possible resonance due to wind. Formulate
the problem of designing the column to avoid failure due to direct compression and
buckling. Assume the permissible compressive stress to be opax.

SOLUTION Let x; =b and x, = d denote the cross-sectional dimensions of the
column. The mass of the column (m) is given by

m = pbdl = plx;x, (EpD
where p is the density and [ is the height of the column. The natural frequency of

transverse vibration of the water tank (w), by treating it as a cantilever beam with a
tip mass M, can be obtained as [1.118]

12
3EI )
w = _—
(M + 22m)3 ?

k

Cross section of
the column
7, Figure 1.14 Water tank on a column.

AN
1
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where E is the Young’s modulus and / is the area moment of inertia of the column
given by

I = %bd? (E3)

The natural frequency of the water tank can be maximized by minimizing —w. With
the help of Egs. (E;) and (E3), Eq. (E;) can be rewritten as

3 1/2

Exix3

o= (E)
41°(M + mplxl)Cz)

The direct compressive stress (o) in the column due to the weight of the water tank
is given by

Mg Mg
= — = E
O¢ bd X122 ( 5)
and the buckling stress for a fixed-free column (o}) is given by [1.121]
n’EI\ 1  n’Ex; Eo)
o), = _— —_— =
b 42 ) bd 482 ¥

To avoid failure of the column, the direct stress has to be restricted to be less than o,y
and the buckling stress has to be constrained to be greater than the direct compressive

stress induced.
Finally, the design variables have to be constrained to be positive. Thus the
multiobjective optimization problem can be stated as follows:

Find X = {j‘c 1} which minimizes
2

f[1X) = plxixz (E7)
Exlxg 12
HX) =— (Eg)
412(M + 25 plxix2)
subject to
Mg
g1 X) = E — Omax <0 (Eo)
X) = Mg 7T2Ex22 - Ero)
82 o X1X2 482 — 10
&sX)=-x1 <0 (Ern)

g4X)=-x <0 (Ern)
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1.6 OPTIMIZATION TECHNIQUES

The various techniques available for the solution of different types of optimization
problems are given under the heading of mathematical programming techniques in
Table 1.1. The classical methods of differential calculus can be used to find the uncon-
strained maxima and minima of a function of several variables. These methods assume
that the function is differentiable twice with respect to the design variables and the
derivatives are continuous. For problems with equality constraints, the Lagrange multi-
plier method can be used. If the problem has inequality constraints, the Kuhn—Tucker
conditions can be used to identify the optimum point. But these methods lead to a set of
nonlinear simultaneous equations that may be difficult to solve. The classical methods
of optimization are discussed in Chapter 2.

The techniques of nonlinear, linear, geometric, quadratic, or integer programming
can be used for the solution of the particular class of problems indicated by the name
of the technique. Most of these methods are numerical techniques wherein an approx-
imate solution is sought by proceeding in an iterative manner by starting from an
initial solution. Linear programming techniques are described in Chapters 3 and 4. The
quadratic programming technique, as an extension of the linear programming approach,
is discussed in Chapter 4. Since nonlinear programming is the most general method
of optimization that can be used to solve any optimization problem, it is dealt with in
detail in Chapters 5—7. The geometric and integer programming methods are discussed
in Chapters 8 and 10, respectively. The dynamic programming technique, presented in
Chapter 9, is also a numerical procedure that is useful primarily for the solution of
optimal control problems. Stochastic programming deals with the solution of optimiza-
tion problems in which some of the variables are described by probability distributions.
This topic is discussed in Chapter 11.

In Chapter 12 we discuss calculus of variations, optimal control theory, and opti-
mality criteria methods. The modern methods of optimization, including genetic algo-
rithms, simulated annealing, particle swarm optimization, ant colony optimization,
neural network-based optimization, and fuzzy optimization, are presented in Chapter
13. Several practical aspects of optimization are outlined in Chapter 14. The reduction
of size of optimization problems, fast reanalysis techniques, the efficient computation
of the derivatives of static displacements and stresses, eigenvalues and eigenvectors,
and transient response are outlined. The aspects of sensitivity of optimum solution to
problem parameters, multilevel optimization, parallel processing, and multiobjective
optimization are also presented in this chapter.

1.7 ENGINEERING OPTIMIZATION LITERATURE

The literature on engineering optimization is large and diverse. Several text-books
are available and dozens of technical periodicals regularly publish papers related to
engineering optimization. This is primarily because optimization is applicable to all
areas of engineering. Researchers in many fields must be attentive to the developments
in the theory and applications of optimization.
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The most widely circulated journals that publish papers related to engineering opti-
mization are Engineering Optimization, ASME Journal of Mechanical Design, AIAA
Journal, ASCE Journal of Structural Engineering, Computers and Structures, Interna-
tional Journal for Numerical Methods in Engineering, Structural Optimization, Journal
of Optimization Theory and Applications, Computers and Operations Research, Oper-
ations Research, Management Science, Evolutionary Computation, IEEE Transactions
on Evolutionary Computation, European Journal of Operations Research, IEEE Trans-
actions on Systems, Man and Cybernetics, and Journal of Heuristics. Many of these
journals are cited in the chapter references.

1.8 SOLUTION OF OPTIMIZATION PROBLEMS USING MATLAB

The solution of most practical optimization problems requires the use of computers.
Several commercial software systems are available to solve optimization problems that
arise in different engineering areas. MATLAB is a popular software that is used for
the solution of a variety of scientific and engineering problems.” MATLAB has several
toolboxes each developed for the solution of problems from a specific scientific area.
The specific toolbox of interest for solving optimization and related problems is called
the optimization toolbox. It contains a library of programs or m-files, which can be
used for the solution of minimization, equations, least squares curve fitting, and related
problems. The basic information necessary for using the various programs can be found
in the user’s guide for the optimization toolbox [1.124]. The programs or m-files, also
called functions, available in the minimization section of the optimization toolbox are
given in Table 1.2. The use of the programs listed in Table 1.2 is demonstrated at the end
of different chapters of the book. Basically, the solution procedure involves three steps
after formulating the optimization problem in the format required by the MATLAB
program (or function) to be used. In most cases, this involves stating the objective
function for minimization and the constraints in “<” form with zero or constant value
on the righthand side of the inequalities. After this, step 1 involves writing an m-file
for the objective function. Step 2 involves writing an m-file for the constraints. Step 3
involves setting the various parameters at proper values depending on the characteristics
of the problem and the desired output and creating an appropriate file to invoke the
desired MATLAB program (and coupling the m-files created to define the objective and
constraints functions of the problem). As an example, the use of the program, fmincon,
for the solution of a constrained nonlinear programming problem is demonstrated in
Example 1.11.

Example 1.11  Find the solution of the following nonlinear optimization problem
(same as the problem in Example 1.1) using the MATLAB function fmincon:

Minimize f(x, x2) = 9.82x1x + 2x)
subject to

2500

TTX1X2

g1(xy, x2) = —500 <0

"The basic concepts and procedures of MATLAB are summarized in Appendix C.
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Table 1.2 MATLAB Programs or Functions for Solving Optimization Problems

Type of optimization
problem

Standard form for solution
by MATLAB

Name of MATLAB program
or function to solve
the problem

Function of one variable or
scalar minimization

Unconstrained minimization
of function of several
variables

Linear programming
problem

Quadratic programming
problem

Minimization of function of
several variables subject
to constraints

Goal attainment problem

Minimax problem

Binary integer programming
problem

Find x to minimize f(x)
with x; < x < x»
Find x to minimize f(x)

Find x to minimize £’ x
subject to
[Alx < Db, [Aeq]x = beqv
I<x<u

Find x to minimize
%XT[H]X + 7x subject to
[Alx < b, [Aeq]x = beq7
I<x<u

Find x to minimize f(x)
subject to
c(x) <0,¢q=0
[A]X <b, [Aeq]x = beqv
I<x<u

Find x and y to minimize y
such that
F(x) —wy < goal,
c(x) <0,¢q=0
[Alx < Db, [Aeq]x = beq7
I<x<u

Minimize Max

Fi(x
. () [Fi(x)}

such that
C(X) <0, Ceq = 0
[A]Xx < b, [Aeq]X = beg,
I<x<u

Find x to minimize f7x
subject to
[Alx < Db, [Aeq]x = beq9
each component of x is
binary

fminbnd

fminunc or fminsearch

linprog

quadprog

fmincon

fgoalattain

fminimax

bintprog

2500

20,2 2
T (x7 +x
(o +x3) _

0
0.5882 —

g(x1, x2) = -
TTX1X2

g(x1,x) =—x1+2<0
ga(x1,x)=x1—14<0
g5(x1,x) =—x4+02<0

g6(x1,x2) =x2 —0.8 <0
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SOLUTION

Step 1: Write an M-file probofminobj.m for the objective function.

function f= probofminobj (x)
f= 9.82*x(1)*x(2)+2*x(1);

Step 2: Write an M-file conprobformin.m for the constraints.

function [c, ceq] = conprobformin (x)

% Nonlinear inequality constraints

c = [2500/ (pi*x(1)*x(2))-500;2500/ (pi*x(1)*x(2))~-

(pin2* (x(1)"2+x(2)72))/0.5882;-x(1)+2;x(1)-14;-x(2)+0.2;
x(2)-0.8];

% Nonlinear equality constraints
ceq = [];

Step 3: Invoke constrained optimization program (write this in new matlab file).

clc

clear all

warning off

x0 = [7 0.4]; % Starting guess\

fprintf ('The values of function value and constraints
at starting point\n');

f=probofminobj (x0)

[c, ceq] = conprobformin (x0)

options = optimset ('LargeScale',6 'off');

[x, fvall=fmincon (@probofminobj, x0, [1, [1, [1, [1, [],
[]1, @Qconprobformin, options)

fprintf (' The values of constraints at optimum solution\n');

Q

[c, ceq] = conprobformin(x) % Check the constraint values at x

This produces the solution or output as follows:

The values of function value and constraints at starting point
f=

41.4960
Cc =

-215.7947

-540.6668

-5.0000

-7.0000

-0.2000

-0.4000
ceq =

[]

Optimization terminated: first-order optimality
measure less
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than options. TolFun and maximum constraint violation
is less

than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqglin inegnonlin

1
2

x=

5.4510 0.2920

fval =

26.5310
The values of constraints at optimum solution

Cc=

-0.0000

-0.0000

-3.4510

-8.5490

-0.0920

-0.5080
ceq =

[]
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REVIEW QUESTIONS

1.1

1.2

1.3

1.4

1.5

Match the following terms and descriptions:

(a) Free feasible point giX)=0

(b) Free infeasible point Some g;(X) = 0 and other g;(X) < 0
(c) Bound feasible point Some g;(X) = 0 and other g;(X) > 0
(d) Bound infeasible point Some g;(X) > 0 and other g;(X) <0
(e) Active constraints All g;(X) <0

Answer true or false:

(a) Optimization problems are also known as mathematical programming problems.
(b) The number of equality constraints can be larger than the number of design variables.
(c) Preassigned parameters are part of design data in a design optimization problem.
(d) Side constraints are not related to the functionality of the system.

(e) A bound design point can be infeasible.

(f) It is necessary that some g;(X) = 0 at the optimum point.

(g) An optimal control problem can be solved using dynamic programming techniques.
(h) An integer programming problem is same as a discrete programming problem.

Define the following terms:

(a) Mathematical programming problem
(b) Trajectory optimization problem

(¢) Behavior constraint

(d) Quadratic programming problem

(e) Posynomial

(f) Geometric programming problem

Match the following types of problems with their descriptions.

(a) Geometric programming problem  Classical optimization problem

(b) Quadratic programming problem Objective and constraints are quadratic

(¢) Dynamic programming problem Objective is quadratic and constraints are linear
(d) Nonlinear programming problem Objective and constraints arise from a serial

system

(e) Calculus of variations problem Objective and constraints are polynomials with

positive coefficients

How do you solve a maximization problem as a minimization problem?
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1.6 State the linear programming problem in standard form.
1.7 Define an OC problem and give an engineering example.
1.8 What is the difference between linear and nonlinear programming problems?
1.9 What is the difference between design variables and preassigned parameters?
1.10 What is a design space?
1.11 What is the difference between a constraint surface and a composite constraint surface?
1.12  What is the difference between a bound point and a free point in the design space?
1.13 What is a merit function?
1.14 Suggest a simple method of handling multiple objectives in an optimization problem.
1.15 What are objective function contours?
1.16 What is operations research?
1.17 State five engineering applications of optimization.
1.18 What is an integer programming problem?
1.19 What is graphical optimization, and what are its limitations?
1.20 Under what conditions can a polynomial in n variables be called a posynomial?
1.21 Define a stochastic programming problem and give two practical examples.
1.22 What is a separable programming problem?
1.1 A fertilizer company purchases nitrates, phosphates, potash, and an inert chalk base at a
cost of $1500, $500, $1000, and $100 per ton, respectively, and produces four fertilizers
A, B, C, and D. The production cost, selling price, and composition of the four fertilizers
are given below.
Production ~ Selling Percentage composition by weight
cost price Inert
Fertilizer ($/ton) ($/ton)  Nitrates Phosphates  Potash  chalk base
A 100 350 5 10 5 80
B 150 550 5 15 10 70
C 200 450 10 20 10 60
D 250 700 15 5 15 65

During any week, no more than 1000 tons of nitrate, 2000 tons of phosphates, and
1500 tons of potash will be available. The company is required to supply a minimum
of 5000 tons of fertilizer A and 4000 tons of fertilizer D per week to its customers;
but it is otherwise free to produce the fertilizers in any quantities it pleases. Formulate
the problem of finding the quantity of each fertilizer to be produced by the company to
maximize its profit.
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Figure 1.15 Two-bar truss.
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1.2 The two-bar truss shown in Fig. 1.15 is symmetric about the y axis. The nondimensional
area of cross section of the members A/Af, and the nondimensional position of joints
1 and 2, x/h, are treated as the design variables x; and x,, respectively, where A
is the reference value of the area (A) and & is the height of the truss. The coordinates
of joint 3 are held constant. The weight of the truss (f;) and the total displacement of
joint 3 under the given load (f;) are to be minimized without exceeding the permissible
stress, op. The weight of the truss and the displacement of joint 3 can be expressed as

FIX) = 2phxo /1 + X7 Ager
Ph(14+xH' /1 +x}

2V2Ex?xy Aset

LX) =

where p is the weight density, P the applied load, and E the Young’s modulus. The

stresses induced in members 1 and 2 (o7 and o0,) are given by

P(1+x1)y/(1+x7)

o1 (X) =
: 24/2x120 Aret

P(x; — 1)/ +x)
Zﬁxlszref

In addition, upper and lower bounds are placed on design variables x| and x; as

02(X) =

xM<x <x™ i=1,2

Find the solution of the problem using a graphical method with (a) f; as the objective, (b) f>
as the objective, and (¢) (f; + f>) as the objective for the following data: E = 30 x 10° psi,
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p = 0.283 Ib/in®, P = 10,000 Ib, 0y = 20,000 psi, # = 100 in., Arer = 1 in, x" = 0.1, x" =
0.1, "™ = 2.0, and xJ™ = 2.5.

1.3 Ten jobs are to be performed in an automobile assembly line as noted in the following

1.4

table:
Time required to Jobs that must be
Job complete the completed before
Number job (min) starting this job
1 4 None
2 8 None
3 7 None
4 6 None
5 3 1,3
6 5 2,3,4
7 1 5,6
8 9 6
9 2 7,8
10 8 9

It is required to set up a suitable number of workstations, with one worker assigned
to each workstation, to perform certain jobs. Formulate the problem of determining the
number of workstations and the particular jobs to be assigned to each workstation to
minimize the idle time of the workers as an integer programming problem. Hint: Define
variables x;; such that x;; = 1 if job i is assigned to station j, and x;; = 0 otherwise.

A railroad track of length L is to be constructed over an uneven terrain by adding or
removing dirt (Fig. 1.16). The absolute value of the slope of the track is to be restricted
to a value of r; to avoid steep slopes. The absolute value of the rate of change of the
slope is to be limited to a value r, to avoid rapid accelerations and decelerations. The
absolute value of the second derivative of the slope is to be limited to a value of r3

Terrain (known elevation, g(x))

'_L Track (unknown elevation, A(x))

\ e .

. j . - e
| s —==<
I RS
I
a g(x) : b
h(x)

1
I
Y ] — X

0 x L

Figure 1.16 Railroad track on an uneven terrain.
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to avoid severe jerks. Formulate the problem of finding the elevation of the track to
minimize the construction costs as an OC problem. Assume the construction costs to be
proportional to the amount of dirt added or removed. The elevation of the track is equal
toa and b at x = 0 and x = L, respectively.

A manufacturer of a particular product produces x; units in the first week and x; units
in the second week. The number of units produced in the first and second weeks must
be at least 200 and 400, respectively, to be able to supply the regular customers. The
initial inventory is zero and the manufacturer ceases to produce the product at the end
of the second week. The production cost of a unit, in dollars, is given by 4xi2, where x;
is the number of units produced in week i (i = 1, 2). In addition to the production cost,
there is an inventory cost of $10 per unit for each unit produced in the first week that
is not sold by the end of the first week. Formulate the problem of minimizing the total
cost and find its solution using a graphical optimization method.

Consider the slider-crank mechanism shown in Fig. 1.17 with the crank rotating at
a constant angular velocity w. Use a graphical procedure to find the lengths of the
crank and the connecting rod to maximize the velocity of the slider at a crank angle of
0 = 30° for @ = 100 rad/s. The mechanism has to satisfy Groshof’s criterion [ > 2.5r
to ensure 360° rotation of the crank. Additional constraints on the mechanism are given
by 0.5 <r <10,2.5 <1 <25,and 10 < x <20.

Solve Problem 1.6 to maximize the acceleration (instead of the velocity) of the slider at
6 = 30° for w = 100 rad/s.

It is required to stamp four circular disks of radii Ry, R, R3, and R4 from a rectan-
gular plate in a fabrication shop (Fig. 1.18). Formulate the problem as an optimization
problem to minimize the scrap. Identify the design variables, objective function, and the
constraints.

The torque transmitted (7°) by a cone clutch, shown in Fig. 1.19, under uniform pressure
condition is given by
2nfp 4

T = R’ — R}
3sinoz( ! 2)

where p is the pressure between the cone and the cup, f the coefficient of friction, «
the cone angle, R; the outer radius, and R; the inner radius.

(a) Find R; and R, that minimize the volume of the cone clutch with o = 30°,
F =30 1b, and f =0.5 under the constraints 7 > 100 Ib-in., R; > 2R,,
O0<R;<15in.,and 0 < R, <10 in.

Crank, length r

\ Connecting rod, length [

Slider
LiLs
LTTTTTTTTII77777777
l< |

Figure 1.17 Slider-crank mechanism.
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Figure 1.18 Locations of circular disks in a rectangular plate.
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Figure 1.19 Cone clutch.

(b) What is the solution if the constraint R; > 2R, is changed to R} < 2R;?

(¢) Find the solution of the problem stated in part (a) by assuming a uniform wear
condition between the cup and the cone. The torque transmitted (7°) under uniform
wear condition is given by

TfpRy
T ==""""(Ri — R}
Sin o

Note: Use graphical optimization for the solutions.
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A hollow circular shaft is to be designed for minimum weight to achieve a minimum
reliability of 0.99 when subjected to a random torque of (T, or) = (10°, 10*) Ib-in.,
where 7 is the mean torque and o7 is the standard deviation of the torque, T. The
permissible shear stress, 7g, of the material is given by (7o, 079) = (50,000, 5000) psi,
where T is the mean value and o,¢ is the standard deviation of ty. The maximum
induced stress (7) in the shaft is given by

_Tro
T

T

where r, is the outer radius and J is the polar moment of inertia of the cross section
of the shaft. The manufacturing tolerances on the inner and outer radii of the shaft are
specified as +0.06 in. The length of the shaft is given by 50 =1 in. and the specific
weight of the material by 0.3 & 0.03 Ib/in®. Formulate the optimization problem and
solve it using a graphical procedure. Assume normal distribution for all the random
variables and 3o values for the specified tolerances. Hints: (1) The minimum reliability
requirement of 0.99 can be expressed, equivalently, as [1.120]

T—T
1 =2326< —2
Joi+ %

2) If f(xl,_xz, ..., Xp) is a function of the random variables xi, x», ..., X, the mean

value of f(f) and the standard deviation of f(o) are given by
f=fE.%2..... %)

n 8f
O‘f= Z(a—%‘__

i=1

where X; is the mean value of x;, and o,; is the standard deviation of x;.

Certain nonseparable optimization problems can be reduced to a separable form by
using suitable transformation of variables. For example, the product term f = x;x; can
be reduced to the separable form f = yl2 — y22 by introducing the transformations

yi=30x1+x), y2=30x—x2)
Suggest suitable transformations to reduce the following terms to separable form:

(@ f :x%xé’, x1>0,x>0
M) f=x% x>0

In the design of a shell-and-tube heat exchanger (Fig. 1.20), it is decided to have the total
length of tubes equal to at least «; [1.10]. The cost of the tube is «, per unit length and
the cost of the shell is given by a3 D*L, where D is the diameter and L is the length of
the heat exchanger shell. The floor space occupied by the heat exchanger costs o4 per unit
area and the cost of pumping cold fluid is asL/d>N? per day, where d is the diameter
of the tube and N is the number of tubes. The maintenance cost is given by agNdL.
The thermal energy transferred to the cold fluid is given by a7/N'2dL'* 4 ag/d®>L.
Formulate the mathematical programming problem of minimizing the overall cost of the
heat exchanger with the constraint that the thermal energy transferred be greater than
a specified amount ag. The expected life of the heat exchanger is «jp years. Assume
that o;, i = 1,2, ..., 10, are known constants, and each tube occupies a cross-sectional
square of width and depth equal to d.
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1.13

1.14

1.15

Tubes of diameter d
umber of tubes N

| L ﬁ*!
Figure 1.20 Shell-and-tube heat exchanger.

Figure 1.21 Electrical bridge network.

The bridge network shown in Fig. 1.21 consists of five resistors R;(i = 1,2,...,5).
If 7; is the current flowing through the resistance R;, the problem is to find the resistances
Ri, Ry, ..., Rs so that the total power dissipated by the network is a minimum. The
current /; can vary between the lower and upper limits /; min and /; max, and the voltage
drop, V; = R;I;, must be equal to a constant ¢; for 1 <i < 5. Formulate the problem as
a mathematical programming problem.

A traveling saleswoman has to cover n towns. She plans to start from a particular town
numbered 1, visit each of the other n — 1 towns, and return to the town 1. The distance
between towns i and j is given by d;;. Formulate the problem of selecting the sequence
in which the towns are to be visited to minimize the total distance traveled.

A farmer has a choice of planting barley, oats, rice, or wheat on his 200-acre farm. The
labor, water, and fertilizer requirements, yields per acre, and selling prices are given in
the following table:

Labor Water Fertilizer Selling
Type of cost required required Yield price
crop $) (m?) (Ib) (Ib) ($/1b)
Barley 300 10,000 100 1,500 0.5
Oats 200 7,000 120 3,000 0.2
Rice 250 6,000 160 2,500 0.3
Wheat 360 8,000 200 2,000 0.4

The farmer can also give part or all of the land for lease, in which case he gets $200 per
acre. The cost of water is $0.02/m> and the cost of the fertilizer is $2/Ib. Assume that
the farmer has no money to start with and can get a maximum loan of $50,000 from the
land mortgage bank at an interest of 8 %. He can repay the loan after six months. The
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irrigation canal cannot supply more than 4 x 10° m® of water. Formulate the problem of
finding the planting schedule for maximizing the expected returns of the farmer.

There are two different sites, each with four possible targets (or depths) to drill an oil
well. The preparation cost for each site and the cost of drilling at site i to target j are
given below:

Drilling cost to target j

Site i 1 2 3 4 Preparation cost
1 4 1 9 7 11
7 9 5 2 13

Formulate the problem of determining the best site for each target so that the total cost
is minimized.

A four-pole dc motor, whose cross section is shown in Fig. 1.22, is to be designed with
the length of the stator and rotor xi, the overall diameter of the motor x,, the unnotched
radius x3, the depth of the notches x4, and the ampere turns xs as design variables.

Slots (to house armature winding)

Figure 1.22 Cross section of an idealized motor.
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1.18

The air gap is to be less than kj+/x; + 7.5 where k; is a constant. The temperature of
the external surface of the motor cannot exceed AT above the ambient temperature.
Assuming that the heat can be dissipated only by radiation, formulate the problem for
maximizing the power of the motor [1.59]. Hints:

1. The heat generated due to current flow is given by kyxix; lx; ]xg, where k; is a
constant. The heat radiated from the external surface for a temperature difference of
AT is given by k3zx;x, AT, where k3 is a constant.

2. The expression for power is given by k4NBx|x3xs, where k4 is a constant, N is the
rotational speed of the rotor, and B is the average flux density in the air gap.

3. The units of the various quantities are as follows. Lengths: centimeter, heat generated,
heat dissipated; power: watt; temperature: °C; rotational speed: rpm; flux density:
gauss.

A gas pipeline is to be laid between two cities A and E, making it pass through one
of the four locations in each of the intermediate towns B, C, and D (Fig. 1.23). The
associated costs are indicated in the following tables.

Costs for A to B and D to E

Station i
1 2 3 4
From A to point i of B 30 35 25 40

From pointi of D to E 50 40 35 25

Costs for B to C and C to D

To:
From: 1 2 3 4
1 22 18 24 18
2 35 25 15 21
3 24 20 26 20
4 22 21 23 22

Town B Town C Town D

Figure 1.23 Possible paths of the pipeline between A and E.
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P, =101b

1 &
P,=251Ib o ;
< td 2
~— 1=50in —]

Figure 1.24 Beam-column.

Formulate the problem of minimizing the cost of the pipeline.

A beam-column of rectangular cross section is required to carry an axial load of 251b
and a transverse load of 101b, as shown in Fig. 1.24. It is to be designed to avoid the
possibility of yielding and buckling and for minimum weight. Formulate the optimization
problem by assuming that the beam-column can bend only in the vertical (xy) plane.
Assume the material to be steel with a specific weight of 0.3 1b/in®, Young’s modulus of
30 x 10° psi, and a yield stress of 30,000 psi. The width of the beam is required to be at
least 0.51n. and not greater than twice the depth. Also, find the solution of the problem
graphically. Hint: The compressive stress in the beam-column due to P, is Py/bd and
that due to Py is

Pd 6Pl

21,  bd?

The axial buckling load is given by

n?El,, w*Ebd?
(P = = = ~gp

A two-bar truss is to be designed to carry a load of 2W as shown in Fig. 1.25. Both
bars have a tubular section with mean diameter d and wall thickness ¢. The material
of the bars has Young’s modulus E and yield stress o,. The design problem involves
the determination of the values of d and ¢ so that the weight of the truss is a minimum
and neither yielding nor buckling occurs in any of the bars. Formulate the problem as a
nonlinear programming problem.

2w

d
Section A-A

e——2p—

Figure 1.25 Two-bar truss.
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A
Compressor (C)
Fan (F) 5 l
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1=y oo [
| | .10
80 ft ' e L A — 4 x
' (0, 0) : 10
O Tank (T)
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O
\ Pump (P)
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Figure 1.26 Processing plant layout (coordinates in ft).

1.21 Consider the problem of determining the economic lot sizes for four different items.

1.22

1.23

Assume that the demand occurs at a constant rate over time. The stock for the
ith item is replenished instantaneously upon request in lots of sizes Q;. The total
storage space available is A, whereas each unit of item i occupies an area d;. The
objective is to find the values of Q; that optimize the per unit cost of holding the
inventory and of ordering subject to the storage area constraint. The cost function is

given by
4
c= Z(% +b,-Q,-), ;>0
i=1 N =i

where a; and b; are fixed constants. Formulate the problem as a dynamic programming
(optimal control) model. Assume that Q; is discrete.

The layout of a processing plant, consisting of a pump (P), a water tank (7)), a com-
pressor (C), and a fan (F), is shown in Fig. 1.26. The locations of the various units, in
terms of their (x, y) coordinates, are also indicated in this figure. It is decided to add a
new unit, a heat exchanger (H), to the plant. To avoid congestion, it is decided to locate
H within a rectangular area defined by {—15 < x < 15, —10 < y < 10}. Formulate the
problem of finding the location of H to minimize the sum of its x and y distances from
the existing units, P, T, C, and F.

Two copper-based alloys (brasses), A and B, are mixed to produce a new alloy, C.
The composition of alloys A and B and the requirements of alloy C are given in the
following table:
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Composition by weight

Alloy Copper Zinc Lead Tin
A 80 10 6 4
B 60 20 18 2
C > 175 > 15 > 16 >3

If alloy B costs twice as much as alloy A, formulate the problem of determining the
amounts of A and B to be mixed to produce alloy C at a minimum cost.

An oil refinery produces four grades of motor oil in three process plants. The refinery
incurs a penalty for not meeting the demand of any particular grade of motor oil. The
capacities of the plants, the production costs, the demands of the various grades of motor
oil, and the penalties are given in the following table:

Process Capacity of the plant

Production cost ($/day) to
manufacture motor oil of grade:

plant (kgal/day) 1 2 3 4

1
2
3

100 750 900 1000 1200
150 800 950 1100 1400
200 900 1000 1200 1600

Demand (kgal/day) 50 150 100 75
Penalty (per each kilogallon shortage) $10 $12 $16 $20

1.25

1.26

1.27

Formulate the problem of minimizing the overall cost as an LP problem.

A part-time graduate student in engineering is enrolled in a four-unit mathematics course
and a three-unit design course. Since the student has to work for 20 hours a week at a
local software company, he can spend a maximum of 40 hours a week to study outside
the class. It is known from students who took the courses previously that the numerical
grade (g) in each course is related to the study time spent outside the class as g, = #,,/6
and g4 = t4/5, where g indicates the numerical grade (g = 4 for A, 3 for B, 2 for C, 1 for
D, and O for F), ¢ represents the time spent in hours per week to study outside the class,
and the subscripts m and d denote the courses, mathematics and design, respectively.
The student enjoys design more than mathematics and hence would like to spend at least
75 minutes to study for design for every 60 minutes he spends to study mathematics.
Also, as far as possible, the student does not want to spend more time on any course
beyond the time required to earn a grade of A. The student wishes to maximize his grade
point P, given by P = 4g,, + 3g4, by suitably distributing his study time. Formulate
the problem as an LP problem.

The scaffolding system, shown in Fig. 1.27, is used to carry a load of 10,000 Ib. Assuming
that the weights of the beams and the ropes are negligible, formulate the problem of
determining the values of x|, xp, x3, and x4 to minimize the tension in ropes A and B
while maintaining positive tensions in ropes C, D, E, and F.

Formulate the problem of minimum weight design of a power screw subjected to an
axial load, F, as shown in Fig. 1.28 using the pitch (p), major diameter (d), nut height
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Figure 1.27 Scaffolding system.

Figure 1.28 Power screw.

(h), and screw length (s) as design variables. Consider the following constraints in the
formulation:

1. The screw should be self-locking [1.117].

2. The shear stress in the screw should not exceed the yield strength of the material in
shear. Assume the shear strength in shear (according to distortion energy theory), to
be 0.5770,, where o, is the yield strength of the material.

3. The bearing stress in the threads should not exceed the yield strength of the material,
oy.

4. The critical buckling load of the screw should be less than the applied load, F.

1.28 (a) A simply supported beam of hollow rectangular section is to be designed for mini-

mum weight to carry a vertical load F, and an axial load P as shown in Fig. 1.29.
The deflection of the beam in the y direction under the self-weight and F, should
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Cross section
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(a) (b)
Figure 1.29 Simply supported beam under loads.

not exceed 0.5 in. The beam should not buckle either in the yz or the xz plane under
the axial load. Assuming the ends of the beam to be pin ended, formulate the opti-
mization problem using x;,i = 1,2, 3,4 as design variables for the following data:
F, =3001b, P = 40,000 1b,/ = 120 in., E = 30 x 10° psi, p = 0.284 Ib/in®, lower
bound on x; and x; = 0.125 in, upper bound on x;, and x, = 4 in.

(b) Formulate the problem stated in part (a) using x; and x; as design variables, assuming
the beam to have a solid rectangular cross section. Also find the solution of the
problem using a graphical technique.

1.29 A cylindrical pressure vessel with hemispherical ends (Fig. 1.30) is required to hold
at least 20,000 gallons of a fluid under a pressure of 2500 psia. The thicknesses of
the cylindrical and hemispherical parts of the shell should be equal to at least those
recommended by section VIII of the ASME pressure vessel code, which are given by

PR
o= ————
Se+0.4p
PR
th = ———
Se+0.8p
X2

Figure 1.30 Pressure vessel.
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1.30

1.31
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Figure 1.31 Crane hook carrying a load.

where S is the yield strength, e the joint efficiency, p the pressure, and R the radius.
Formulate the design problem for minimum structural volume using x;,7 = 1, 2, 3,4, as
design variables. Assume the following data: S = 30,000 psi and ¢ = 1.0.

A crane hook is to be designed to carry a load F as shown in Fig. 1.31. The hook can
be modeled as a three-quarter circular ring with a rectangular cross section. The stresses
induced at the inner and outer fibers at section AB should not exceed the yield strength
of the material. Formulate the problem of minimum volume design of the hook using
o, I'i, b, and h as design variables. Note: The stresses induced at points A and B are
given by [1.117]

Mc,
Op = M
MC‘Z‘
op = E

where M is the bending moment due to the load (= FR), R the radius of the centroid,
r, the radius of the outer fiber, r; the radius of the inner fiber, ¢, the distance of the
outer fiber from the neutral axis = R, — r,, ¢; the distance of inner fiber from neutral
axis = r, — r;, r, the radius of neutral axis, given by

_ h
© In(ro/ri)

'n

A the cross-sectional area of the hook = bh, and e the distance between the centroidal
and neutral axes = R — ry,.

Consider the four-bar truss shown in Fig. 1.32, in which members 1, 2, and 3 have
the same cross-sectional area x; and the same length /, while member 4 has an area of
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Figure 1.32 Four-bar truss.

cross section x; and length +/3 1. The truss is made of a lightweight material for which
Young’s modulus and the weight density are given by 30 x 10° psi and 0.03333 Ib/in®,
respectively. The truss is subject to the loads P; = 10,000 Ib and P, = 20,000 1b. The
weight of the truss per unit value of / can be expressed as

f = 3x1(1)(0.03333) + x2+/3(0.03333) = 0.1x; + 0.05773x,

The vertical deflection of joint A can be expressed as

0.6 0.3464
=—+
X1 X2

34

and the stresses in members 1 and 4 can be written as

5(10,000) 50,000 —2+/3(10,000) 34,640
= = N 0'4 = = —

X1 X1 X2 X2

o1

The weight of the truss is to be minimized with constraints on the vertical deflection of
the joint A and the stresses in members 1 and 4. The maximum permissible deflection
of joint A is 0.1in. and the permissible stresses in members are om,x = 8333.3333 psi
(tension) and opyin = —4948.5714 psi (compression). The optimization problem can be
stated as a separable programming problem as follows:

Minimize f(x1,x2) = 0.1x; + 0.05773x;

subject to
0.6 = 0.3464
—+

X1 X2

—01<0, 6—x1<0, 7—x<0

Determine the solution of the problem using a graphical procedure.

A simply supported beam, with a uniform rectangular cross section, is subjected to both
distributed and concentrated loads as shown in Fig. 1.33. It is desired to find the cross
section of the beam to minimize the weight of the beam while ensuring that the maximum
stress induced in the beam does not exceed the permissible stress (op) of the material
and the maximum deflection of the beam does not exceed a specified limit (8p).

The data of the problem are P = 10° N, po = 10° N/m, L = 1 m, E = 207 GPa, weight
density (py) = 76.5 KN/m?, o9 = 220 MPa, and 8y = 0.02m.
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Figure 1.33 A simply supported beam subjected to concentrated and distributed loads.

1.33

1.34
1.35
1.36

(a) Formulate the problem as a mathematical programming problem assuming that
the cross-sectional dimensions of the beam are restricted as x; < x, 0.04m < x;
< 0.12m, and 0.06m < x, < 0.20 m.

(b) Find the solution of the problem formulated in part (a) using MATLAB.
(¢) Find the solution of the problem formulated in part (a) graphically.

Solve Problem 1.32, parts (a), (b), and (c), assuming the cross section of the beam to
be hollow circular with inner diameter x; and outer diameter x,. Assume the data and
bounds on the design variables to be as given in Problem 1.32.

Find the solution of Problem 1.31 using MATLAB.
Find the solution of Problem 1.2(a) using MATLAB.
Find the solution of Problem 1.2(b) using MATLAB.



Classical Optimization Techniques

2.1 INTRODUCTION

The classical methods of optimization are useful in finding the optimum solution of
continuous and differentiable functions. These methods are analytical and make use
of the techniques of differential calculus in locating the optimum points. Since some
of the practical problems involve objective functions that are not continuous and/or
differentiable, the classical optimization techniques have limited scope in practical
applications. However, a study of the calculus methods of optimization forms a basis for
developing most of the numerical techniques of optimization presented in subsequent
chapters. In this chapter we present the necessary and sufficient conditions in locating
the optimum solution of a single-variable function, a multivariable function with no
constraints, and a multivariable function with equality and inequality constraints.

2.2 SINGLE-VARIABLE OPTIMIZATION

A function of one variable f(x) is said to have a relative or local minimum at x =
x*if f(x*) < f(x* + h) for all sufficiently small positive and negative values of h.
Similarly, a point x* is called a relative or local maximum if f(x*) > f(x* + h) for
all values of h sufficiently close to zero. A function f(x) is said to have a global
or absolute minimum at x* if f(x*) < f(x) for all x, and not just for all x close to
x*, in the domain over which f(x) is defined. Similarly, a point x* will be a global
maximum of f(x) if f(x*) > f(x) for all x in the domain. Figure 2.1 shows the
difference between the local and global optimum points.

A single-variable optimization problem is one in which the value of x = x* is to be
found in the interval [a, b] such that x* minimizes f(x). The following two theorems
provide the necessary and sufficient conditions for the relative minimum of a function
of a single variable.

Theorem 2.1 Necessary Condition If a function f(x) is defined in the interval a <
x < b and has a relative minimum at x = x*, where a < x* < b, and if the derivative

df (x)/dx = f'(x) exists as a finite number at x = x*, then f'(x*) = 0.

Proof : 1t is given that

ST R — f)
m

[ = lim P (2.1)
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Aj, Ay, A3z = Relative maxima
A = Global maximum
B1,B; = Relative minima

f(f) Bj = Global minimum /)
Ap A Relative minimum
3 is also global

A minimum \

B> i :

' |

1 ! | !

. B, : l :

| ! | !

| ! - | :
a b a b x

Figure 2.1 Relative and global minima.

exists as a definite number, which we want to prove to be zero. Since x* is a relative
minimum, we have

FEH) = fG&T+h)
for all values of & sufficiently close to zero. Hence

SO 4+h) = f(x)

>0 ifh>0
h
* h _ *
JEHW =D g g <o
h
Thus Eq. (2.1) gives the limit as & tends to zero through positive values as
f'x)=0 2.2)

while it gives the limit as % tends to zero through negative values as

flx) =<0 (23)

The only way to satisfy both Eqgs. (2.2) and (2.3) is to have
@ =0 (2.4)

This proves the theorem.

Notes:

1. This theorem can be proved even if x* is a relative maximum.
2. The theorem does not say what happens if a minimum or maximum occurs at
a point x* where the derivative fails to exist. For example, in Fig. 2.2,

1m
h—0 h

depending on whether /& approaches zero through positive or negative values,
respectively. Unless the numbers m* and m™ are equal, the derivative f”(x*)
does not exist. If f'(x*) does not exist, the theorem is not applicable.

= m™ (positive) or m~ (negative)
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flx)
A y Negative slope m—

flx*)

Figure 2.2 Derivative undefined at x*.

3. The theorem does not say what happens if a minimum or maximum occurs at
an endpoint of the interval of definition of the function. In this case

A O R A
im
h—0 h

exists for positive values of 4 only or for negative values of 4 only, and hence
the derivative is not defined at the endpoints.

4. The theorem does not say that the function necessarily will have a minimum
or maximum at every point where the derivative is zero. For example, the
derivative f’(x) = 0 at x = 0 for the function shown in Fig. 2.3. However, this
point is neither a minimum nor a maximum. In general, a point x* at which
f'(x*) = 0 is called a stationary point.

If the function f(x) possesses continuous derivatives of every order that come in
question, in the neighborhood of x = x*, the following theorem provides the sufficient
condition for the minimum or maximum value of the function.

flx)
A

Stationary
point, f'(x) = 0

N\

Figure 2.3 Stationary (inflection) point.
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Theorem 2.2 Sufficient Condition Let f'(x*) = f’(x*) =-.-= f*D(x*) =0,
but f™(x*) # 0. Then f(x*) is (i) a minimum value of f(x) if f™(x*)>0 and n
is even; (ii) a maximum value of f(x) if £ (x*) <0 and n is even; (iii) neither a
maximum nor a minimum if » is odd.

Proof : Applying Taylor’s theorem with remainder after n terms, we have

2 n—1
FGT+h) =f&") +hf' (") + h—f”(x*) o ——— D (Y
2! (n— 1!
+ %f(”)(x* +6h)  for 0<6<1 (2.5)
Since f/(x*) = f'(x*) =--- = f@ D (x*) =0, Eq. (2.5) becomes

FO*+h) — f(x*) = %f(")(x* + 6h)

As ™ (x*) # 0, there exists an interval around x* for every point x of which the nth
derivative £ (x) has the same sign, namely, that of £ (x*). Thus for every point
x* 4 h of this interval, £ (x* + @h) has the sign of £ (x*). When n is even, h" /n! is
positive irrespective of whether % is positive or negative, and hence f(x* + h) — f(x*)
will have the same sign as that of £ (x*). Thus x* will be a relative minimum if
f®™(x*) is positive and a relative maximum if £ (x*) is negative. When n is odd,
h"/n! changes sign with the change in the sign of /4 and hence the point x* is neither
a maximum nor a minimum. In this case the point x* is called a point of inflection.

Example 2.1 Determine the maximum and minimum values of the function
fx) =12x% — 45x* +40x* +5

SOLUTION  Since f/(x) = 60(x* — 3x3 4+ 2x2) = 60x%(x — 1)(x —2), f'(x) =0 at
x =0,x =1, and x = 2. The second derivative is

f"(x) = 60(4x? — 9x* + 4x)
Atx =1, f”"(x) = —60 and hence x = 1 is a relative maximum. Therefore,
Jmax = fx =1) =12
At x =2, f”(x) = 240 and hence x = 2 is a relative minimum. Therefore,
Jmin = f(x =2) = —11
At x =0, f”(x) = 0 and hence we must investigate the next derivative:
F"(x) = 60(12x> — 18x +4) =240 at x =0

Since f"”(x) # 0 at x = 0, x = 0 is neither a maximum nor a minimum, and it is an
inflection point.
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Example 2.2 In a two-stage compressor, the working gas leaving the first stage of
compression is cooled (by passing it through a heat exchanger) before it enters the
second stage of compression to increase the efficiency [2.13]. The total work input to
a compressor (W) for an ideal gas, for isentropic compression, is given by

(k—1)/k (k—1)/k
W =c,T [(%) + <?) — 2:|
1 2

where ¢, is the specific heat of the gas at constant pressure, k is the ratio of specific
heat at constant pressure to that at constant volume of the gas, and 7} is the temperature
at which the gas enters the compressor. Find the pressure, p;, at which intercooling
should be done to minimize the work input to the compressor. Also determine the
minimum work done on the compressor.

SOLUTION The necessary condition for minimizing the work done on the compres-

sor is
dw k Ay
— e T 1 —1/k
dp> Ry |:<P1) k (P)

+<ps><k*‘>/k—_kk+ I(Pz)(IZk)/k:| =0

which yields
p2=(p1p3)'"?

The second derivative of W with respect to p, gives

d>w IR
— = |— <—> —(py)”HRIE
dp3 P, k

_(p3)<k1>/k__2"(p2)<13k>/k}
k

k—1

(dZW) 26,, T1
2 = T Gk=D/2k_(k+1)/2k
Ap3 / pr= (p1 poy112 PE / P; /
Since the ratio of specific heats k is greater than 1, we get
d*w
d—pz>0 at  py = (pip3)'/?
2

and hence the solution corresponds to a relative minimum. The minimum work done

is given by ot
k P\
Wmin = 2CpT1k 1 [(;) - 1:|
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2.3 MULTIVARIABLE OPTIMIZATION WITH NO CONSTRAINTS

In this section we consider the necessary and sufficient conditions for the minimum
or maximum of an unconstrained function of several variables. Before seeing these
conditions, we consider the Taylor’s series expansion of a multivariable function.

Definition: rth Differential of f. 1If all partial derivatives of the function f through
order r > 1 exist and are continuous at a point X*, the polynomial

d f(X*) = ZZ Zh h L(X*) (2.6)

8x'8x-~--8x
i=1 j=1 ) k

rsummations

is called the rth differential of f at X*. Notice that there are » summations and one /;
is associated with each summation in Eq. (2.6).

For example, when r = 2 and n = 3, we have

3 3 2 *
07 f(X")
d* £ (X*) = d? LX) = hih;
fX*) =d>f(x], x5, x3) ;JX_; o
32 9 92
= f(x*)+h2—(x*)+h2 2(X*)
8x1 8x2 ox
2 32 82

0
+2hihy f (X*) + 2hyh3 f (X*) +2h1h3 f (X*)
0x10x) 0X70X3 0x10x3

The Taylor’s series expansion of a function f(X) about a point X* is given by

1 1
FX) =f(X*) + df (X*) + Edzf(X*) + §d3f(X*)

1 N * *
oo dV FX) 4 Ry (X ) @.7)
where the last term, called the remainder, is given by
1
Ry(X*,h) = ———d" f(X* + 6h 2.8
N ) N1 D! J X"+ 6h) (2.8)

where 0 <0 <1 and h = X — X*.

Example 2.3 Find the second-order Taylor’s series approximation of the function

F(x1, x2, X3) = X33 + xp€*

about the point X* = {1, 0, —2}T.
SOLUTION  The second-order Taylor’s series approximation of the function f about
point X* is given by

1 1 1
fX)y=f ol+dr| o+ dzf 0
-2 -2 -2
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where
1
fl 0l=¢?
-2
1 1 1 1
0 0 B
df 0 —hl—f 0 —I—hz—f 0 +h3—f 0
1
= [hleX3 + hy(2x2x3) + h3x% + hgxleﬁ] 0 = ]’116_2 + /’l3€_2
-2
d’f (1) —iZhh ”f (1) = h282f+h282f+h282f
o) =T e T U ax? 2 9x2 3 9x2
2 i=1 j=1 J 2 1 2 3

92 9? 9’ !
+2h1hy f + 2hyhs f + 2hh3 f 0
0x10x2 0x20x3 0x10x3 9

= [h1(0) + h3(2x3) + h3(x1€™) + 2h1h2(0) + 2h2h3(2x2)

1
+2h1h3 ()] | O] = —4h3 + e 2h3 + 2h) hze™?
-2

Thus the Taylor’s series approximation is given by
1
FOO > ™ e+ h3) + 57 (=4h3 + 7R3 + 201 hse )

where hy = x1 — 1, hp = x, and h3 = x3 + 2.

Theorem 2.3 Necessary Condition If f(X) has an extreme point (maximum or min-
imum) at X = X* and if the first partial derivatives of f(X) exist at X*, then

a a a

_f()p) — _f(X*) - = _f()p) =0 (2.9)

dx dx2 0x,
Proof : The proof given for Theorem 2.1 can easily be extended to prove the present
theorem. However, we present a different approach to prove this theorem. Suppose that
one of the first partial derivatives, say the kth one, does not vanish at X*. Then, by
Taylor’s theorem,

"9
fX*+h) = f(X*) + Zhia—i(X*) + R (X*, h)
i=1 !
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that is,

FX*+h) — f(X*) = hk%(X*) + %dzf(X* +6h), 0<6<1
k :

Since d? f(X* + 6h) is of order hiz, the terms of order h will dominate the higher-order
terms for small h. Thus the sign of f(X* + h) — f(X*) is decided by the sign of
hi 0f (X*)/0x,. Suppose that df (X*)/dx; > 0. Then the sign of f(X*+h) — f(X*)
will be positive for h; >0 and negative for h; < 0. This means that X* cannot be
an extreme point. The same conclusion can be obtained even if we assume that
df (X*)/dxr < 0. Since this conclusion is in contradiction with the original statement
that X* is an extreme point, we may say that df/dx; = 0 at X = X*. Hence the theorem
is proved.

Theorem 2.4 Sufficient Condition A sufficient condition for a stationary point X*
to be an extreme point is that the matrix of second partial derivatives (Hessian matrix)
of f(X) evaluated at X* is (i) positive definite when X* is a relative minimum point,
and (ii) negative definite when X* is a relative maximum point.

Proof : From Taylor’s theorem we can write

3 f

0x;0x;

’

X=X*+06h

f(X* +h) —f(X*)—I—Zh —(X*)+ o ZZh, ;

i=1 j=1
0<6<1 (2.10)

Since X* is a stationary point, the necessary conditions give (Theorem 2.3)

af
3x,’

=0, i=1,2,....n

Thus Eq. (2.10) reduces to

9’ f
* *Y
roc w0y =3 3w | e
i=1 j=1 +6h
Therefore, the sign of
X4 h) — £(X¥)
will be same as that of
S ki,
8x18x1 X=X* 6h

i=1 j=1

Since the second partial derivative of 32 f(X)/dx;dx; is continuous in the neighborhood
of X*,
*f

ax,-axj

X=X*+60h
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will have the same sign as (3% f/dx;dx )| X =X* for all sufficiently small h. Thus
f(X*+h) — f(X*) will be positive, and hence X* will be a relative minimum, if

n o n 32f
Q - Zzhihj Bxiaxj

i=1 j=1

@2.11)

X=X*

is positive. This quantity Q is a quadratic form and can be written in matrix form as

Q =h"Jh|x_x- (2.12)
where
82
Jix=x+ = / (2.13)
9xi0x; [x_x

is the matrix of second partial derivatives and is called the Hessian matrix of f(X).

It is known from matrix algebra that the quadratic form of Eq. (2.11) or (2.12)
will be positive for all h if and only if [J] is positive definite at X = X*. This means
that a sufficient condition for the stationary point X* to be a relative minimum is that
the Hessian matrix evaluated at the same point be positive definite. This completes the
proof for the minimization case. By proceeding in a similar manner, it can be proved
that the Hessian matrix will be negative definite if X* is a relative maximum point.

Note: A matrix A will be positive definite if all its eigenvalues are positive; that
is, all the values of A that satisfy the determinantal equation

IA—2I =0 (2.14)

should be positive. Similarly, the matrix [A] will be negative definite if its eigenvalues
are negative.

Another test that can be used to find the positive definiteness of a matrix A of
order n involves evaluation of the determinants

A= lanl,
ai dp a3 - dig
Ay = [ ax; axp A - Ay
an a2 A, = 931 a3 a3 - A, (2.15)
ap ap a3
Az = l|ax axn axj|,..., Anl Gn2 Gn3 = dnn
as| azx az
The matrix A will be positive definite if and only if all the values Ay, Ay, A3, ..., A,
are positive. The matrix A will be negative definite if and only if the sign of A; is
(=1)/ for j =1,2,...,n. If some of the A; are positive and the remaining A; are

zero, the matrix A will be positive semidefinite.

Example 2.4 Figure 2.4 shows two frictionless rigid bodies (carts) A and B connected
by three linear elastic springs having spring constants ki, k>, and k3. The springs are
at their natural positions when the applied force P is zero. Find the displacements x;
and x, under the force P by using the principle of minimum potential energy.
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Figure 2.4 Spring—cart system.

SOLUTION  According to the principle of minimum potential energy, the system will
be in equilibrium under the load P if the potential energy is a minimum. The potential
energy of the system is given by

potential energy (U)

= strain energy of springs — work done by external forces
= [%klez + %k3(xz —x)*+ %kl x%] — Px;
The necessary conditions for the minimum of U are

oUu
=koxy —k3(xo —x1) =0 (Ep

ax;
aU
— =k(xo—x) +kixo—P =0 (E2)
8)62
The values of x; and x; corresponding to the equilibrium state, obtained by solving
Egs. (E1) and (E,), are given by
. Pks
' kiky + kiks + kaks

Pk +ks)

kiky + kiks + koks

The sufficiency conditions for the minimum at (x{, x3) can also be verified by testing
the positive definiteness of the Hessian matrix of U. The Hessian matrix of U evaluated

at (xj, x3) is

X

U U
J 3)612 8x13x2 k2 + k3 —k3
Crn) = 82U 82U - —ks ki + k3

9x10x 3x§ )
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The determinants of the square submatrices of J are
Ji = ‘k2+k3‘ =ky+k3>0

ko +ky —ks

D =
—ks ki +k;3

= kiky + k1ks + kokz >0

since the spring constants are always positive. Thus the matrix J is positive definite
and hence (x{, x3) corresponds to the minimum of potential energy.

2.3.1 Semidefinite Case

We now consider the problem of determining the sufficient conditions for the case
when the Hessian matrix of the given function is semidefinite. In the case of a func-
tion of a single variable, the problem of determining the sufficient conditions for
the case when the second derivative is zero was resolved quite easily. We simply
investigated the higher-order derivatives in the Taylor’s series expansion. A simi-
lar procedure can be followed for functions of n variables. However, the algebra
becomes quite involved, and hence we rarely investigate the stationary points for suf-
ficiency in actual practice. The following theorem, analogous to Theorem 2.2, gives
the sufficiency conditions for the extreme points of a function of several variables.

Theorem 2.5 Let the partial derivatives of f of all orders up to the order k > 2 be
continuous in the neighborhood of a stationary point X*, and

drf|xzx* =0, 1<r<k-1
d* flx—x+ # 0

so that d* f|x_x= is the first nonvanishing higher-order differential of f at X*. If k is
even, then (i) X* is a relative minimum if d* f|x_x+ is positive definite, (ii) X* is a
relative maximum if d* f|x_x+ is negative definite, and (iii) if d* f|x_x+ is semidefinite
(but not definite), no general conclusion can be drawn. On the other hand, if k is odd,
X* is not an extreme point of f(X).

Proof: A proof similar to that of Theorem 2.2 can be found in Ref. [2.5].

2.3.2 Saddle Point

In the case of a function of two variables, f(x, y), the Hessian matrix may be neither
positive nor negative definite at a point (x*, y*) at which

of _of _
ax 9y

In such a case, the point (x*, y*) is called a saddle point. The characteristic of a

saddle point is that it corresponds to a relative minimum or maximum of f(x, y) with

respect to one variable, say, x (the other variable being fixed at y = y*) and a relative

maximum or minimum of f(x, y) with respect to the second variable y (the other

variable being fixed at x*).
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As an example, consider the function f(x,y) = x> — y?. For this function,

— =2x and — = -2y
ax dy

These first derivatives are zero at x* =0 and y* = 0. The Hessian matrix of f at

(x*, y*) is given by
J— 2 0
10 =2

Since this matrix is neither positive definite nor negative definite, the point (x* = 0,
y* = 0) is a saddle point. The function is shown graphically in Fig. 2.5. It can be seen
that f(x, y*) = f(x, 0) has a relative minimum and f(x*, y) = f(0, y) has a relative
maximum at the saddle point (x*, y*). Saddle points may exist for functions of more
than two variables also. The characteristic of the saddle point stated above still holds
provided that x and y are interpreted as vectors in multidimensional cases.

Example 2.5 Find the extreme points of the function

O, x0) =x) +x3 +2x] +4x3 + 6

SOLUTION The necessary conditions for the existence of an extreme point are

U o _
— =3x; +4x1 =x13x1+4) =0
3)61
Y a e _
— =3x+8x =x0Cx+8) =0
3XQ

flx,y)
A

y

Figure 2.5 Saddle point of the function f(x,y) = x> — y2.
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These equations are satisfied at the points
0,0, (0,-%., (=30, and (-3.-%

To find the nature of these extreme points, we have to use the sufficiency conditions.
The second-order partial derivatives of f are given by

82
—jzr =6x; +4
0x;
32
—]20 =6x, +8
0x;
82
fo_ 0
0x10x2

The Hessian matrix of f is given by

J— 6x; +4 0
- 0 6x; + 8

6x; +4 0
0 6x> + 8
of the extreme point are as given below:

If Ji =|6x1 +4| and J, = I , the values of J; and J, and the nature

Point X Value of J;  Value of J» Nature of J Nature of X fX)
0, 0) +4 +32 Positive definite Relative minimum 6
(0, —%) +4 -32 Indefinite Saddle point 418/27
(— %, 0) -4 -32 Indefinite Saddle point 194/27
(—%, —%) -4 +32 Negative definite  Relative maximum 50/3

2.4 MULTIVARIABLE OPTIMIZATION WITH EQUALITY
CONSTRAINTS

In this section we consider the optimization of continuous functions subjected to equal-
ity constraints:

Minimize f = f(X)
subject to (2.16)
giX)=0, j=12,...,m

where

X1
X2

Xn
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Here m is less than or equal to n; otherwise (if m > n), the problem becomes overdefined
and, in general, there will be no solution. There are several methods available for the
solution of this problem. The methods of direct substitution, constrained variation, and
Lagrange multipliers are discussed in the following sections.

2.4.1 Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically possible
to solve simultaneously the m equality constraints and express any set of m variables
in terms of the remaining n — m variables. When these expressions are substituted into
the original objective function, there results a new objective function involving only
n —m variables. The new objective function is not subjected to any constraint, and
hence its optimum can be found by using the unconstrained optimization techniques
discussed in Section 2.3.

This method of direct substitution, although it appears to be simple in theory, is
not convenient from a practical point of view. The reason for this is that the con-
straint equations will be nonlinear for most of practical problems, and often it becomes
impossible to solve them and express any m variables in terms of the remaining n — m
variables. However, the method of direct substitution might prove to be very simple
and direct for solving simpler problems, as shown by the following example.

Example 2.6 Find the dimensions of a box of largest volume that can be inscribed
in a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system x;, xp, x3 be at the
center of the sphere and the sides of the box be 2x;, 2x,, and 2x3. The volume of the
box is given by

f(x1, x2, x3) = 8x1x2x3 (Ep

Since the corners of the box lie on the surface of the sphere of unit radius, x;, x», and
x3 have to satisfy the constraint

x12+x22+x32=1 (Ez)

This problem has three design variables and one equality constraint. Hence the
equality constraint can be used to eliminate any one of the design variables from the
objective function. If we choose to eliminate x3, Eq. (E») gives

x3=(1—xf —xp'? (E3)
Thus the objective function becomes
fGrx) = 8xxa(l —xf — a2 (E4)

which can be maximized as an unconstrained function in two variables.
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The necessary conditions for the maximum of f give

af 2 2312 xf _

i (O e .
af 2 201/2 x%

2 _3 1 —x2— _ 2 | _— E
ax2 X1 [( X1 x2) (1 — x12 _ x%)l/z ( 6)

Equations (Es) and (Eg) can be simplified to obtain
1—2x} —x3=0
1—x?—2x3=0
from which it follows that x{ = x3 =1/ V/3 and hence x;=1/ V/3. This solution gives
the maximum volume of the box as
8
33
To find whether the solution found corresponds to a maximum or a minimum,

we apply the sufficiency conditions to f(x;, x») of Eq. (E4). The second-order partial
derivatives of f at (x{, xJ) are given by

fmax =

32 f 32
—= = ———at (x, x¥
8x12 ﬁ (1, %2)
32 f 32
— = ——— at (x¥, x¥
Bxg \/§ (1, %2)
3% f 16
- at *7 *
0x10x2 \/§ a (xl x2)
Since 5
92 9% f 92 92
—J;<0 and —{—é—( f>>0
0xy dxy 9x; 0x10x2

the Hessian matrix of f is negative definite at (xj, x3). Hence the point (x{, xJ)
corresponds to the maximum of f.

2.4.2 Solution by the Method of Constrained Variation

The basic idea used in the method of constrained variation is to find a closed-form
expression for the first-order differential of f(df) at all points at which the constraints
giX)=0,j=1,2,...,m,are satisfied. The desired optimum points are then obtained
by setting the differential df equal to zero. Before presenting the general method,
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we indicate its salient features through the following simple problem with n =2 and
m=1:

Minimize f(x;, x2) (2.17)
subject to
g(x1,x) =0 (2.18)

A necessary condition for f to have a minimum at some point (xj, x3) is that the total
derivative of f(xy, xo) with respect to x; must be zero at (x{, x3). By setting the total
differential of f(x;, x») equal to zero, we obtain

a a
df = —fdxl + —fdxz =0 (2.19)
axl 3X2

Since g(x{, x3) = 0 at the minimum point, any variations dx; and dx, taken about
the point (x{, x3) are called admissible variations provided that the new point lies on
the constraint:

gy +dxi, x5 +dxy) =0 (2.20)

The Taylor’s series expansion of the function in Eq. (2.20) about the point (x, x3)
gives

g(x} +dx1, x5 +dx2)

0 B
~ (k1) + Bk, x) dxy + 2 (xF, x3) dxy = 0 2.21)
0x1 0x2
where dx; and dx; are assumed to be small. Since g(x}, x3) = 0, Eq. (2.21) reduces
to
ad 0
dg = ~Sdx|+ —Sdx; =0  at (xF,xd) (2.22)
8x1 3X2

Thus Eq. (2.22) has to be satisfied by all admissible variations. This is illustrated
in Fig. 2.6, where PQ indicates the curve at each point of which Eq. (2.18) is sat-
isfied. If A is taken as the base point (x|, xJ), the variations in x; and x, leading
to points B and C are called admissible variations. On the other hand, the varia-
tions in x; and x; representing point D are not admissible since point D does not

X2

f

> x1 Figure 2.6 Variations about A.
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lie on the constraint curve, g(x, xp) = 0. Thus any set of variations (dx;, dx,) that
does not satisfy Eq. (2.22) leads to points such as D, which do not satisfy constraint

Eq. (2.18).
Assuming that dg/dx, # 0, Eq. (2.22) can be rewritten as
dg/d
dxy = — 281030 e, (2.23)
dg/0x2

This relation indicates that once the variation in x;(dx;) is chosen arbitrarily, the
variation in x, (dx;) is decided automatically in order to have dx; and dx; as a set of
admissible variations. By substituting Eq. (2.23) in Eq. (2.19), we obtain

i (%_ ag/axlg)
~\ax ag/0x 0x3

dx; =0 (2.24)

(o, x3)

The expression on the left-hand side is called the constrained variation of f. Note that
Eq. (2.24) has to be satisfied for all values of dx;. Since dx; can be chosen arbitrarily,
Eq. (2.24) leads to

=0 (2.25)
0x1 0xy  0xp 0x;

(ﬂf’_g_%a_g>

(&7, x3)

Equation (2.25) represents a necessary condition in order to have (x{, x3) as an extreme
point (minimum or maximum).

Example 2.7 A beam of uniform rectangular cross section is to be cut from a log
having a circular cross section of diameter 2a. The beam has to be used as a cantilever
beam (the length is fixed) to carry a concentrated load at the free end. Find the dimen-
sions of the beam that correspond to the maximum tensile (bending) stress carrying
capacity.

SOLUTION From elementary strength of materials, we know that the tensile stress
induced in a rectangular beam (o) at any fiber located a distance y from the neutral
axis is given by

where M is the bending moment acting and / is the moment of inertia of the cross
section about the x axis. If the width and depth of the rectangular beam shown in
Fig. 2.7 are 2x and 2y, respectively, the maximum tensile stress induced is given by

M My 3 M
Omax = 5 V= 7T < .~ 2= 7~
1™ @@y’ 4xy?
Thus for any specified bending moment, the beam is said to have maximum tensile
stress carrying capacity if the maximum induced stress (opm,x) 1S @ minimum. Hence
we need to minimize k/xy2 or maximize Kxy?, where k = 3M/4 and K = 1/k, subject
to the constraint
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Yy
A
|
b _a’]
2y R - - “ - - - -» x (Neutral axis)
\xz +y2=q?

|—— 2x ——»

Figure 2.7 Cross section of the log.

This problem has two variables and one constraint; hence Eq. (2.25) can be applied
for finding the optimum solution. Since

f=kxly? (E1)

g=x>+y'—d* (E)
we have

af 2. -2

R

0x Y

0

—f = —2k)c71yf3

dy

0

8 =2x

0x

0

dy

Equation (2.25) gives
—kx 2y 22y +2kx "y 2x) =0 at (xF, y)
that is,
y = /2x* (E3)

Thus the beam of maximum tensile stress carrying capacity has a depth of +/2 times
its breadth. The optimum values of x and y can be obtained from Eqgs. (E3) and (E;)
as
a a
x*=— and y' =+2—
V3 V3
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Necessary Conditions for a General Problem. The procedure indicated above can
be generalized to the case of a problem in n variables with m constraints. In this case,
each constraint equation g;(X) =0, j =1,2,...,m, gives rise to a linear equation in
the variations dx;, i = 1,2, ...,n. Thus there will be in all m linear equations in n
variations. Hence any m variations can be expressed in terms of the remaining n — m
variations. These expressions can be used to express the differential of the objective
function, df, in terms of the n — m independent variations. By letting the coefficients
of the independent variations vanish in the equation df = 0, one obtains the necessary
conditions for the constrained optimum of the given function. These conditions can be
expressed as [2.6]

of af of of
ax;  0x; 0xp Xy
0xr 0x; 0xp 0Xy,
J( [ 81, 820 g ): 98 38 98 98| (2.26)
Xky X15 X2, X3, .00y Xy a.X'k 8X1 8)(2 axm
ax;  0x; 0xp Xy
where k =m + 1,m + 2, ..., n. It is to be noted that the variations of the first m vari-
ables (dx,dx,, ..., dx,) have been expressed in terms of the variations of the remain-
ing n — m variables (dx, 11, dXy 42, ..., dx,) in deriving Egs. (2.26). This implies that
the following relation is satisfied:
J<gla gzv---’ gm>#0 (227)
X1, X2, «vvy X
The n — m equations given by Eqgs. (2.26) represent the necessary conditions for the
extremum of f(X) under the m equality constraints, g;(X) =0, j =1,2,...,m.
Example 2.8
Minimize f(Y) = (b7 + y7 + y; + v (E))
subject to
g1(Y)=y1+2y, +3y3+5y4 —10=0 (E2)
&) =y1+2y, +5y3 +6ys —15=0 (E3)

SOLUTION This problem can be solved by applying the necessary conditions given
by Egs. (2.26). Since n = 4 and m = 2, we have to select two variables as independent
variables. First we show that any arbitrary set of variables cannot be chosen as indepen-
dent variables since the remaining (dependent) variables have to satisfy the condition
of Eq. (2.27).
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In terms of the notation of our equations, let us take the independent variables as

x3=y; and x4=y4

Then the Jacobian of Eq. (2.27) becomes

J (81,82) _
X1, X2

981
ay1
082
ay1

so that

x1=y1 and Xx; =y

981

0

y2 =12=0
agz 12
dy2

and hence the necessary conditions of Egs. (2.26) cannot be applied.
Next, let us take the independent variables as x3 = y, and x4 = y4 so that x; = y;
and x, = y3. Then the Jacobian of Eq. (2.27) becomes

981 081
0 0
ng,gzz Vi y3=13=27§0
X1, X2 dg2 0 15
oyr 0y3

and hence the necessary conditions of Egs. (2.26) can be applied. Equations (2.26) give

fork=m+1 =3

o af ar| | o f
dx3 0x; 0xp dy, dy1 dy3
0x3 0x; 0x2| — |dy, dy; dy3
982 g2 02| 082 082 08
dx3 0x; dxp dy2 dy1 9dy3

y2 Y1 y3

121 3

2 15

=»n0G-3) - y10-6)+y3(2-2)

=2y —4y1=0 (Ey)
and fork =m +2 =n =4,
of of of| |9f O f
x4 0x; 0x2 dys 0y; 0y3
91 981 9g1| \O&1 &1 ds
dx4 Ox; Oxa| — |dys dyr dys
982 082 82| 1082 D82 Vg
Oxy dx1 Oxy| |dys 9y Oy3
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Ya Y1 V3
—_|/5 1 3
6 1 5

=y4(5=3) = y1(25 - 18) + y3(5 - 6)
=2y —Ty;—y3=0 (Es)

Equations (E4) and (Es) give the necessary conditions for the minimum or the maxi-
mum of f as

1= %yz
, (Ee)
3 =2y4—Ty1 =2ys — 50
When Egs. (Eg) are substituted, Eqs. (E;) and (E3) take the form
—8yy + 11ys =10
—15y, + 16y, = 15

from which the desired optimum solution can be obtained as

Vi=—2
Vi=—%
i=5
Vi =%

Sufficiency Conditions for a General Problem. By eliminating the first m variables,
using the m equality constraints (this is possible, at least in theory), the objective func-
tion f can be made to depend only on the remaining variables, X,4+1, Xpu42, - -, Xn-
Then the Taylor’s series expansion of f, in terms of these variables, about the extreme
point X* gives

FXFdX) ~ fXH+ Y (i) dx;
8

i=m+1 axi

1 - < 3 f
+ — dx;dx; 2.28
2!,2 Z <ax,~ax,) i axy (228)

i=m+1 j=m+1 8

where (3f/0x;); is used to denote the partial derivative of f with respect to x;
(holding all the other variables X1, Xm42, «--» Xi—1, Xi+1, Xi+2, - .., X, constant)
when xi, x2, ..., X, are allowed to change so that the constraints g;(X* 4 dX) =0,
j=1,2,..., m, are satisfied; the second derivative, (82f/8xi8xj)g, is used to denote

a similar meaning.



84 Classical Optimization Techniques

As an example, consider the problem of minimizing
FX) = f(xr, x2, x3)
subject to the only constraint
g1X) =x12+x§+x§ —8=0

Since n =3 and m =1 in this problem, one can think of any of the m variables,
say x, to be dependent and the remaining n — m variables, namely x; and x3, to be
independent. Here the constrained partial derivative (df/0x;)g, for example, means
the rate of change of f with respect to x, (holding the other independent variable x3
constant) and at the same time allowing x; to change about X* so as to satisfy the
constraint g;(X) = 0. In the present case, this means that dx; has to be chosen to
satisfy the relation

0 ) )
g1(X* + dX) ~ g1(X*) + 2L (X*)dx; + 2L (X*)dxy + 5L (X*)dxz = 0
3)(1 8x2 8)63

that is,
2x{dx) +2x5dx, =0

since g1(X*) = 0 at the optimum point and dx3 = 0 (x3 is held constant).

Notice that (df/dx;), has to be zero for i =m + 1, m+2, ..., n since the dx;
appearing in Eq. (2.28) are all independent. Thus the necessary conditions for the
existence of constrained optimum at X* can also be expressed as

af .
=0, i=m+1, m+2,....n (2.29)
8x,- g

Of course, with little manipulation, one can show that Egs. (2.29) are nothing but
Egs. (2.26). Further, as in the case of optimization of a multivariable function with no
constraints, one can see that a sufficient condition for X* to be a constrained relative
minimum (maximum) is that the quadratic form Q defined by

n n 82f
o= > > (M axj>gdxi dx; (2.30)

i=m+1j=m+]1

is positive (negative) for all nonvanishing variations dx;. As in Theorem 2.4, the matrix

L) ), ),
ax,fm . 0Xyp41 0Xp42 o 0Xp41 0Xp .

(), (maea), = ()
3% 0Xm41/ g 3%n 0Xm+2 ) 4 dx?2 .

has to be positive (negative) definite to have Q positive (negative) for all choices of
dx;. It is evident that computation of the constrained derivatives (3° f/dx; dx i)gis a
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difficult task and may be prohibitive for problems with more than three constraints.
Thus the method of constrained variation, although it appears to be simple in theory, is
very difficult to apply since the necessary conditions themselves involve evaluation of
determinants of order m + 1. This is the reason that the method of Lagrange multipliers,
discussed in the following section, is more commonly used to solve a multivariable
optimization problem with equality constraints.

by the Method of Lagrange Multipliers

The basic features of the Lagrange multiplier method is given initially for a simple
problem of two variables with one constraint. The extension of the method to a general
problem of n variables with m constraints is given later.

Problem with Two Variables and One Constraint. ~ Consider the problem
Minimize f(x;, x2) (2.31)

subject to
g(x1,x2) =0

For this problem, the necessary condition for the existence of an extreme point at
X = X* was found in Section 2.4.2 to be

(g B 3f/3X23_g>

=0 (2.32)
0x1 0g/dxy 0x1

(7, x3)

By defining a quantity A, called the Lagrange multiplier, as

A=— <8f/8x2> (2.33)
8g/8x2 (X;lkx;)
Equation (2.32) can be expressed as
a 0
(—f + k—g> —0 (2.34)
8x1 8x1 (XT‘ )C;)
and Eq. (2.33) can be written as
a 0
(—f + k—g> —0 (2.35)
8x2 8x2 (XT‘ x;«)

In addition, the constraint equation has to be satisfied at the extreme point, that is,
g1, x2)| s xp =0 (2.36)

Thus Egs. (2.34) to (2.36) represent the necessary conditions for the point (x}, x3) to
be an extreme point.

Notice that the partial derivative (9g/9x2)|(x, ;) has to be nonzero to be able
to define A by Eq. (2.33). This is because the variation dx, was expressed in terms
of dx; in the derivation of Eq. (2.32) [see Eq. (2.23)]. On the other hand, if we
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choose to express dx; in terms of dx;, we would have obtained the requirement that
(0g/ox I)I(XT’ %) be nonzero to define A. Thus the derivation of the necessary conditions
by the method of Lagrange multipliers requires that at least one of the partial derivatives
of g(x1, x2) be nonzero at an extreme point.

The necessary conditions given by Egs. (2.34) to (2.36) are more commonly gen-
erated by constructing a function L, known as the Lagrange function, as

L(xy,x2,2) = f(x1,x2) + Ag(x1, x2) (2.37)

By treating L as a function of the three variables x|, x,, and X, the necessary conditions
for its extremum are given by

oL ) d
O o =L e x) 228 1 1) = 0
axl axl 3)(1

oL ) d
—(x1,x2,A) = —f(xl,xz)-i-)»—g(xl,xz):() (2.38)
3)(2 8)(2 3)(2

8L( A) = g( )=0
8)\, -x]a-x2’ _gxlsxz -

Equations (2.38) can be seen to be same as Eqgs. (2.34) to (2.36). The sufficiency
conditions are given later.

Example 2.9 Find the solution of Example 2.7 using the Lagrange multiplier method:
Minimize f(x,y) = kx~'y~2

subject to
g, ) =x’+y'—a’ =0

SOLUTION The Lagrange function is
L(x,y,A) = f(x,y) +rg(x,y) =kx 'y 2 4+ 0(x? +y> —a?)

The necessary conditions for the minimum of f(x, y) [Egs. (2.38)] give

oL
— = —kx 2y 24 2x0=0 (E1)
ox
oL —1,-3
— =—2kx 'y 7 4+2yA=0 (E2)
dy
oL
87=x2+y2—az=0 (E3)
Equations (E;) and (E,) yield
23 — ko 2k
T3y oyt

from which the relation x* = (1/+4/2)y* can be obtained. This relation, along with
Eq. (E3), gives the optimum solution as

=2 and y =42

NG NE
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Necessary Conditions for a General Problem. The equations derived above can be
extended to the case of a general problem with n variables and m equality constraints:
Minimize f(X) (2.39)

subject to
giX)y=0, j=12....m

The Lagrange function, L, in this case is defined by introducing one Lagrange multiplier
A for each constraint g;(X) as

L(x1,x2, ..., Xp, A1, Aoy ooy App)
= fX)+r81(X) + 228X) + - + A gm(X) (2.40)
By treating L as a function of the n + m unknowns, x1, X3, ..., Xu, A1, A2, <oy Apps

the necessary conditions for the extremum of L, which also correspond to the solution
of the original problem stated in Eq. (2.39), are given by

m

L of dg; ,
_ = A =0, =1,2, ..., 2.41
8)6,' ax,- +]z=; jax,- ! " ( )
oL )

— =g,;X) =0, i=L2 ....m (2.42)
8)»]' X

Equations (2.41) and (2.42) represent n + m equations in terms of the n 4+ m unknowns,
x; and A;. The solution of Eqs. (2.41) and (2.42) gives

* *
X A
* *
X A
2 2
X* = and A" =1 |
* *
xn A‘Wl

The vector X* corresponds to the relative constrained minimum of f(X) (sufficient
conditions are to be verified) while the vector 1* provides the sensitivity information,
as discussed in the next subsection.

Sufficiency Conditions for a General Problem. A sufficient condition for f(X) to
have a constrained relative minimum at X* is given by the following theorem.

Theorem 2.6 Sufficient Condition A sufficient condition for f(X) to have a relative
minimum at X* is that the quadratic, Q, defined by

0= Z Xz: o axj dx; d)Cj (2.43)

evaluated at X = X* must be positive definite for all values of dX for which the
constraints are satisfied.
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Proof :

Notes:
1.

The proof is similar to that of Theorem 2.4.

If

n n

92L
QZZ; 9x; 0

X
i=1j J

(X*, )\.*)dx,' dxj

is negative for all choices of the admissible variations dx;, X* will be a con-

strained maximum of f(X).

. It has been shown by Hancock [2.1] that a necessary condition for the quadratic

form Q, defined by Eq. (2.43), to be positive (negative) definite for all admissi-
ble variations dX is that each root of the polynomial z;, defined by the following

determinantal equation, be positive (negative):

Liy—z L Liz ... Lin g g1 ...
Ly Lyp—z Lyz ... Loy g2 82 ...
Lnl Ln2 Ln3 Lnn_z 81n 82n ---
g g12 813 --- & 0 0
821 82 83 ... &m 0 0
8ml 8m2 8m3 .- 8mn 0 0

where
L, = 2k (X*, 1%)
Y 8x,~ axj ’
agi
8ij = ﬁ(X*)
j

8m1
8m?2
Sl 2.44
0
0
(2.45)
(2.46)

. Equation (2.44), on expansion, leads to an (n — m)th-order polynomial in z. If

some of the roots of this polynomial are positive while the others are negative,

the point X* is not an extreme point.

The application of the necessary and sufficient conditions in the Lagrange multiplier

method is illustrated with the help of the following example.

Example 2.10 Find the dimensions of a cylindrical tin (with top and bottom) made
up of sheet metal to maximize its volume such that the total surface area is equal to
Ayg = 24m.

SOLUTION If x; and x, denote the radius of the base and length of the tin, respec-
tively, the problem can be stated as

Maximize f(x, xp) = nxlzxz
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27'[x12 +2mx1xp = Ay = 24n

The Lagrange function is

L(x1,xp,A) = 7'[)612)62 + )L(chl2 + 2w x1xp — Ag)

and the necessary conditions for the maximum of f give

aL

— =2ax1X) + 4w Ax) + 2w Axy =0

3X1
aL

i nxlz +27dx; =0

3XQ
oL
oA

Equations (E;) and (E;) lead to

that is,

— = 27Tx12 +2mx1xp — Ag =0

X1X2 1
= ——x
2x1 + xp 2
_ 1
X1 = 3X%2

and Eqgs. (E3) and (E4) give the desired solution as

*_

Ao 1/2
20 X
6

-

240\ and ot — — (A0 v
37 ’ 247

This gives the maximum value of f as

1/2
(A
54w

If Ag = 24m, the optimum solution becomes

*

xf=2, x;=4,

Af=—1, and f*=16x

89

(E1)

(E2)

(E3)

(E4)

To see that this solution really corresponds to the maximum of f, we apply the suffi-
ciency condition of Eq. (2.44). In this case

Ly

L =

3%L
8x12

X*

3°L
o 3x18x2

)

(X*,27%)

2 Xy + 4 At = 4w

= L21 :27‘t’)€>1'< +27T)\.* =2
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L —82L 0
9x; (X*,0%)
0
g = 28 =d4nx{ +2nx; = 167
a.X] (X, 0%)
0
g1 = o81 =2nx{ =4n
8x2 (X, 0%)

Thus Eq. (2.44) becomes
dr —z 2w 167
2 0—z 4m | =0
16 47 0O

that is,
272727+ 19273 =0

This gives

__12
1=

Since the value of z is negative, the point (x}, x3) corresponds to the maximum of f.
Interpretation of the Lagrange Multipliers. To find the physical meaning of the

Lagrange multipliers, consider the following optimization problem involving only a
single equality constraint:

Minimize f(X) (2.47)
subject to
g(X) =b or gX)=b-— g(X) =0 (2.48)

where b is a constant. The necessary conditions to be satisfied for the solution of the
problem are
a 0
A 08 _
8xi 8xi

g=0 (2.50)

0, i=1,2,...,n (2.49)

Let the solution of Egs. (2.49) and (2.50) be given by X*, A*, and f* = f(X*).
Suppose that we want to find the effect of a small relaxation or tightening of the
constraint on the optimum value of the objective function (i.e., we want to find the
effect of a small change in b on f*). For this we differentiate Eq. (2.48) to obtain

db— dg =0
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or
db=dg = —=dx; 2.51
g ; 7 4 2.51)
Equation (2.49) can be rewritten as
0 0 a d
S0 _ 3 08 (2.52)
3x,’ 8)6,' ax,- ax,-
or
a af /dx;
dg /0% iy, (2.53)
E)x,- A
Substituting Eq. (2.53) into Eq. (2.51), we obtain
n
1 af df
db = ———dx; = — 2.54
; Ko TR (29
since
n 8f
df = —d 2.55
i ; R (2.55)
Equation (2.54) gives
d df*
_Y o 2 (2.56)
db db
or
df* = )\"db (2.57)

Thus A* denotes the sensitivity (or rate of change) of f with respect to b or the marginal
or incremental change in f* with respect to b at x*. In other words, A* indicates how
tightly the constraint is binding at the optimum point. Depending on the value of A*
(positive, negative, or zero), the following physical meaning can be attributed to A*:

1. A* > 0. In this case, a unit decrease in b is positively valued since one gets a

smaller minimum value of the objective function f. In fact, the decrease in f*
will be exactly equal to A* since df = A*(—1) = —A* < 0. Hence A* may be
interpreted as the marginal gain (further reduction) in f* due to the tightening
of the constraint. On the other hand, if b is increased by 1 unit, f will also
increase to a new optimum level, with the amount of increase in f* being
determined by the magnitude of A* since df = A*(+1) > 0. In this case, A*
may be thought of as the marginal cost (increase) in f* due to the relaxation
of the constraint.

. A* < 0. Here a unit increase in b is positively valued. This means that it
decreases the optimum value of f. In this case the marginal gain (reduction)
in f* due to a relaxation of the constraint by 1 unit is determined by the value
of A* as df* = A*(+1) < 0. If b is decreased by 1 unit, the marginal cost
(increase) in f* by the tightening of the constraint is df* = A*(—1) > 0 since,
in this case, the minimum value of the objective function increases.
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3. A* = 0. In this case, any incremental change in » has absolutely no effect on the
optimum value of f and hence the constraint will not be binding. This means
that the optimization of f subject to g = 0 leads to the same optimum point
X* as with the unconstrained optimization of f.

In economics and operations research, Lagrange multipliers are known as shadow prices
of the constraints since they indicate the changes in optimal value of the objective
function per unit change in the right-hand side of the equality constraints.

Example 2.11 Find the maximum of the function f(X) = 2x; + x; + 10 subject to
gX) =x; + 2x22 = 3 using the Lagrange multiplier method. Also find the effect of
changing the right-hand side of the constraint on the optimum value of f.

SOLUTION The Lagrange function is given by

L(X, %) =2x; +x+ 104+ A3 — x; — 2x3) (E1)
The necessary conditions for the solution of the problem are
oL
—=2-x1=0
8x1
oL
— =1—4x=0 (E2)
3XQ
oL )
a=3—x1—2x2 =0
The solution of Egs. (Ep) is
x| 2.97
X>i< = * =
Xy 0.13 (E3)
A*=2.0

The application of the sufficiency condition of Eq. (2.44) yields

Liyv—z Li gu

Ly Ln—z gn|=0

g1 gz O

-z 0 -1 -z 0 —1

0 —4h—z —do| |0 8-z —052|_¢
-1 —4x, 0 -1 —-0.52 0

0.2704z +8 +z =10
7 =—6.2972
Hence X* will be a maximum of f with f* = f(X*) = 16.07.
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One procedure for finding the effect on f* of changes in the value of b (right-hand
side of the constraint) would be to solve the problem all over with the new value of
b. Another procedure would involve the use of the value of A*. When the original
constraint is tightened by 1 unit (i.e., db = —1), Eq. (2.57) gives

df* = A\*db = 2(—1) = -2

Thus the new value of f* is f* 4+ df* = 14.07. On the other hand, if we relax the
original constraint by 2 units (i.e., db = 2), we obtain

df* = \*db = 2(+2) = 4

and hence the new value of f* is f* 4 df* = 20.07.

2.5 MULTIVARIABLE OPTIMIZATION WITH INEQUALITY
CONSTRAINTS

This section is concerned with the solution of the following problem:
Minimize f (X)
subject to
giX)<0, j=12,....m (2.58)

The inequality constraints in Eq. (2.58) can be transformed to equality constraints by
adding nonnegative slack variables, yjz., as

giX)+y;=0, j=12,....m (2.59)
where the values of the slack variables are yet unknown. The problem now becomes
Minimize f(X)

subject to
GiX.V)=¢g;X)+y;=0, j=12....m (2.60)
where Y = {y1, y2, ..., ym}T is the vector of slack variables.

This problem can be solved conveniently by the method of Lagrange multipliers.
For this, we construct the Lagrange function L as

LX. Y. M) = fX)+ Y 1;G;(X, Y) (2.61)
Jj=1

where A = {A, A2, ..., An}T is the vector of Lagrange multipliers. The stationary
points of the Lagrange function can be found by solving the following equations
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(necessary conditions):

dL af "L dg;

X, Y, L) = X Ai—(X) =0, i =1,2,..., 2.62
pl ) axl_<>+;]axl_<) i n (2.62)
L 5 .
W(X,Y,X):G;(X,Y)=gj(X)+yj:0, j=12,....m (2.63)

J
oL )
a—(X,Y,x)=2Ajyj=0, j=1,2,....m (2.64)
Yj

It can be seen that Egs. (2.62) to (2.64) represent (n 4 2m) equations in the (n + 2m)
unknowns, X, A, and Y. The solution of Eqs. (2.62) to (2.64) thus gives the optimum
solution vector, X*; the Lagrange multiplier vector, A*; and the slack variable
vector, Y*.

Equations (2.63) ensure that the constraints g;(X) <0, j =1,2,...,m, are satis-
fied, while Egs. (2.64) imply that either A; =0 or y; = 0. If A; = 0, it means that the
jth constraint is inactive” and hence can be ignored. On the other hand, if y =0, it
means that the constraint is active (g; = 0) at the optimum point. Consider the division
of the constraints into two subsets, J; and J,, where J; + J, represent the total set of
constraints. Let the set J; indicate the indices of those constraints that are active at the
optimum point and J, include the indices of all the inactive constraints.

Thus for j € Ji,¥ y ; = 0 (constraints are active), for j € J», A; = 0 (constraints
are inactive), and Eqs. (2.62) can be simplified as

BBJJ:,'JFZME;?:O’ i=1,2,...,n (2.65)
Je
Similarly, Eqgs. (2.63) can be written as
g;iX) =0, jeh (2.66)
giX)+y; =0, jeh (2.67)

Equations (2.65) to (2.67) represent n + p + (m — p) = n 4+ m equations in the n + m
unknowns x;(i =1,2,...,n),A;(j € J1),and y;(j € J2), where p denotes the number
of active constraints.

Assuming that the first p constraints are active, Egs. (2.65) can be expressed as

a . I; 982 dgp

- = A R ,
3)6,' 18xi+ 28x,-+ + pr,-

i=1,2,....n (2.68)

These equations can be written collectively as

—Vf=MVgi+MVe+- - - +4,Vg, (2.69)

"Those constraints that are satisfied with an equality sign, g ;7 =0, at the optimum point are called the
active constraints, while those that are satisfied with a strict inequality sign, g; < 0, are termed inactive
constraints.

*The symbol € is used to denote the meaning “belongs to” or “element of ”.
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where V f and Vg; are the gradients of the objective function and the jth constraint,
respectively:

df /0x1 9gj/9x

af/0xy 0gj/0x2
= ) and Vg; = .

af /0x, 0gj/0x,

Equation (2.69) indicates that the negative of the gradient of the objective function can
be expressed as a linear combination of the gradients of the active constraints at the
optimum point.

Further, we can show that in the case of a minimization problem, the A; values
(j € J1) have to be positive. For simplicity of illustration, suppose that only two con-
straints are active (p = 2) at the optimum point. Then Eq. (2.69) reduces to

=Vf=MVg +1Ve (2.70)

Let S be a feasible direction’ at the optimum point. By premultiplying both sides of
Eq. (2.70) by ST, we obtain

—STVf=18"Vg + 1SV (2.71)

where the superscript 7' denotes the transpose. Since S is a feasible direction, it should
satisfy the relations

STVg <0
ST™Vg, <0 (2.72)

Thus if A; >0 and A, > 0, the quantity STV f can be seen always to be positive. As
V f indicates the gradient direction, along which the value of the function increases at
the maximum rate,* STV f represents the component of the increment of f along the
direction S. If STV f > 0, the function value increases as we move along the direction S.
Hence if A; and A, are positive, we will not be able to find any direction in the feasible
domain along which the function value can be decreased further. Since the point at
which Eq. (2.72) is valid is assumed to be optimum, A; and A, have to be positive.
This reasoning can be extended to cases where there are more than two constraints
active. By proceeding in a similar manner, one can show that the A ; values have to be
negative for a maximization problem.

TA vector S is called a feasible direction from a point X if at least a small step can be taken along S
that does not immediately leave the feasible region. Thus for problems with sufficiently smooth constraint
surfaces, vector S satisfying the relation

S'vg; <0

can be called a feasible direction. On the other hand, if the constraint is either linear or concave, as shown
in Fig. 2.8b and c, any vector satisfying the relation

STvg; <0

can be called a feasible direction. The geometric interpretation of a feasible direction is that the vector
S makes an obtuse angle with all the constraint normals, except that for the linear or outward-curving
(concave) constraints, the angle may go to as low as 90°.

*See Section 6.10.2 for a proof of this statement.



96 Classical Optimization Techniques

(Linear
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>0
surface £2

g >0
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Angle greater
than 90°

(c)

Figure 2.8 Feasible direction S.

Example 2.12  Consider the following optimization problem:
Minimize f (x1, xp) = xf + x%
subject to
X1+ 2x, <15
1<x;,<10; i=1,2

Derive the conditions to be satisfied at the point X; = {1, 7}T by the search direction
S = {s1, 52} T if it is a (a) usable direction, and (b) feasible direction.

SOLUTION The objective function and the constraints can be stated as

f(x1, x2) = x} + x3

g1X) =x1+2x, < 15
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2X)=1-x =<0
8X)=1-x =0
84X)=x; —10=<0
8X)=x—-10=<0

At the given point X; = {1, 7\T, all the constraints can be seen to be satisfied with g1
and g, being active. The gradients of the objective and active constraint functions at
point X; = {1,7}T are given by

of

8_)61 2)(1 2
V= o[ T )ew 2{14}
ax Xi

981

8X1 1
Ve 981 - {2}

3)62

X

2]

8)C1 -1
Ve = 982 :: O}

8)62

For the search direction S = {s, sz}T, the usability and feasibility conditions can be
expressed as

(a) Usability condition:
STVFf<0 or (51 ) {1421} <0 or 2s;+4 1450 <0 (E))
(b) Feasibility conditions:

ST™Vgi <0 or (s1 s) {é} <0 or 51425 <0 (En)

STVg, <0 or (s m{‘é}so or —s;<0 (E3)

Note: Any two numbers for s; and s, that satisfy the inequality (E;) will constitute
a usable direction S. For example, s; =1 and s, = —1 gives the usable direction
S = {1, —1}T. This direction can also be seen to be a feasible direction because it
satisfies the inequalities (E;) and (E3).



98 Classical Optimization Techniques

2.5.1

2.5.2

Kuhn-Tucker Conditions

As shown above, the conditions to be satisfied at a constrained minimum point, X*, of
the problem stated in Eq. (2.58) can be expressed as

aof ng .
3xi+zk‘i8xi =0, i=1,2,...,n (2.73)
eJi
Aj>0, jel (2.74)

These are called Kuhn—Tucker conditions after the mathematicians who derived them
as the necessary conditions to be satisfied at a relative minimum of f(X) [2.8]. These
conditions are, in general, not sufficient to ensure a relative minimum. However, there is
a class of problems, called convex programming problems,’ for which the Kuhn—Tucker
conditions are necessary and sufficient for a global minimum.

If the set of active constraints is not known, the Kuhn—Tucker conditions can be
stated as follows:

0 I P
f + A 8j =0, i=1,2....n
8-’Ci . Bx,-
j=1
rjgi=0% j=12....m (2.75)

gj§O, j=1,2,...,m
)\jZO’ j=1,2,...,m

Note that if the problem is one of maximization or if the constraints are of the type
gj = 0, the A; have to be nonpositive in Egs. (2.75). On the other hand, if the problem is
one of maximization with constraints in the form g; > 0, the A ; have to be nonnegative
in Egs. (2.75).

Constraint Qualification
When the optimization problem is stated as
Minimize f(X)
subject to
giX)<0, j=12,....m
hp(X) =0 k=1,2,....p

(2.76)

the Kuhn—Tucker conditions become

m V4
Vi+Y AV =Y BVhi =0

j=1 k=1

)LJgJZO, j=l,2,...,m

See Sections 2.6 and 7.14 for a detailed discussion of convex programming problems.
“This condition is the same as Eq. (2.64).
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g <0, j=12,...,m
hy =0, k=1,2,....p (2.77)
Aj =0, j=1,2,....,m

where X; and B, denote the Lagrange multipliers associated with the constraints
g <0 and hy =0, respectively. Although we found qualitatively that the
Kuhn-Tucker conditions represent the necessary conditions of optimality, the
following theorem gives the precise conditions of optimality.

Theorem 2.7 Let X* be a feasible solution to the problem of Eqgs. (2.76). If Vg ;(X*),
j € Jyand Vi (X*), k=1,2,..., p, are linearly independent, there exist A* and B*
such that (X*, A*, ) satisfy Egs. (2.77).

Proof: See Ref. [2.11].

The requirement that Vg;(X*), j € J; and VA (X*), k =1,2,..., p, be linearly
independent is called the constraint qualification. If the constraint qualification is vio-
lated at the optimum point, Egs. (2.77) may or may not have a solution. It is difficult
to verify the constraint qualification without knowing X* beforehand. However, the
constraint qualification is always satisfied for problems having any of the following
characteristics:

1. All the inequality and equality constraint functions are linear.

2. All the inequality constraint functions are convex, all the equality constraint
functions are linear, and at least one feasible vector X exists that lies strictly
inside the feasible region, so that

giX) <0, j=1,2,....m and mX)=0,k=1,2,...,p

Example 2.13 Consider the following problem:

Minixize f(x1, x2) = (x; — 1)* + x5 (E1)

subject to
g1(x1,x) =x] —2x <0 (E2)
2 (x1, x) =x; +2x, <0 (E3)

Determine whether the constraint qualification and the Kuhn—Tucker conditions are
satisfied at the optimum point.

SOLUTION The feasible region and the contours of the objective function are shown
in Fig. 2.9. It can be seen that the optimum solution is (0, 0). Since g; and g, are both
active at the optimum point (0, 0), their gradients can be computed as

3x? 0 3x? 0
Vgl(X*) = { 1} = {_2} and ng(X*) = { 1} = {2}
-2 2
0,0 (0,0)
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X2

Feasible space

Figure 2.9 Feasible region and contours of the objective function.

It is clear that Vg1 (X*) and Vg, (X*) are not linearly independent. Hence the constraint
qualification is not satisfied at the optimum point. Noting that

o [260-D)] -2
Vf(X)_{ 2x3 }<o,0)_{ 0}

the Kuhn—Tucker conditions can be written, using Egs. (2.73) and (2.74), as

—2421(0) + 22(0) =0 (Es4)
0+ A1(=2)+22)=0 (Es)
x>0 (Es)
A >0 (E7)

Since Eq. (E4) is not satisfied and Eq. (Es) can be satisfied for negative values of
A1 = Ay also, the Kuhn—Tucker conditions are not satisfied at the optimum point.
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Example 2.14 A manufacturing firm producing small refrigerators has entered into
a contract to supply 50 refrigerators at the end of the first month, 50 at the end of the
second month, and 50 at the end of the third. The cost of producing x refrigerators
in any month is given by $(x? 4 1000). The firm can produce more refrigerators in
any month and carry them to a subsequent month. However, it costs $20 per unit for
any refrigerator carried over from one month to the next. Assuming that there is no
initial inventory, determine the number of refrigerators to be produced in each month
to minimize the total cost.

SOLUTION Let x;, x», and x3 represent the number of refrigerators produced in the
first, second, and third month, respectively. The total cost to be minimized is given by

total cost = production cost + holding cost
or
F(x1,x2,x3) = (x7 + 1000) + (x3 + 1000) + (x3 + 1000) + 20(x; — 50)
+20(x1 + x2 — 100)
= x7 4 x3 + x3 + 40x; + 20x,
The constraints can be stated as
g1(x1, x2,x3) =x1 —=50>0
g2(x1,x2,x3) =x1 +x,— 100> 0
g3(x1, X2, x3) = x1 +x2 +x3 — 150 > 0

The Kuhn—Tucker conditions are given by

§—£+/\lzij+xzzif+xgzij=0, i=123
that is,
2X 440+ A 4+ A3 =0 (E))
2% +20+ Ay + A3 =0 (E2)
2x3 443 =0 (E3)
g =0, j=123
that is,
Ai(x; —50)=0 (Eq)
o(x1 +x2 — 100) = 0 (Es)
A3(x1 +x2 +x3 —150) =0 (Es)

g =0,  j=1273
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that is,
x1—50>0 (E7)
X1 +x,—100>0 (Eg)
X1+ x2+x3 — 150 > 0 (Eo)
A <0, j=1273
that is,
A <0 (E10)
A =<0 Emn)
A3 <0 (Er2)

The solution of Egs. (E;) to (E;2) can be found in several ways. We proceed to solve
these equations by first nothing that either A; = 0 or x; = 50 according to Eq. (E4).
Using this information, we investigate the following cases to identify the optimum
solution of the problem.

Case 1: A1 = 0.
Equations (E;) to (E3) give
A3
X3 = ——
T
Ay A3
=—10— = ——= E
X2 "3 (E13)
A A
x=-20-2_2
2 2

Substituting Eqgs. (E;3) in Egs. (Es) and (Eg), we obtain
AM(—130 — 1y —23) =0
3(—180 =2y — 343) =0 (E14)
The four possible solutions of Egs. (Ej4) are

3
1. A, =0,—180 — Ap — E)»:; = 0. These equations, along with Eqs. (E;3), yield
the solution

)»2 = 0, )\3 = —120, X1 = 40, Xy = 50, X3 = 60

This solution satisfies Eqgs. (Ejg) to (Ej2) but violates Eqgs. (E7) and (Eg) and
hence cannot be optimum.

2. A3 =0, =130 — X, — A3 = 0. The solution of these equations leads to

Xz = —130, )»3 = O, X1 = 45, Xy = 55, X3 = 0
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This solution can be seen to satisfy Eqs. (Ejg) to (Ej2) but violate Egs. (E7)
and (Eo).
3. A, =0, A3 = 0. Equations (E3) give

X1 = —20, Xy = —10, X3 = 0

This solution satisfies Egs. (Ejp) to (Ej2) but violates the constraints, Egs. (E7)
to (Eo).

4. —130 — 2 — A3 =0,—180 — 1r — %A3 = 0. The solution of these equations
and Egs. (E;3) yields

A =30, A3=—100, x; =45, x,=55 x3=>50

This solution satisfies Egs. (Ejg) to (Ej2) but violates the constraint, Eq. (E7).

Case 2: x1 = 50.
In this case, Egs. (E;) to (E3) give

A3 = —2x3

A= —20—2xp — A3 = —20 — 2xp + 2x3 (E15)

A= —40 —2x; — Ay — A3 = —120 4 2x;
Substitution of Egs. (Ejs) in Egs. (Es) and (Eg) leads to

(—20 — 2x7 + 2x3)(x] +x2 — 100) =0
(—=2x3)(x1 +x2 +x3 —150) =0 (E16)

Once again, it can be seen that there are four possible solutions to Eqs. (Ej¢), as
indicated below:

1. =20 —2xp +2x3 =0, x; +x2 +x3 —150=0: The solution of these
equations yields
X1 250, X2 =45, X3 =55

This solution can be seen to violate Eq. (Eg).
2. —20 — 2xp 4+ 2x3 = 0, —2x3 = 0: These equations lead to the solution

X1 = 50, Xy = —10, X3 = 0

This solution can be seen to violate Eqgs. (Eg) and (Eo).
3. x; +x, — 100 =0, —2x3 = 0: These equations give

x1 =50, x =50, x3=0

This solution violates the constraint Eq. (Eo).
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4. x; +x,— 100 =0, x; 4+ x3 +x3 — 150 = 0: The solution of these equations
yields

X1 = 50, Xy = 50, X3 = 50

This solution can be seen to satisfy all the constraint Eqs. (E7) to (Ey). The
values of X, Ay, and A3 corresponding to this solution can be obtained from
Egs. (Eg5) as

A =-20, Xp=-20, Az=-—100

Since these values of A; satisfy the requirements [Eqgs. (Ejg) to (Ej»)], this
solution can be identified as the optimum solution. Thus

2.6 CONVEX PROGRAMMING PROBLEM

The optimization problem stated in Eq. (2.58) is called a convex programming problem
if the objective function f(X) and the constraint functions g;(X) are convex. The
definition and properties of a convex function are given in Appendix A. Suppose that
fX) and g;(X), j=1,2,...,m, are convex functions. The Lagrange function of
Eq. (2.61) can be written as

LY. D) = fX)+ D 4l + 52 (2.78)
j=1

If A; >0, then A;g;(X) is convex, and since A;y; = 0 from Eq. (2.64), L(X, Y, })
will be a convex function. As shown earlier, a necessary condition for f(X) to be a
relative minimum at X* is that L(X, Y, A) have a stationary point at X*. However, if
L(X, Y, A) is a convex function, its derivative vanishes only at one point, which must
be an absolute minimum of the function f(X). Thus the Kuhn—Tucker conditions are
both necessary and sufficient for an absolute minimum of f(X) at X*.

Notes:

1. If the given optimization problem is known to be a convex programming prob-
lem, there will be no relative minima or saddle points, and hence the extreme
point found by applying the Kuhn—Tucker conditions is guaranteed to be an
absolute minimum of f(X). However, it is often very difficult to ascertain
whether the objective and constraint functions involved in a practical engineer-
ing problem are convex.

2. The derivation of the Kuhn—Tucker conditions was based on the development
given for equality constraints in Section 2.4. One of the requirements for these
conditions was that at least one of the Jacobians composed of the m constraints
and m of the n + m variables (x|, x2, ..., X;; Y1, Y2, - .., Vi) be nonzero. This
requirement is implied in the derivation of the Kuhn—Tucker conditions.
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REVIEW QUESTIONS

2.1
2.2

2.3
24
2.5

2.6
2.7
2.8
29

2.10
2.11

State the necessary and sufficient conditions for the minimum of a function f(x).

Under what circumstances can the condition df (x)/dx = 0 not be used to find the mini-
mum of the function f(x)?

Define the rth differential, d” f (X), of a multivariable function f(X).
Write the Taylor’s series expansion of a function f(X).

State the necessary and sufficient conditions for the maximum of a multivariable function

f(X).

What is a quadratic form?

How do you test the positive, negative, or indefiniteness of a square matrix [A]?
Define a saddle point and indicate its significance.

State the various methods available for solving a multivariable optimization problem with
equality constraints.

State the principle behind the method of constrained variation.

What is the Lagrange multiplier method?
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PROBLEMS

2.12
2.13
2.14
2.15
2.16
2.17
2.18

2.19

2.20

2.1

2.2

What is the significance of Lagrange multipliers?

Convert an inequality constrained problem into an equivalent unconstrained problem.
State the Kuhn—Tucker conditions.

What is an active constraint?

Define a usable feasible direction.

What is a convex programming problem? What is its significance?

Answer whether each of the following quadratic forms is positive definite, negative defi-
nite, or neither:

@ f =} =3
(b) f =4x1x2

(© f= x12 + 2x22

(@) f=—x}+4x1x+4x3

(e) f= —x12 +4dx1xp — 9x§ + 2x1x3 + 8xpx3 — 4x32

State whether each of the following functions is convex, concave, or neither:

(@) f=-2x>+8x+4

(b) f=x>+10x+1

(© f=x}—x3

@) f=—x{+4xx

) f=e* x>0

® f=x, x>0

(8 f=xix

(h) f =@ — 1>+ 1002 —2)?

Match the following equations and their characteristics:

@ f= 4x1 —3x2+2 Relative maximum at (1, 2)

() f=Qx;1 —2)*+ (x, —2)? Saddle point at origin

© f=—(1—1D?—(x-2)7 No minimum

d) f=x1x Inflection point at origin

(e) f=x3 Relative minimum at (1, 2)

A dc generator has an internal resistance R ohms and develops an open-circuit voltage of
V volts (Fig. 2.10). Find the value of the load resistance r for which the power delivered
by the generator will be a maximum.

Find the maxima and minima, if any, of the function

4

&= ha =3
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Y

®- Figure 2.10 Electric generator with load.

Find the maxima and minima, if any, of the function
F(x)=4x3 —18x2+27x — 7
The efficiency of a screw jack is given by

tan o

T an@ + )

where « is the lead angle and ¢ is a constant. Prove that the efficiency of the screw jack
will be maximum when o = 45° — ¢/2 with Npax = (1 —sing)/(1 + sin ).

Find the minimum of the function

Fx) = 10x® — 48x% + 15x* +200x> — 120x? — 480x + 100
Find the angular orientation of a cannon to maximize the range of the projectile.

In a submarine telegraph cable the speed of signaling varies as x?log(1/x), where x is
the ratio of the radius of the core to that of the covering. Show that the greatest speed is
attained when this ratio is 1 : /e.

The horsepower generated by a Pelton wheel is proportional to u(V — u), where u is the
velocity of the wheel, which is variable, and V is the velocity of the jet, which is fixed.
Show that the efficiency of the Pelton wheel will be maximum when u = V/2.

A pipe of length [ and diameter D has at one end a nozzle of diameter d through which
water is discharged from a reservoir. The level of water in the reservoir is maintained at
a constant value & above the center of nozzle. Find the diameter of the nozzle so that the
kinetic energy of the jet is a maximum. The kinetic energy of the jet can be expressed

as
1 [ 2¢D%h \*
—mpd? [ —2———
4 D5 +4fld*

where p is the density of water, f the friction coefficient and g the gravitational constant.

An electric light is placed directly over the center of a circular plot of lawn 100 m in
diameter. Assuming that the intensity of light varies directly as the sine of the angle at
which it strikes an illuminated surface, and inversely as the square of its distance from
the surface, how high should the light be hung in order that the intensity may be as great
as possible at the circumference of the plot?
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2.11 If a crank is at an angle 6 from dead center with & = wt, where w is the angular velocity

and ¢ is time, the distance of the piston from the end of its stroke (x) is given by

2
x =r(l —cosb) + Z—l(l — cos26)

where r is the length of the crank and [ is the length of the connecting rod. For r = 1
and [ =5, find (a) the angular position of the crank at which the piston moves with
maximum velocity, and (b) the distance of the piston from the end of its stroke at that
instant.

Determine whether each of the matrices in Problems 2.12-2.14 is positive definite, negative
definite, or indefinite by finding its eigenvalues.

2.12

2.13

2.14

3 1 —1]
[Al=]| 1 3 —1
-1 -1 5]
4 2 —47
[Bl=| 2 4 =2
| -4 =2 4]
=1 —1 =1
[Cl=|-1 -2 =2
| -1 -2 -3

Determine whether each of the matrices in Problems 2.15-2.17 is positive definite, negative
definite, or indefinite by evaluating the signs of its submatrices.

2.15

2.16

2.17

2.18

2.19

F3 1 =17
[Al=] 1 3 —1
-1 -1 5]
M4 2 —47
[Bl=| 2 4 =2
| -4 =2 4]
=1 —1 =1
[Cl=|-1 -2 =2
| -1 —2 -3

Express the function
f(x1, x2,x3) = —xl2 — x% + 2x1xp — x32 + 6x1x3 +4x1 — 5x3+2
in matrix form as
fX) = IXTAIX+BTX + C
and determine whether the matrix [A] is positive definite, negative definite, or indefinite.

Determine whether the following matrix is positive or negative definite:

4 =30
[Al=|-3 0 4
0 42
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2.20 Determine whether the following matrix is positive definite:

—14
[Al=| 3 —
0

B o—_ W

0
4
2

2.21 The potential energy of the two-bar truss shown in Fig. 2.11 is given by

EA (1\* , EA[(h\*, .
flxr,x) = — ) it (5) = — Pxjcosf — Pxpsin@
S A) S S

where E is Young’s modulus, A the cross-sectional area of each member, / the span of
the truss, s the length of each member, /& the height of the truss, P the applied load,
6 the angle at which the load is applied, and x; and x, are, respectively, the horizontal
and vertical displacements of the free node. Find the values of x; and x, that minimize
the potential energy when £ = 207 x 10°Pa, A= 10°m%,/=15m, h =4.0 m,
P = 10*N, and 6 = 30°.

2.22  The profit per acre of a farm is given by
20x; 4 26x7 + 4x1xy — 4x7 — 3x3

where x| and x;, denote, respectively, the labor cost and the fertilizer cost. Find the values
of x; and x, to maximize the profit.

2.23 The temperatures measured at various points inside a heated wall are as follows:

Distance from the heated surface as
a percentage of wall thickness, d 0 25 50 75 100

Temperature, 1(°C) 380 200 100 20 0

It is decided to approximate this table by a linear equation (graph) of the form t = a + bd
, where a and b are constants. Find the values of the constants a and b that minimize the
sum of the squares of all differences between the graph values and the tabulated values.

Figure 2.11 Two-bar truss.
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2.24

2.25

2.26

2.27

2.28

Find the second-order Taylor’s series approximation of the function
fOrx) = (0 — D% +x
at the points (a) (0,0) and (b) (1,1).

Find the third-order Taylor’s series approximation of the function

2 3
fxr, x2, x3) = x5x3 + x1€”

at point (1, 0, —2).

The volume of sales (f) of a product is found to be a function of the number of newspaper
advertisements (x) and the number of minutes of television time (y) as

f=12xy —x*—3y?

Each newspaper advertisement or each minute on television costs $1000. How should
the firm allocate $48,000 between the two advertising media for maximizing its sales?

Find the value of x* at which the following function attains its maximum:

Flx) = ! o~ (1/2)[(x=100)/107*
’ 1

0+/2m

It is possible to establish the nature of stationary points of an objective function based
on its quadratic approximation. For this, consider the quadratic approximation of a
two-variable function as

fX) ~a+b"X+ 1 XX

X:{xl}, bz{bI]’ and [c]=|:611 Cl2i|
X2 by Cl2 €22

If the eigenvalues of the Hessian matrix, [c], are denoted as 81 and fB,, identify the nature
of the contours of the objective function and the type of stationary point in each of the
following situations.

where

(a) B1 = Ba; both positive

(b) B1 > Ba; both positive

(©) |B1l = |B2l; B1 and B, have opposite signs
@ p1>0,p=0

Plot the contours of each of the following functions and identify the nature of its stationary

point.

2.29
2.30
2.31
2.32

f=2—x2—y>+4xy
f=24+x>—y?
f=xy
f=x3—3xy?
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2.34

2.35

2.36

2.37

2.38

2.39

2.40
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Find the admissible and constrained variations at the point X = {0, 4} for the following
problem:

Minimize f = x} + (x2 — 1)?
subject to
—2x 12 +x,=4

Find the diameter of an open cylindrical can that will have the maximum volume for a
given surface area, S.

A rectangular beam is to be cut from a circular log of radius r. Find the cross-sectional
dimensions of the beam to (a) maximize the cross-sectional area of the beam, and (b)
maximize the perimeter of the beam section.

Find the dimensions of a straight beam of circular cross section that can be cut from a
conical log of height 4 and base radius r to maximize the volume of the beam.

The deflection of a rectangular beam is inversely proportional to the width and the cube
of depth. Find the cross-sectional dimensions of a beam, which corresponds to minimum
deflection, that can be cut from a cylindrical log of radius r.

A rectangular box of height ¢ and width b is placed adjacent to a wall (Fig. 2.12). Find
the length of the shortest ladder that can be made to lean against the wall.

Show that the right circular cylinder of given surface (including the ends) and maximum
volume is such that its height is equal to the diameter of the base.

Find the dimensions of a closed cylindrical soft drink can that can hold soft drink of
volume V for which the surface area (including the top and bottom) is a minimum.

An open rectangular box is to be manufactured from a given amount of sheet metal
(area S). Find the dimensions of the box to maximize the volume.

RN
AT AT TTTT T T T EEEEEEEETETEETEERRSXEXYY

Y b —

<
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Figure 2.12 Ladder against a wall.
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2.42

243

2.44

2.45
2.46

247

248

2.49

2.50

2.51

Find the dimensions of an open rectangular box of volume V for which the amount of
material required for manufacture (surface area) is a minimum.

A rectangular sheet of metal with sides a and b has four equal square portions (of side d)
removed at the corners, and the sides are then turned up so as to form an open rectangular
box. Find the depth of the box that maximizes the volume.

Show that the cone of the greatest volume that can be inscribed in a given sphere has
an altitude equal to two-thirds of the diameter of the sphere. Also prove that the curved
surface of the cone is a maximum for the same value of the altitude.

Prove Theorem 2.6.

A log of length [ is in the form of a frustum of a cone whose ends have radii a and
b(a > b). It is required to cut from it a beam of uniform square section. Prove that the
beam of greatest volume that can be cut has a length of al/[3(a — b)].

It has been decided to leave a margin of 30 mm at the top and 20 mm each at the left
side, right side, and the bottom on the printed page of a book. If the area of the page is
specified as 5 x 10* mm?, determine the dimensions of a page that provide the largest
printed area.

Minimize f =9 — 8x; — 6xy — 4x3 + 2)612
+ 2x§ + x32 + 2x1xp + 2x1x3

subject to
X1+x2+2x3=3

by (a) direct substitution, (b) constrained variation, and (¢) Lagrange multiplier method.
Minimize f(X) = 5(x} + x7 4+ x3)

subject to
g1 X)=x1—x2=0

eX)=x1+x+x3-1=0
by (a) direct substitution, (b) constrained variation, and (c¢) Lagrange multiplier method.
Find the values of x, y, and z that maximize the function

6xyz

X, y,7) = ———
Foey 2 = o

when x, y, and z are restricted by the relation xyz = 16.

A tent on a square base of side 2a consists of four vertical sides of height b surmounted
by a regular pyramid of height 4. If the volume enclosed by the tent is V, show that the
area of canvas in the tent can be expressed as

2V 8ah
— - % + 4av/ h? + a?
a

Also show that the least area of the canvas corresponding to a given volume V, if a and
h can both vary, is given by
_ /5h

a=——and h=2b
2
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A department store plans to construct a one-story building with a rectangular planform.
The building is required to have a floor area of 22,500 ft> and a height of 18 ft. It is
proposed to use brick walls on three sides and a glass wall on the fourth side. Find the
dimensions of the building to minimize the cost of construction of the walls and the roof
assuming that the glass wall costs twice as much as that of the brick wall and the roof
costs three times as much as that of the brick wall per unit area.

Find the dimensions of the rectangular building described in Problem 2.52 to minimize
the heat loss, assuming that the relative heat losses per unit surface area for the roof,
brick wall, glass wall, and floor are in the proportion 4:2:5:1.

A funnel, in the form of a right circular cone, is to be constructed from a sheet metal.
Find the dimensions of the funnel for minimum lateral surface area when the volume of
the funnel is specified as 200 in>.

Find the effect on f* when the value of Ap is changed to (a) 257 and (b) 227 in
Example 2.10 using the property of the Lagrange multiplier.

(a) Find the dimensions of a rectangular box of volume V = 1000 in® for which the
total length of the 12 edges is a minimum using the Lagrange multiplier method.

(b) Find the change in the dimensions of the box when the volume is changed to
1200 in® by using the value of A* found in part (a).

(¢) Compare the solution found in part (b) with the exact solution.

Find the effect on f* of changing the constraint to (a) x + xy 4+ 2x3 = 4 and (b) x + xp +
2x3 = 2 in Problem 2.48. Use the physical meaning of Lagrange multiplier in finding the
solution.

A real estate company wants to construct a multistory apartment building on a
500 x500-ft lot. It has been decided to have a total floor space of 8 x 103 ft>. The height
of each story is required to be 12 ft, the maximum height of the building is to be restricted
to 75 ft, and the parking area is required to be at least 10 % of the total floor area accord-
ing to the city zoning rules. If the cost of the building is estimated at $(500, 000/ +
2000F + 500P), where h is the height in feet, F is the floor area in square feet, and P
is the parking area in square feet. Find the minimum cost design of the building.

The Brinell hardness test is used to measure the indentation hardness of materials. It
involves penetration of an indenter, in the form of a ball of diameter D (mm), under a
load P (kg), as shown in Fig. 2.13a. The Brinell hardness number (BHN) is defined as
P 2P
BHN = — = (1)
A 7DD —D?—-d?)
where A (in mm?) is the spherical surface area and d (in mm) is the diameter of the
crater or indentation formed. The diameter d and the depth & of indentation are related
by (Fig. 2.13b)

d =2Jh(D —h) )

It is desired to find the size of indentation, in terms of the values of d and %, when a
tungsten carbide ball indenter of diameter 10 mm is used under a load of P = 3000 kg
on a stainless steel test specimen of BHN 1250. Find the values of d and / by formulating
and solving the problem as an unconstrained minimization problem.

Hint: Consider the objective function as the sum of squares of the equations implied by
Egs. (1) and (2).
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Spherical (ball)
indenter of
diameter D

(@)

Indentation or crater
[— d —» of diameter d and depth &

(b)

Figure 2.13 Brinell hardness test.

2.60 A manufacturer produces small refrigerators at a cost of $60 per unit and sells them to
a retailer in a lot consisting of a minimum of 100 units. The selling price is set at $80
per unit if the retailer buys 100 units at a time. If the retailer buys more than 100 units
at a time, the manufacturer agrees to reduce the price of all refrigerators by 10 cents for
each unit bought over 100 units. Determine the number of units to be sold to the retailer
to maximize the profit of the manufacturer.

2.61 Consider the following problem:
Minimize f = (x; —2)% + (x2 — 1)

subject to
2=zx1+x

szxlz

Using Kuhn—Tucker conditions, find which of the following vectors are local minima:

1.5 1 2
=i wef) »=f
2.62 Using Kuhn—Tucker conditions, find the value(s) of g for which the point x| = 1, x5 =2
will be optimal to the problem:

Maximize f(x1, x2) = 2x] + fx2

subject to
gix1, x) =x{+x3 —5<0

&x1,x)=x1—x—-2=<0

Verify your result using a graphical procedure.
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2.63 Consider the following optimization problem:

2.64

2.65

2.66

Maximize f = —x; — x»

subject to
XpHxp>2

4 < x4 3x;

X1 —|—x§§30

(a) Find whether the design vector X = {1, 1}T satisfies the Kuhn—Tucker conditions for
a constrained optimum.

(b) What are the values of the Lagrange multipliers at the given design vector?

Consider the following problem:
Maximize f(X) = )cl2 + x% + x32

subject to
X1 +x2+x3>5

2—xx3 <0
x120, x>0, x3>2

Determine whether the Kuhn—Tucker conditions are satisfied at the following points:

X = . Xo=

[SSJN ST[SS R ST [U%)
W WIN Wik
>
(98]

Il
—_

Find a usable and feasible direction S at (a) X; = {—1, 5} and (b) X, = {2, 3} for the
following problem:

Minimize f(X) = (x; — 1)> + (x» — 5)?

subject to
gi(X)=—xj+x-4<0

X)) =—(x1 -2 +x-3<0

Consider the following problem:
Maximize f = x7 — x;

subject to
26 > x? + x3

X1 +x>6

x1>0
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Determine whether the following search direction is usable, feasible, or both at the design

vector X = {?}

2.67 Consider the following problem:
Minimize f = x; — 6x7 + 11x] + x3
subject to
xP4xF—x2<0
4—x7—x3—x3<0

x>0, i=1,23 x3<5

Determine whether the following vector represents an optimum solution:

0
X =12
NG

2.68 Minimize f = x} + 2x3 + 3x3
subject to the constraints
g1 =Xy —x2—2x3 <12

g =x1+2x—3x3 <8

using Kuhn—Tucker conditions.
2.69 Minimize f(x;, x2) = (x; — D) + (xo — 5)°
subject to
—xi+x, <4
—(x1 =2 +x, <3

by (a) the graphical method and (b) Kuhn-Tucker conditions.

2.70 Maximize f = 8x; +4xy + x1x2 — x12 - x%

subject to
2x1 4+ 3x2 <24
—5x1 +12xp <24

X <5

by applying Kuhn—Tucker conditions.
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Consider the following problem:
Maximize f(x) = (x — 1)?

subject to
—2<x<4

Determine whether the constraint qualification and Kuhn—Tucker conditions are satisfied
at the optimum point.

Consider the following problem:
Minimize f = (x; — 1)> + (xz — 1)?

subject to
26— (1—x1)* <0

x1 >0

x>0

Determine whether the constraint qualification and the Kuhn—Tucker conditions are sat-
isfied at the optimum point.

Verify whether the following problem is convex:
Minimize f(X) = —4x; + xl2 —2x1x2 + 2x§

subject to
2x1+x <6

x1 —4x <0

x>0, x>0

Check the convexity of the following problems.
(@ Minimize f(X) = 2x; + 3x2 — x; — 2x5

subject to
X1 +3x <6

S5x1 4+ 2x <10
X120, x=0
(b) Minimize f(X) = 9x7 — 18x1x2 + 13x; — 4
subject to
x?4x3 4+ 2x; > 16
Identify the optimum point among the given design vectors, X, X, and X3, by applying

the Kuhn—Tlucker conditions to the following problem:

Minimize f(X) = 100(xa — x7)? + (1 — x1)?
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subject to

=
IA
=
IA
D=
=
[}
A

0
X = {0} X

2.76 Consider the following optimization problem:

Il
e e,
|
=)
——
>
(5]
I
rm— —
|

Minimize f = —xl2 — x22 + x1x2 + Tx1 + 4x,

subject to
2x1 4+ 3x <24

—5x1+12x, <24
x120, x>0, x»=4

Find a usable feasible direction at each of the following design vectors:

S



Linear Programming I:
Simplex Method

3.1 INTRODUCTION

Linear programming is an optimization method applicable for the solution of prob-
lems in which the objective function and the constraints appear as linear functions
of the decision variables. The constraint equations in a linear programming problem
may be in the form of equalities or inequalities. The linear programming type of opti-
mization problem was first recognized in the 1930s by economists while developing
methods for the optimal allocation of resources. During World War II the U.S. Air
Force sought more effective procedures of allocating resources and turned to linear
programming. George B. Dantzig, who was a member of the Air Force group, for-
mulated the general linear programming problem and devised the simplex method of
solution in 1947. This has become a significant step in bringing linear programming into
wider use. Afterward, much progress was made in the theoretical development and in
the practical applications of linear programming. Among all the works, the theoretical
contributions made by Kuhn and Tucker had a major impact in the development of the
duality theory in LP. The works of Charnes and Cooper were responsible for industrial
applications of LP.

Linear programming is considered a revolutionary development that permits us to
make optimal decisions in complex situations. At least four Nobel Prizes were awarded
for contributions related to linear programming. For example, when the Nobel Prize
in Economics was awarded in 1975 jointly to L. V. Kantorovich of the former Soviet
Union and T. C. Koopmans of the United States, the citation for the prize mentioned
their contributions on the application of LP to the economic problem of allocating
resources [3.14]. George Dantzig, the inventor of LP, was awarded the National Medal
of Science by President Gerald Ford in 1976.

Although several other methods have been developed over the years for solving LP
problems, the simplex method continues to be the most efficient and popular method for
solving general LP problems. Among other methods, Karmarkar’s method, developed in
1984, has been shown to be up to 50 times as fast as the simplex algorithm of Dantzig. In
this chapter we present the theory, development, and applications of the simplex method
for solving LP problems. Additional topics, such as the revised simplex method, duality
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theory, decomposition method, postoptimality analysis, and Karmarkar’s method, are
considered in Chapter 4.

3.2 APPLICATIONS OF LINEAR PROGRAMMING

The number of applications of linear programming has been so large that it is not
possible to describe all of them here. Only the early applications are mentioned here
and the exercises at the end of this chapter give additional example applications of
linear programming. One of the early industrial applications of linear programming
was made in the petroleum refineries. In general, an oil refinery has a choice of buying
crude oil from several different sources with differing compositions and at differing
prices. It can manufacture different products, such as aviation fuel, diesel fuel, and
gasoline, in varying quantities. The constraints may be due to the restrictions on the
quantity of the crude oil available from a particular source, the capacity of the refinery
to produce a particular product, and so on. A mix of the purchased crude oil and the
manufactured products is sought that gives the maximum profit.

The optimal production plan in a manufacturing firm can also be decided using
linear programming. Since the sales of a firm fluctuate, the company can have various
options. It can build up an inventory of the manufactured products to carry it through
the period of peak sales, but this involves an inventory holding cost. It can also pay
overtime rates to achieve higher production during periods of higher demand. Finally,
the firm need not meet the extra sales demand during the peak sales period, thus losing
a potential profit. Linear programming can take into account the various cost and loss
factors and arrive at the most profitable production plan.

In the food-processing industry, linear programming has been used to determine
the optimal shipping plan for the distribution of a particular product from different
manufacturing plants to various warehouses. In the iron and steel industry, linear pro-
gramming is used to decide the types of products to be made in their rolling mills to
maximize the profit. Metalworking industries use linear programming for shop loading
and for determining the choice between producing and buying a part. Paper mills use
it to decrease the amount of trim losses. The optimal routing of messages in a commu-
nication network and the routing of aircraft and ships can also be decided using linear
programming.

Linear programming has also been applied to formulate and solve several types
of engineering design problems, such as the plastic design of frame structures, as
illustrated in the following example.

Example 3.1 In the limit design of steel frames, it is assumed that plastic hinges
will be developed at points with peak moments. When a sufficient number of hinges
develop, the structure becomes an unstable system referred to as a collapse mechanism.
Thus a design will be safe if the energy-absorbing capacity of the frame (U) is greater
than the energy imparted by the externally applied loads (E) in each of the deformed
shapes as indicated by the various collapse mechanisms [3.9].

For the rigid frame shown in Fig. 3.1, plastic moments may develop at the points of
peak moments (numbered 1 through 7 in Fig. 3.1). Four possible collapse mechanisms
are shown in Fig. 3.2 for this frame. Assuming that the weight is a linear function
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Figure 3.1 Rigid frame.

E=P,5=100
U=4My0
)

10 l Mo

Py —r>l

E=P; 5+ Py58,=346 E =P8 =246
U=4Mp6 +2M_.0 U=2Mp0 +2M.0

Figure 3.2 Collapse mechanisms of the frame. M}, moment carrying capacity of beam; M.,
moment carrying capacity of column [3.9].

of the plastic moment capacities, find the values of the ultimate moment capacities
My, and M, for minimum weight. Assume that the two columns are identical and that
Pr=3,P,=1,h=28,and [ = 10.

SOLUTION The objective function can be expressed as

f(My, M) = weight of beam + weight of columns
=aQRIM, +2hM,)
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where o« is a constant indicating the weight per unit length of the member with a
unit plastic moment capacity. Since a constant multiplication factor does not affect the
result, f can be taken as

f=2IMy+2hM,. =20M, + 16M, (Ep)
The constraints (U > E) from the four collapse mechanisms can be expressed as
M.>6
My, > 2.5
2Mp + M, > 17
My + M, > 12 (E2)

3.3 STANDARD FORM OF A LINEAR PROGRAMMING PROBLEM

The general linear programming problem can be stated in the following standard
forms:

Scalar Form
Minimize f(xy, x2,...,Xx;) =c1x] +cax2 + -+ 4 cpxy 3.1a)
subject to the constraints

anxiy +apxy + - +apux, = by
a1 X1 +anxy + - +ayux, = b

(3.2a)
Am1X1 + amax2 + - - - 4+ apnXn = by,
x1 >0
xo >0
. (3.3a)
x, >0
where ¢;, b;, and a;;(i =1,2,...,m; j=1,2,...,n) are known constants, and x;
are the decision variables.
Matrix Form
Minimize f(X) = ¢'X (3.1b)
subject to the constraints
aX=>b (3.2b)

X>0 (3.3b)
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where

X1 by 1
X2 by 193

X = , b= .1, ¢= ,
xn bn’l Cn
ap ap -+ A
ay ax - Ay

a=
L 4m1 Am2 ** dmn |

The characteristics of a linear programming problem, stated in standard form, are

1. The objective function is of the minimization type.
2. All the constraints are of the equality type.
3. All the decision variables are nonnegative.

It is now shown that any linear programming problem can be expressed in standard
form by using the following transformations.

1. The maximization of a function f(xi, x2, ..., x,) is equivalent to the minimiza-
tion of the negative of the same function. For example, the objective function

minimize f = cix; + c2x2 + -+ + cpXp
is equivalent to
maximize f' = —f = —c1x] — CoXs — -+ — CuXp

Consequently, the objective function can be stated in the minimization form in
any linear programming problem.

2. In most engineering optimization problems, the decision variables represent
some physical dimensions, and hence the variables x; will be nonnegative.
However, a variable may be unrestricted in sign in some problems. In such
cases, an unrestricted variable (which can take a positive, negative, or zero
value) can be written as the difference of two nonnegative variables. Thus if x;
is unrestricted in sign, it can be written as x; = x; - x}’ , where

x}zO and x}’zO
It can be seen that x; will be negative, zero, or positive, depending on whether
x}’ is greater than, equal to, or less than x}.

3. If a constraint appears in the form of a “less than or equal to” type of

inequality as
a1 X1 + agaXo + -+ AknXn < by

it can be converted into the equality form by adding a nonnegative slack variable
Xp+1 as follows:

ak1X1 + axs + -+ Aep Xy + Xpp1 = by
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Similarly, if the constraint is in the form of a “greater than or equal to” type of
inequality as
ak1x1 + agpxo + -+ AgnXn = b

it can be converted into the equality form by subtracting a variable as
a1 X1 + akp Xz + -+ o+ AknXn — Xnp1 = by

where x,11 is a nonnegative variable known as a surplus variable.

It can be seen that there are m equations in n decision variables in a linear pro-
gramming problem. We can assume that m < n; for if m > n, there would be m —n
redundant equations that could be eliminated. The case n = m is of no interest, for then
there is either a unique solution X that satisfies Egs. (3.2) and (3.3) (in which case there
can be no optimization) or no solution, in which case the constraints are inconsistent.
The case m < n corresponds to an underdetermined set of linear equations, which, if
they have one solution, have an infinite number of solutions. The problem of linear
programming is to find one of these solutions that satisfies Eqgs. (3.2) and (3.3) and
yields the minimum of f.

3.4 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

A linear programming problem with only two variables presents a simple case for which
the solution can be obtained by using a rather elementary graphical method. Apart
from the solution, the graphical method gives a physical picture of certain geometrical
characteristics of linear programming problems. The following example is considered
to illustrate the graphical method of solution.

Example 3.2 A manufacturing firm produces two machine parts using lathes, milling
machines, and grinding machines. The different machining times required for each part,
the machining times available on different machines, and the profit on each machine
part are given in the following table.

Machining time required (min) Maximum time available

Type of machine Machine part I Machine part 11 per week (min)
Lathes 10 5 2500
Milling machines 4 10 2000
Grinding machines 1 1.5 450
Profit per unit $50 $100

Determine the number of parts I and II to be manufactured per week to maximize the
profit.

SOLUTION Let the number of machine parts I and II manufactured per week be
denoted by x and y, respectively. The constraints due to the maximum time limitations
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on the various machines are given by

10x + 5y < 2500 (Ep)
4x + 10y < 2000 (Ey)
x4+ 1.5y <450 (E3)

Since the variables x and y cannot take negative values, we have

x>0
(E4)
y=0
The total profit is given by
f(x,y) =50x 4+ 100y (Es)

Thus the problem is to determine the nonnegative values of x and y that satisfy the

constraints stated in Eqgs. (E;) to (E3) and maximize the objective function given by

Eq. (Es). The inequalities (E;) to (E4) can be plotted in the xy plane and the feasible

region identified as shown in Fig. 3.3 Our objective is to find at least one point out of the

infinite points in the shaded region of Fig. 3.3 that maximizes the profit function (Es).
The contours of the objective function, f, are defined by the linear equation

50x 4+ 100y = k = constant

As k is varied, the objective function line is moved parallel to itself. The maximum
value of f is the largest k whose objective function line has at least one point in
common with the feasible region. Such a point can be identified as point G in Fig. 3.4.
The optimum solution corresponds to a value of x* = 187.5, y* = 125.0 and a profit
of $21,875.00.

Yy
{
A
E
C G(187.5, 125.0)
L . L x
(0,0) B F D

Figure 3.3 Feasible region given by Eqs. (E;) to (E4).
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Figure 3.4 Contours of objective function.

In some cases, the optimum solution may not be unique. For example, if the
profit rates for the machine parts I and II are $40 and $100 instead of $50 and $100,
respectively, the contours of the profit function will be parallel to side CG of the
feasible region as shown in Fig. 3.5. In this case, line P”Q”, which coincides with the
boundary line CG, will correspond to the maximum (feasible) profit. Thus there is no
unique optimal solution to the problem and any point between C and G on line P”Q”

Figure 3.5 Infinite solutions.
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Figure 3.6 Unbounded solution.

can be taken as an optimum solution with a profit value of $20,000. There are three
other possibilities. In some problems, the feasible region may not be a closed convex
polygon. In such a case, it may happen that the profit level can be increased to an
infinitely large value without leaving the feasible region, as shown in Fig. 3.6. In this
case the solution of the linear programming problem is said to be unbounded. On the
other extreme, the constraint set may be empty in some problems. This could be due
to the inconsistency of the constraints; or, sometimes, even though the constraints may
be consistent, no point satisfying the constraints may also satisfy the nonnegativity
restrictions. The last possible case is when the feasible region consists of a single
point. This can occur only if the number of constraints is at least equal to the number
of variables. A problem of this kind is of no interest to us since there is only one
feasible point and there is nothing to be optimized.

Thus a linear programming problem may have (1) a unique and finite optimum
solution, (2) an infinite number of optimal solutions, (3) an unbounded solution, (4) no
solution, or (5) a unique feasible point. Assuming that the linear programming problem
is properly formulated, the following general geometrical characteristics can be noted
from the graphical solution:

1. The feasible region is a convex polygon. "
2. The optimum value occurs at an extreme point or vertex of the feasible region.

3.5 DEFINITIONS AND THEOREMS

The geometrical characteristics of a linear programming problem stated in Section 3.4
can be proved mathematically. Some of the more powerful methods of solving linear
programming problems take advantage of these characteristics. The terminology used
in linear programming and some of the important theorems are presented in this section.

TA convex polygon consists of a set of points having the property that the line segment joining any two
points in the set is entirely in the convex set. In problems having more than two decision variables, the
feasible region is called a convex polyhedron, which is defined in the next section.
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Definitions
1. Point in n-dimensional space. A point X in an n-dimensional space is char-
acterized by an ordered set of n values or coordinates (xi, xp, ..., x,). The

coordinates of X are also called the components of X.

2. Line segment in n dimensions (L). If the coordinates of two points A and B
are given by xj(l) and x(.z)(j =1,2,...,n), the line segment (L) joining these
points is the collection of points X(A) whose coordinates are given by x; =
(- x?P =12, 0 with 0 < a < 1
Thus

L={X|X=xXD+1-1)X?) (3.4)

In one dimension, for example, it is easy to see that the definition is in accor-
dance with out experience (Fig. 3.7):

P —x) =Ax® —xP], 0<a<1 (3.5)
whence
xW) =P+ A =-0x?, 0<rc<l1 (3.6)

3. Hyperplane. In n-dimensional space, the set of points whose coordinates satisfy
a linear equation

aix;++-+ayx, =a'X=»b 3.7
is called a hyperplane. A hyperplane, H, is represented as
H(a, b) = {X|a'X = b} (3.8)

A hyperplane has n — 1 dimensions in an n-dimensional space. For example,
in three-dimensional space it is a plane, and in two-dimensional space it is a
line. The set of points whose coordinates satisfy a linear inequality like a;x; +
--- 4 apx, < b is called a closed half-space, closed due to the inclusion of an
equality sign in the inequality above. A hyperplane partitions the n-dimensional
space (E™) into two closed half-spaces, so that

HT ={X|a'X > b} (3.9)
H™ ={X|a'X < b} (3.10)

This is illustrated in Fig. 3.8 in the case of a two-dimensional space (E?).

A B
| I L L

0 x(D X(A) x(2)

— X

Figure 3.7 Line segment.
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Hyperplane

7x1

H* Figure 3.8 Hyperplane in two dimensions.

4. Convex set. A convex set is a collection of points such that if X! and X are
any two points in the collection, the line segment joining them is also in the
collection. A convex set, S, can be defined mathematically as follows:

IfEXD X® s then XeS

where
X=xXP+1-1X?, o0<ar<l1

A set containing only one point is always considered to be convex. Some
examples of convex sets in two dimensions are shown shaded in Fig. 3.9. On
the other hand, the sets depicted by the shaded region in Fig. 3.10 are not
convex. The L-shaped region, for example, is not a convex set because it is
possible to find two points a and b in the set such that not all points on the line
joining them belong to the set.

5. Convex polyhedron and convex polytope. A convex polyhedron is a set of points
common to one or more half-spaces. A convex polyhedron that is bounded is
called a convex polytope.

Figure 3.11a and b represents convex polytopes in two and three dimensions,
and Fig. 3.11c¢ and d denotes convex polyhedra in two and three dimensions. It

@%% 72 Q)

Figure 3.9 Convex sets.

B %

Figure 3.10 Nonconvex sets.

’
N
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X2
x2

x3

(a) (b)

xp x2
A

(c) (d)

Figure 3.11 Convex polytopes in two and three dimensions (a, b) and convex polyhedra in
two and three dimensions (c, d).

can be seen that a convex polygon, shown in Fig. 3.11a and ¢, can be considered
as the intersection of one or more half-planes.

6. Vertex or extreme point. This is a point in the convex set that does not lie on a
line segment joining two other points of the set. For example, every point on
the circumference of a circle and each corner point of a polygon can be called
a vertex or extreme point.

7. Feasible solution. In a linear programming problem, any solution that satisfies
the constraints

aX=b (3.2)
X>0 (3.3)

is called a feasible solution.

8. Basic solution. A basic solution is one in which n — m variables are set equal
to zero. A basic solution can be obtained by setting n — m variables to zero and
solving the constraint Egs. (3.2) simultaneously.

9. Basis. The collection of variables not set equal to zero to obtain the basic
solution is called the basis.
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10. Basic feasible solution. This is a basic solution that satisfies the nonnegativity
conditions of Eq. (3.3).

11. Nondegenerate basic feasible solution. This is a basic feasible solution that has
got exactly m positive x;.

12. Optimal solution. A feasible solution that optimizes the objective function is
called an optimal solution.

13. Optimal basic solution. This is a basic feasible solution for which the objective
function is optimal.

Theorems.  The basic theorems of linear programming can now be stated and proved
¥

Theorem 3.1 The intersection of any number of convex sets is also convex.

Proof: Let the given convex sets be represented as R;(i =1,2,..., K) and their
intersection as R, so that?

If the points XV, X® e R, then from the definition of intersection,
X=2XD4+1-0)XPeRr (=12,....K)
0<i<l
Thus
K
XeR= ﬂ R
i=1

and the theorem is proved. Physically, the theorem states that if there are a number of
convex sets represented by R, Ry, ..., the set of points R common to all these sets
will also be convex. Figure 3.12 illustrates the meaning of this theorem for the case
of two convex sets.

Theorem 3.2 The feasible region of a linear programming problem is convex.

Figure 3.12 Intersection of two convex sets.

"The proofs of the theorems are not needed for an understanding of the material presented in subsequent
sections.
*The symbol N represents the intersection of sets.
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Proof: The feasible region S of a standard linear programming problem is defined as
S={X|aX=b,X> 0} (3.11)
Let the points X; and X, belong to the feasible set S so that
aX; =b, X; >0 (3.12)
aX, = b, X, >0 (3.13)
Multiply Eq. (3.12) by A and Eq. (3.13) by (1 — A1) and add them to obtain
a2 X; + (1 —A)Xpl=Ab+ (1 —-A)b=Db

that is,
an =b

where
Xy = A X 4+ (1 - 0)X,

Thus the point X, satisfies the constraints and if
0<a<l, X,>0

Hence the theorem is proved.
Theorem 3.3 Any local minimum solution is global for a linear programming problem.

Proof: In the case of a function of one variable, the minimum (maximum) of a function
f(x) is obtained at a value x at which the derivative is zero. This may be a point like
A(x = x;) in Fig. 3.13, where f(x) is only a relative (local) minimum, or a point like
B(x = xp), where f(x) is a global minimum. Any solution that is a local minimum
solution is also a global minimum solution for the linear programming problem. To see
this, let A be the local minimum solution and assume that it is not a global minimum
solution so that there is another point B at which fp < f4. Let the coordinates of A
and B be given by {xi, x2, ..., x, }T and {y1, y2,..., y,,}T, respectively. Then any point
C ={z1,22,...,2,)7 that lies on the line segment joining the two points A and B is

fx)
A

: Local

| minimum

: :Global minimum

—> X

Figure 3.13 Local and global minima.
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a feasible solution and f¢ = Af4 + (1 — A) f5. In this case, the value of f decreases
uniformly from f4 to fp, and thus all points on the line segment between A and B
(including those in the neighborhood of A) have f values less than f4 and correspond
to feasible solutions. Hence it is not possible to have a local minimum at A and at the
same time another point B such that f4 > fp. This means that for all B, f4 < f35, so
that f, is the global minimum value.

The generalized version of this theorem is proved in Appendix A so that it can be
applied to nonlinear programming problems also.

Theorem 3.4 Every basic feasible solution is an extreme point of the convex set of
feasible solutions.

Theorem 3.5 Let S be a closed, bounded convex polyhedron with Xf,i =1to p, as
the set of its extreme points. Then any vector X € S can be written as

P
X =) nX¢
i=1

A >0

P
> ai=1
i=1

Theorem 3.6 Let S be a closed convex polyhedron. Then the minimum of a linear
function over S is attained at an extreme point of S.

The proofs of Theorems 3.4 to 3.6 can be found in Ref. [3.1].

3.6 SOLUTION OF A SYSTEM OF LINEAR SIMULTANEOUS
EQUATIONS

Before studying the most general method of solving a linear programming problem, it
will be useful to review the methods of solving a system of linear equations. Hence
in the present section we review some of the elementary concepts of linear equations.
Consider the following system of n equations in n unknowns:

anxi +apxy+---+apux, = by (Ep)
ani Xy +anxy + - +apmx, = by (Ez)
azixy +axnxy + - +azx, = by (Ej) (3.14)

an X1 + apaXo + -+ + AppXp = bn (En)

Assuming that this set of equations possesses a unique solution, a method of solving
the system consists of reducing the equations to a form known as canonical form.

It is well known from elementary algebra that the solution of Egs. (3.14) will not be
altered under the following elementary operations: (1) any equation E, is replaced by



134 Linear Programming I: Simplex Method

the equation k E,, where k is a nonzero constant, and (2) any equation E, is replaced by
the equation E, + kE;, where Ej; is any other equation of the system. By making use of
these elementary operations, the system of Egs. (3.14) can be reduced to a convenient
equivalent form as follows. Let us select some variable x; and try to eliminate it from all
the equations except the jth one (for which a;; is nonzero). This can be accomplished
by dividing the jth equation by a;; and subtracting ay; times the result from each of the
other equations, k =1,2,..., j — 1, j+ 1,...,n. The resulting system of equations
can be written as

I I I I
ap Xy +apxo + -t ay g xier + 0 +ay X+
/ oy
+a\,xn = b
/ / / /
ayxi+apxy+---+ay;  Xion +0x +ag; X+

I oy
+ay,x, = b,

I I / /
a;_y xita;_ x4 tai g 00 Fap g X

’ g
+ -+ aj_1p¥n = bjfl

! / / !
axi+ajpxy+-o+d; g xio+ 1x; + aj g1 Xitl
/ g
+"'+ ajn.xn—bj
/ / ! !
i X1+ dj %0+ diy X H0x +al X

/ _ g/
++ aj+l,nxn_bj+l

/ ! ! !/
Ay X1+ apxo+ -t a,;  Xi-1+0x +a, ;X +
+ a, x, = b (3.15)

where the primes indicate that the a;; and &', are changed from the original system.
This procedure of eliminating a particular variable from all but one equations is called
a pivot operation. The system of Egs. (3.15) produced by the pivot operation have
exactly the same solution as the original set of Eqgs. (3.14). That is, the vector X that
satisfies Egs. (3.14) satisfies Egs. (3.15), and vice versa.

Next time, if we take the system of Eqgs. (3.15) and perform a new pivot operation
by eliminating xg, s # i, in all the equations except the ¢th equation, ¢ # j, the zeros
or the 1 in the ith column will not be disturbed. The pivotal operations can be repeated
by using a different variable and equation each time until the system of Egs. (3.14) is
reduced to the form

lx; + Ox2 4+ 0x3 + -+ - + Ox, = bf
Ox1+1x2+0x3+-~~+0xn=b’2’
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0x; + 0x3 + L3 4 - - - + Ox,, = b (3.16)

Ox; + Oxp + O0x3 + -+ -+ lx, = b]

This system of Egs. (3.16) is said to be in canonical form and has been obtained after
carrying out n pivot operations. From the canonical form, the solution vector can be
directly obtained as

xi=bl, i=12,...,n (3.17)

Since the set of Eqs. (3.16) has been obtained from Egs. (3.14) only through elementary
operations, the system of Eqs. (3.16) is equivalent to the system of Eqs. (3.14). Thus
the solution given by Eqs. (3.17) is the desired solution of Eqs. (3.14).

3.7 PIVOTAL REDUCTION OF A GENERAL SYSTEM OF
EQUATIONS

Instead of a square system, let us consider a system of m equations in n variables with
n > m. This system of equations is assumed to be consistent so that it will have at
least one solution:

anxy +apxy + -+ apx, = by

ax1x1 + anxy + -+ ayx, = by
(3.18)

Am1 X1 + amaXo + -+ AppXy = by

The solution vector(s) X that satisfy Eqgs. (3.18) are not evident from the equations.
However, it is possible to reduce this system to an equivalent canonical system from
which at least one solution can readily be deduced. If pivotal operations with respect
to any set of m variables, say, x1, x2, ..., X,, are carried, the resulting set of equations
can be written as follows:

Canonical system with pivotal variables xy, x2, ..., X,

Ix; +0xo + -+ - + Ox,, + ai/’mﬂxmﬂ +---+al,x, =b]
Oxy + Lxp + -+ 0xp + a5, 4 Xyt + - +ay,x, = b (3.19)

OX] + 0x2 + -+ 1)Cm + a;:l,m+lx’”+l + -t a,/,/mxn = b;,;

Pivotal Nonpivotal or Constants
variables independent
variables
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One special solution that can always be deduced from the system of Egs. (3.19) is

b/, i=1,2....m
X = (3.20)

0, i=m+1, m+2,...,n

This solution is called a basic solution since the solution vector contains no more
than m nonzero terms. The pivotal variables x;, i = 1,2, ..., m, are called the basic
variables and the other variables x;, i =m + 1,m + 2, ..., n, are called the nonbasic
variables. Of course, this is not the only solution, but it is the one most readily deduced
from Eqs. (3.19). If all b/, i =1,2,...,m, in the solution given by Egs. (3.20) are
nonnegative, it satisfies Eqs. (3.3) in addition to Egs. (3.2), and hence it can be called
a basic feasible solution.

It is possible to obtain the other basic solutions from the canonical system of Egs.
(3.19). We can perform an additional pivotal operation on the system after it is in
canonical form, by choosing a;;q (which is nonzero) as the pivot term, g > m, and
using any row p (among 1,2, ...,m). The new system will still be in canonical form
but with x, as the pivotal variable in place of x,. The variable x,, which was a basic
variable in the original canonical form, will no longer be a basic variable in the new
canonical form. This new canonical system yields a new basic solution (which may or
may not be feasible) similar to that of Egs. (3.20). It is to be noted that the values of
all the basic variables change, in general, as we go from one basic solution to another,
but only one zero variable (which is nonbasic in the original canonical form) becomes
nonzero (which is basic in the new canonical system), and vice versa.

Example 3.3 Find all the basic solutions corresponding to the system of equations

2x1 +3xy —2x3 — Txg =1 (Io)
X1+ x24+x3+3x4 =6 (IIp)
X|— X2+ x3+5x4 =4 (Ilp)

SOLUTION  First we reduce the system of equations into a canonical form with xp,

X7, and x3 as basic variables. For this, first we pivot on the element a;; = 2 to obtain
3

xl+§X2—X3—%X4 = I = %IO

0—4x+2x3+ Sxy = I, =1,—1;

I, = Il -1

NI Nl: STE

0— %xz+ZX3+]—Z7X4 =
Then we pivot on a}, = —%, to obtain
X1+ 0+ 5x3 4+ 16x4 = 17 L =1 -3
04 xy) —4x3 — 13x4 = —11 1, = =2II;
040 —8x3 —24x4 = —24 I, = III; + 31D,
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Finally we pivot on a}; to obtain the required canonical form as
X1 + x4 =2 I; = I, — 5III;
X7 —xq4 =1 13 = I, + 41113
X3 +3x =3 13 = —{ 1

From this canonical form, we can readily write the solution of x;, x,, and x3 in terms
of the other variable x4 as

X1=2—X4
Xo=14x4
X3=3—3)C4

If Egs. (Ip), (Ilp), and (IIly) are the constraints of a linear programming problem, the
solution obtained by setting the independent variable equal to zero is called a basic
solution. In the present case, the basic solution is given by

x1 =2, xp=1, x3=23 (basic variables)

and x4 = 0 (nonbasic or independent variable). Since this basic solution has all x; >
0(j=1,2,3,4), it is a basic feasible solution.

If we want to move to a neighboring basic solution, we can proceed from the
canonical form given by Egs. (I3), (II3), and (IlI3). Thus if a canonical form in terms
of the variables x1, x», and x4 is required, we have to bring x4 into the basis in place
of the original basic variable x3. Hence we pivot on a§’4 in Eq. (IlI3). This gives the
desired canonical form as

xi —gx3 =1 I =I—1II
X i =2 Iy =I5+10
X4+ 3x3 = 1 1y = 11003
This canonical system gives the solution of x;, x, and x4 in terms of x3 as
x1=1+ %X3
Xp =2 — %X3
x4y =1-— %X3
and the corresponding basic solution is given by
x1=1, xp=2, x4=1 (basic variables)
x3 =0 (nonbasic variable)

This basic solution can also be seen to be a basic feasible solution. If we want to move
to the next basic solution with x|, x3, and x4 as basic variables, we have to bring x3
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into the current basis in place of x,. Thus we have to pivot aj; in Eq. (Il4). This leads
to the following canonical system:
X +x =3 Is = Iy + 111s
x3 +3x =6 IIs = 3l
x4—xy = —1 s = Il — 11
The solution for x, x3, and x4 is given by
x1=3—1x
x3=6—3x
Xg=—1+x
from which the basic solution can be obtained as
x1 =3, x3=6, x4=—1 (basic variables)
x> =0 (nonbasic variable)

Since all the x; are not nonnegative, this basic solution is not feasible.

Finally, to obtain the canonical form in terms of the basic variables x;, x3, and x4,
we pivot on af, in Eq. (Is), thereby bringing x, into the current basis in place of x;.
This gives

X2 +x =3 Ig =I5
X3 — 3x1 = -3 116 = H5 — 316
IIs + Ig

Xa+x1 =2 1II¢

This canonical form gives the solution for x;, x3, and x4 in terms of x; as

x2=3—x1
x3 = =3+ 3x;
)C4=2—)C1

and the corresponding basic solution is
x» =3, x3=-3, x4 =2 (basic variables)
x1 =0 (nonbasic variable)

This basic solution can also be seen to be infeasible due to the negative value for x3.

3.8 MOTIVATION OF THE SIMPLEX METHOD

Given a system in canonical form corresponding to a basic solution, we have seen how
to move to a neighboring basic solution by a pivot operation. Thus one way to find the
optimal solution of the given linear programming problem is to generate all the basic
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solutions and pick the one that is feasible and corresponds to the optimal value of the
objective function. This can be done because the optimal solution, if one exists, always
occurs at an extreme point or vertex of the feasible domain. If there are m equality
constraints in n variables with n > m, a basic solution can be obtained by setting any
of the n — m variables equal to zero. The number of basic solutions to be inspected is
thus equal to the number of ways in which m variables can be selected from a set of

n variables, that is,
n N I’L!
m)  (n—m)! m!

For example, if n = 10 and m = 5, we have 252 basic solutions, and if n = 20 and
m = 10, we have 184,756 basic solutions. Usually, we do not have to inspect all these
basic solutions since many of them will be infeasible. However, for large values of n
and m, this is still a very large number to inspect one by one. Hence what we really need
is a computational scheme that examines a sequence of basic feasible solutions, each
of which corresponds to a lower value of f until a minimum is reached. The simplex
method of Dantzig is a powerful scheme for obtaining a basic feasible solution; if the
solution is not optimal, the method provides for finding a neighboring basic feasible
solution that has a lower or equal value of f. The process is repeated until, in a finite
number of steps, an optimum is found.

The first step involved in the simplex method is to construct an auxiliary prob-
lem by introducing certain variables known as artificial variables into the standard
form of the linear programming problem. The primary aim of adding the artificial
variables is to bring the resulting auxiliary problem into a canonical form from which
its basic feasible solution can be obtained immediately. Starting from this canonical
form, the optimal solution of the original linear programming problem is sought in
two phases. The first phase is intended to find a basic feasible solution to the orig-
inal linear programming problem. It consists of a sequence of pivot operations that
produces a succession of different canonical forms from which the optimal solution
of the auxiliary problem can be found. This also enables us to find a basic feasible
solution, if one exists, of the original linear programming problem. The second phase
is intended to find the optimal solution of the original linear programming problem.
It consists of a second sequence of pivot operations that enables us to move from
one basic feasible solution to the next of the original linear programming problem.
In this process, the optimal solution of the problem, if one exists, will be identified.
The sequence of different canonical forms that is necessary in both the phases of
the simplex method is generated according to the simplex algorithm described in the
next section. That is, the simplex algorithm forms the main subroutine of the simplex
method.

3.9 SIMPLEX ALGORITHM

The starting point of the simplex algorithm is always a set of equations, which includes
the objective function along with the equality constraints of the problem in canonical
form. Thus the objective of the simplex algorithm is to find the vector X > O that
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minimizes the function f(X) and satisfies the equations:
Ix; 4+ 0xy +--- +0x,, + af’mﬂxmﬂ +---+alx, = b

Ox; 4+ 1xp + -+ +O0x,, + aé’ymﬂxmﬂ +--+ayx, =0

' (3.21)
Oxy +0x2 + -+ 1xp +ay, . Xmy1 + -+ +ap,x, = b,

m,m-+

Ox; +0x2 + -+ +0xp — f

et b gt = —ff
where alfjf, c;.’ , b, and f are constants. Notice that (— f) is treated as a basic variable
in the canonical form of Egs. (3.21). The basic solution that can readily be deduced
from Egs. (3.21) is

i .
xi =b', i =12,...,m

=15 (3.22)
x; = 0, i=m+1l,m+2,...,n

If the basic solution is also feasible, the values of x;, i = 1, 2, ..., n, are nonnegative
and hence

b!>0, i=12,....m (3.23)

In phase I of the simplex method, the basic solution corresponding to the canonical form
obtained after the introduction of the artificial variables will be feasible for the auxiliary
problem. As stated earlier, phase II of the simplex method starts with a basic feasible
solution of the original linear programming problem. Hence the initial canonical form
at the start of the simplex algorithm will always be a basic feasible solution.

We know from Theorem 3.6 that the optimal solution of a linear programming
problem lies at one of the basic feasible solutions. Since the simplex algorithm is
intended to move from one basic feasible solution to the other through pivotal oper-
ations, before moving to the next basic feasible solution, we have to make sure that
the present basic feasible solution is not the optimal solution. By merely glancing at
the numbers ¢/, j = 1,2,...,n, we can tell whether or not the present basic feasible
solution is optimal. Theorem 3.7 provides a means of identifying the optimal point.

3.9.1 Identifying an Optimal Point

Theorem 3.7 A basic feasible solution is an optimal solution with a minimum objec-
tive function value of fj if all the cost coefficients c’].’ ,j=m+1,m+2, ...,n,in
Egs. (3.21) are nonnegative. '

Proof : From the last row of Egs. (3.21), we can write that

i+ > dxi=f (3.24)

i=m+1
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Since the variables x;,41, X42, ..., X, are presently zero and are constrained to be
nonnegative, the only way any one of them can change is to become positive. But if
cg’ >0 fori =m+1,m+2,...,n, then increasing any x; cannot decrease the value

of the objective function f. Since no change in the nonbasic variables can cause f to
decrease, the present solution must be optimal with the optimal value of f equal to f'.

A glance over ¢/ can also tell us if there are multiple optima. Let all ¢/ >0,
i=m+1m+2,....,k—1,k+1,...,n, and let c,’(’ = 0 for some nonbasic variable
xr. Then if the constraints allow that variable to be made positive (from its present
value of zero), no change in f results, and there are multiple optima. It is possible,
however, that the variable may not be allowed by the constraints to become positive;
this may occur in the case of degenerate solutions. Thus as a corollary to the discussion
above, we can state that a basic feasible solution is the unique optimal feasible solution
if c}’ > 0 for all nonbasic variables x;, j =m+1,m +2,...,n. If, after testing for
optimality, the current basic feasible solution is found to be nonoptimal, an improved
basic solution is obtained from the present canonical form as follows.

3.9.2 Improving a Nonoptimal Basic Feasible Solution

From the last row of Egs. (3.21), we can write the objective function as

m n
f=r+ Zc;’xi + Z cix;
i=1 j=m+1 (3.25)
"

= f, for the solution given by Egs. (3.22)

If at least one c’Jf is negative, the value of f can be reduced by making the corresponding
xj > 0. In other words, the nonbasic variable x;, for which the cost coefficient ¢’ is
negative, is to be made a basic variable in order to reduce the value of the objective
function. At the same time, due to the pivotal operation, one of the current basic
variables will become nonbasic and hence the values of the new basic variables are to be
adjusted in order to bring the value of f less than fg. If there are more than one ¢/ < 0,
the index s of the nonbasic variable x; which is to be made basic is chosen such that

¢, = minimum c;.’ <0 (3.26)

Although this may not lead to the greatest possible decrease in f (since it may not be
possible to increase x; very far), this is intuitively at least a good rule for choosing the
variable to become basic. It is the one generally used in practice because it is simple
and it usually leads to fewer iterations than just choosing any c/Jf < 0. If there is a
tie-in applying Eq. (3.26), (i.e., if more than one ¢’ has the same minimum value),
we select one of them arbitrarily as c}.

Having decided on the variable x; to become basic, we increase it from zero,
holding all other nonbasic variables zero, and observe the effect on the current basic
variables. From Egs. (3.21), we can obtain

x1 =b] —ajxs, b =0

x2 =b) —ayxg, by >0 (3.27)
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Xm =b) —a, x5, b >0
f=fl+cx, ¢ <0 (3.28)

Since ¢ < 0, Eq. (3.28) suggests that the value of x; should be made as large as
possible in order to reduce the value of f as much as possible. However, in the process

of increasing the value of x;, some of the variables x;(i = 1,2, ..., m) in Egs. (3.27)
may become negative. It can be seen that if all the coefficients a;’s <0,i=12,...,m,
then x; can be made infinitely large without making any x; <0, i =1,2,...,m. In

such a case, the minimum value of f is minus infinity and the linear programming
problem is said to have an unbounded solution.

On the other hand, if at least one alf/s is positive, the maximum value that x; can
take without making x; negative is b!/al. If there are more than one a, >0, the
largest value x; that x; can take is given by the minimum of the ratios b;/a’; for
which g/ > 0. Thus

b// {/
X; = —- = minimum <%> (3.29)
"
a. a; > 0 is

The choice of r in the case of a tie, assuming that all b! > 0, is arbitrary. If any b
for which g/, > 0 is zero in Eqs. (3.27), x; cannot be increased by any amount. Such
a solution is called a degenerate solution.

In the case of a nondegenerate basic feasible solution, a new basic feasible solu-
tion can be constructed with a lower value of the objective function as follows. By
substituting the value of x; given by Eq. (3.29) into Egs. (3.27) and (3.28), we obtain

Xy =X
xi=b—a'x’>0, i=1,2,....m and i#r (3.30)
xr =0

xj=0, j=m+1,m+2,...,n and j#s
f=f6’+c;’x;k§ (;’ (3.31)

which can readily be seen to be a feasible solution different from the previous one.
Since a;; > 0 in Eq. (3.29), a single pivot operation on the element @, in the system
of Egs. (3.21) will lead to a new canonical form from which the basic feasible solution
of Egs. (3.30) can easily be deduced. Also, Eq. (3.31) shows that this basic feasible
solution corresponds to a lower objective function value compared to that of Egs. (3.22).
This basic feasible solution can again be tested for optimality by seeing whether all
¢/ >0 in the new canonical form. If the solution is not optimal, the entire procedure
of moving to another basic feasible solution from the present one has to be repeated.
In the simplex algorithm, this procedure is repeated in an iterative manner until the
algorithm finds either (1) a class of feasible solutions for which f — —oo or (2) an
optimal basic feasible solution with all c;’ >0,i=1,2,...,n. Since there are only
a finite number of ways to choose a set of m basic variables out of n variables, the
iterative process of the simplex algorithm will terminate in a finite number of cycles.
The iterative process of the simplex algorithm is shown as a flowchart in Fig. 3.14.
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Example 3.4
Maximize F = x| + 2x + X3

subject to
2x1+xp —x3 <2
—2x1+xp —5x3 > —6
dx1 +x2+x3 <6

x>0, i=1,2,3
SOLUTION We first change the sign of the objective function to convert it to a
minimization problem and the signs of the inequalities (where necessary) so as to

obtain nonnegative values of b; (to see whether an initial basic feasible solution can
be obtained readily). The resulting problem can be stated as

Minimize f = —x; — 2xp — X3
subject to
2
6

2x1 + xp — x3

IA

2x1 — X2 + 5x3

IA

dxi+x+x3 < 6
x;i>0, i=1to3

By introducing the slack variables x4 > 0, x5 > 0, and x¢ > 0, the system of equations
can be stated in canonical form as

2x1 + x — x3 + x4 =2
2x1 — X + S5x3 + x5 =6
(E1)
dx; + x2 + x3 + xg =6
—X1 — 2x — X3 —f =0

where x4, x5, X6, and — f can be treated as basic variables. The basic solution corre-
sponding to Egs. (E;) is given by

x4 =2, x5=06, x¢=06 (basic variables)
X1 =xp = x3 =0 (nonbasic variables) (Ey)
F=0

which can be seen to be feasible.

Since the cost coefficients corresponding to nonbasic variables in Eqs. (E;) are
negative (c{ = —1, ¢j = =2, ¢ = —1), the present solution given by Egs. (E;) is not
optimum. To improve the present basic feasible solution, we first decide the variable
(x5) to be brought into the basis as

"o " o
¢ =min(c; <0) =c¢, = -2
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Thus x, enters the next basic set. To obtain the new canonical form, we select the pivot
element a;; such that

b// ) b//

— = min | —-

a;/s aj >0 \d;g

In the present case, s = 2 and af, and a, are > 0. Since b{/a{, =2/1 and b /a%, =
6/1, x, = x;. By pivoting an a,, the new system of equations can be obtained as

2x1 + 1xo — x3 4 x4 =2
dxy 4+ 0xp +4x3 4+ x4 + x5 =8
2x1 4 0xp 4+ 2x3 — x4 + X6 =4 (Es)
3x1 4+ 0xp — 3x3 + 2x4 —f =4
The basic feasible solution corresponding to this canonical form is
X2 =2, x5=8, x¢=4 (basic variables)
x1 =x3 = x4 =0 (nonbasic variables) (Es)
f=-4
Since ¢ = —3, the present solution is not optimum. As ¢} = min(c; < 0) = ¢}, x; = x3

enters the next basis.
To find the pivot element 4, we find the ratios b} /a; for a;, > 0. In Eqgs. (E3),

rs?
only ay; and aj; are > 0, and hence

by 8 by 4
g =a ™y
23 33

Since both these ratios are same, we arbitrarily select a’; as the pivot element. Pivoting
on aj, gives the following canonical system of equations:

3x1 + Lxa + 0x3 + 2x4 + x5 =4
Ix; 4+ Oxy + 1x3 + %x4—|— %xs =2 -
Ox1+0x2+0x3—%x4—%x5+x6 =0 (F)
6x1 4 0xz + Ox3 + Ly + 2x5 — f = 10
The basic feasible solution corresponding to this canonical system is given by
xo» =4, x3=2, x¢=0 (basic variables)
x1 = x4 = x5 = 0 (nonbasic variables) (Ee)

f=-10

Since all cl’.’ are > 0 in the present canonical form, the solution given in (Eg) will be
optimum. Usually, starting with Egs. (E;), all the computations are done in a tableau
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form as shown below:

Basic Variables b} /a, for
variables X X X3 X4 X5 xs —f b} al >0
x4 2 -1 1 0 0 0 2 2< Smallerone
Pivot (x4 drops from
element next basis)
X5 2 -1 5 0 1 0 0 6
X6 4 1 1 0 0 1 0 6 6
—f —1 -2 —1 0 0 0 1 0
T

Most negative ¢/ (x; enters next basis)

Result of pivoting:

X2 2 1 -1 1 0 0 o0
X5 4 0 1 1 0 o0 8 2 (Select this
Pivot arbitrarily. xs
element drops from next
basis)
X6 2 0 2 -1 0 1 0 4 2
—f 3 0 -3 2 0 0 1 4
T

Most negative ¢/ (x3 enters the next basis)

Result of pivoting:

X 3 1 0 2 1 0 0 4
X3 1 0 1 : 10 0 2
X6 0 0 o -3 -1 1 0 o0
—f 6 0 0 4 20 1 10

All ¢! are > 0 and hence the present solution is optimum.

Example 3.5 Unbounded Solution
Minimize f = —3x; — 2x»
subject to

X1 —x <1
3x1 —2x2 <6

x1>20, x>0
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SOLUTION Introducing the slack variables x3 > 0 and x4 > 0, the given system of
equations can be written in canonical form as

Xp — X2 + X3 =1
3x; — 2x, + x4 =6 (ED
—3x1 — 2x, —f =0

The basic feasible solution corresponding to this canonical form is given by
x3=1, x4 =06 (basic variables)
x; = xp» =0 (nonbasic variables) (Ep)
f=0

Since the cost coefficients corresponding to the nonbasic variables are negative, the
solution given by Eq. (E») is not optimum. Hence the simplex procedure is applied to

the canonical system of Eqgs. (E;) starting from the solution, Egs. (E»). The computa-
tions are done in tableau form as shown below:

Basic Variables b!/al; for
variables X X2 X3 X4 -f b} aj; >0
x3 -1 1 0 0 I 1 < Smaller value
Pivot (x3 leaves the
element basis)
X4 3 -2 0 1 0 6 2
—f -3 -2 0 0 1 0

T

Most negative ¢/ (x; enters the next basis)

Result of pivoting:

X1 1 -1 1 0 0
X4 0 -3 10 3 3 (x4 leaves the
Pivot basis)
element
—f 0 -5 3 0 1 3
T

Most negative ¢!’ (x, enters the next basis)

Result of pivoting:

X 1 0 -2 1 0 4 Both a, are
negative (i.e.,
no variable
leaves the basis)

X2 0 1 -3 1 0 3
—f 0 0 —12 5 1 18
T

Most negative ¢} (x3 enters the basis)
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At this stage we notice that x3 has the most negative cost coefficient and hence
it should be brought into the next basis. However, since all the coefficients a; are
negative, the value of f can be decreased indefinitely without violating any of the
constraints if we bring x3 into the basis. Hence the problem has no bounded solution.
In general, if all the coefficients of the entering variable x,(a;;) have negative or
zero values at any iteration, we can conclude that the problem has an unbounded
solution.

Example 3.6 Infinite Number of Solutions To demonstrate how a problem having
infinite number of solutions can be solved, Example 3.2 is again considered with a
modified objective function:

Minimize f = —40x;—100x,
subject to

10x1 + 5x < 2500
4x1 4 10x, <2000
2x1 + 3x2 <900

x1>20, x>0

SOLUTION By adding the slack variables x3 > 0, x4 > 0 and x5 > 0, the equations
can be written in canonical form as follows:

10x; 4+ 5x3 + x3 = 2500
4x1 + 10x, + x4 = 2000
2x1 + 3x2 + x5 = 900

—40x; — 100x, —f=0

The computations can be done in tableau form as shown below:

Basic Variables
variables X1 X2 X3 X4 X5 -f by b!/aj; for aji >0

X3 10 5 1 0 0 0 2,500 500

x4 4 0 1 0 0 2000 200 < Smaller value
Pivot (x4 leaves the

element basis)
X5 2 3 0 0 1 0 900 300
—f —40 —100 0 0 0 1 0

T

Most negative ¢ (x; enters the basis)
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Result of pivoting:

X3 8 0 1 -1 0 1,500
4 1

X = 1 0 & 0 200

xs 3 0 0 -3 0 300

~f 0 0 0 10 0 1 20,000

Since all ¢/ >0, the present solution is optimum. The optimum values are
given by

xp =200, x3 =1500, x5=2300 (basic variables)
x1 = x4 =0 (nonbasic variables)

Fmin = —20,000

Important note: It can be observed from the last row of the preceding tableau that
the cost coefficient corresponding to the nonbasic variable x;(c}) is zero. This is an
indication that an alternative solution exists. Here x; can be brought into the basis and
the resulting new solution will also be an optimal basic feasible solution. For example,
introducing x; into the basis in place of x3 (i.e., by pivoting on af;), we obtain the
new canonical system of equations as shown in the following tableau:

Basic Variables b/ /a!. for
variables X1 X2 X3 X4 X5 —f by ! >0
X1 1 0 % _ % 0 158ﬂ
2 0 1 - 3 0 125
s 0 0 -m -3 0 150
—-f 0 0 0 10 0 1 20,000

The solution corresponding to this canonical form is given by

X = %, x; =125, x5 =150 (basic variables)

x3 = x4 =0 (nonbasic variables)
fmin = —20,000

Thus the value of f has not changed compared to the preceding value since x; has a
zero cost coefficient in the last row of the preceding tableau. Once two basic (optimal)
feasible solutions, namely,

0 1500
8
200 125
X, = ¢ 1500 and X, = 0
0 0
300 150




150 Linear Programming I: Simplex Method

are known, an infinite number of nonbasic (optimal) feasible solutions can be obtained
by taking any weighted average of the two solutions as

X=X+ 1 -0X,

x (1= )5 (1= 25"
x4 2001 + (1 —1)125 125 4+ 751
X'=1x3¢= 15001 = 15001
xy 0 0
xi 3004 + (1 —A)150 150 + 1501
0<iac<l

It can be verified that the solution X* will always give the same value of —20,000 for
fforall0 <A <.

3.10 TWO PHASES OF THE SIMPLEX METHOD

The problem is to find nonnegative values for the variables xi, x», ..., x, that satisfy
the equations

aixy +apxy + -+ apx, = b

a1 X1 +anxy + -+ apux, = by

(3.32)
A1 X + QX2 + - - + AunXy = by,
and minimize the objective function given by
cxi+exa+ - opx, = f (3.33)

The general problems encountered in solving this problem are

1. An initial feasible canonical form may not be readily available. This is the case
when the linear programming problem does not have slack variables for some
of the equations or when the slack variables have negative coefficients.

2. The problem may have redundancies and/or inconsistencies, and may not be
solvable in nonnegative numbers.

The two-phase simplex method can be used to solve the problem.

Phase I of the simplex method uses the simplex algorithm itself to find whether
the linear programming problem has a feasible solution. If a feasible solution exists,
it provides a basic feasible solution in canonical form ready to initiate phase II of the
method. Phase II, in turn, uses the simplex algorithm to find whether the problem has
a bounded optimum. If a bounded optimum exists, it finds the basic feasible solution
that is optimal. The simplex method is described in the following steps.
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1. Arrange the original system of Eqs. (3.32) so that all constant terms b; are
positive or zero by changing, where necessary, the signs on both sides of any
of the equations.

2. Introduce to this system a set of artificial variables y;, y2, ..., ¥, (Which serve
as basic variables in phase I), where each y; > 0, so that it becomes
anxy +apxy + -+ apx, +y = b
az1xy +anxy + - -+ az X, +n = b
(3.34)
A1 X1 + QuaXy + -+ GupXp + Ym = bm
b; >0

Note that in Egs. (3.34), for a particular i, the a;;’s and the b; may be the
negative of what they were in Eq. (3.32) because of step 1.
The objective function of Eq. (3.33) can be written as

cxi+exa+ - Fex,+(—=f)=0 (3.35)

3. Phase I of the method. Define a quantity w as the sum of the artificial variables

w=yi+y2+-+In (3.36)

and use the simplex algorithm to find x;, >0 (i =1,2,...,n)and y; >0 (i =
1,2, ..., m) which minimize w and satisfy Egs. (3.34) and (3.35). Consequently,
consider the array

anxy +apxy + -+ awmXs + y1 = b
anxy + anxy + -+ + dan Xy +» = b
(3.37)
am1 X1 + ApaXo + -+ + Apn Xy + Ym = by,
c1x1 +caxa + -+ CuXy +(=f) =0
Vi+ty2+ oy, +(—w) =0

This array is not in canonical form; however, it can be rewritten as a canonical
system with basic variables yi, y2, ..., Y, —f, and —w by subtracting the sum
of the first m equations from the last to obtain the new system

anxi +apxy + -+ apx, + = b
ax (X1 +anxy + - -+ ayx, + = b
(3.38)
A1 X1 + X + -+ AupXp + Vm = by
c1x1 + caxo + - 4 cpxy +(=f) =0

dixi +doxy + - -+ + dpxy +(—w) = —wo
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where

di=—(ay+an+ - +ap), i=12,....n (3.39)
—wo=—(b;+by+---+byp) (3.40)

Equations (3.38) provide the initial basic feasible solution that is necessary for
starting phase I.

4. In Eq. (3.37), the expression of w, in terms of the artificial variables
Y1, Y2, ---, Ym 18 known as the infeasibility form. w has the property that if
as a result of phase I, with a minimum of w > 0, no feasible solution exists
for the original linear programming problem stated in Egs. (3.32) and (3.33),
and thus the procedure is terminated. On the other hand, if the minimum of
w = 0, the resulting array will be in canonical form and hence initiate phase
II by eliminating the w equation as well as the columns corresponding to each
of the artificial variables yi, ys, ..., y,, from the array.

5. Phase II of the method. Apply the simplex algorithm to the adjusted canonical
system at the end of phase I to obtain a solution, if a finite one exists, which
optimizes the value of f.

The flowchart for the two-phase simplex method is given in Fig. 3.15.

Example 3.7
Minimize f = 2x; + 3xy + 2x3—x4 + X5

subject to the constraints

3x;1 —3xp+4x3+2x4 —x5=0
X1+ x4+ x3+3x4+x5=2
x>0, i=1to5

SOLUTION

Step 1 As the constants on the right-hand side of the constraints are already nonneg-
ative, the application of step 1 is unnecessary.

Step 2 Introducing the artificial variables y; > 0 and y, > 0, the equations can be
written as follows:

3x1 — 3x0 +4x3 + 2x4 — X5 + ¥ =0
X1+ x2 + x3 4+ 3x4 + x5 + =2 (Ey)
2x1 + 3x7 4+ 2x3 — x4 + X5 —f =0

Step 3 By defining the infeasibility form w as

w=y +y
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Figure 3.15 Flowchart for the two-phase simplex method.
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From block C
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Figure 3.15 (continued)

the complete array of equations can be written as

3x1 —3x2 +4x3 4+ 2x4 — x5 + 1

X1+ x2 +x3 + 3x4 + x5 +

2x1 4 3x2 + 2x3 — x4 + X5

Nty—w =

f:

S O O

(E2)
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This array can be rewritten as a canonical system with basic variables as yj,
2, —f, and —w by subtracting the sum of the first two equations of (E;) from
the last equation of (E;). Thus the last equation of (E;) becomes

—4x; 4+ 2xp — 5x3 — S5x4 + Ox5 —w = =2 (E3)

Since this canonical system [first three equations of (E,), and (E3)] provides
an initial basic feasible solution, phase I of the simplex method can be started.
The phase I computations are shown below in tableau form.

Artificial Value of
Basic Admissible variables variables b} /al; for
variables  x X2 X3 X4 X5 i oy b al, >0
Vi 3 -3 4 2 —1 1 0 0 O <« Smaller value
Pivot (y1 drops from
element next basis)
2
V2 1 1 1 3 1 0 1 2 3
—f 2 3 2 —1 1 0 o0 0
—w —4 2 -5 -5 0 0o 0 -2
t 0

Most negative

Since there is a tie between dj and dj, dj is selected arbitrarily as the most
negative d;’ for pivoting (x4 enters the next basis).
Result of pivoting:

3 3 1 1
2 —% 71 -5 0 % —% 1 2 ﬁ <y drops
Pivot from next
element basis
7 3 1 1
—f 3 3 4 0 3 5 0 0
7 11 5 5
T
Most negative d; (x enters next basis)
Result of pivoting (since y; and y, are dropped from basis, the columns cor-
responding to them need not be filled):
X4 % 0 % 1 % Dropped % g
7 10 5 4 4
x2 i I -0 0 il T3
98 118 4 6
-f n 0 n 0 -z 1
—w 0 0 0 0 0
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Step 4 At this stage we notice that the present basic feasible solution does not contain
any of the artificial variables y; and y,, and also the value of w is reduced to
0. This indicates that phase I is completed.

Step 5 Now we start phase II computations by dropping the w row from further
consideration. The results of phase II are again shown in tableau form:

i igi i 7 "
Basic Original variables Constant Value of b/ /a; for
variables X1 X2 X3 x4 x5 b >0
6 7 2 6 6
X4 I 0 i 1 T & §
2 —T 1 ~1r 0 + % < Smaller value
Pivot (x drops from
element next basis)
98 118 4 6
—f > 0 55 0 - S

Most negative ¢} (x5 enters next basis)

Result of pivoting:

X4 i -2 1 1 0 z
R T SR :
3 3 s o 0

Now, since all ¢/’ are nonnegative, phase II is completed. The (unique) optimal
solution is given by

x1 =xp =x3 =0 (nonbasic variables)
=2 =% (basic variabl
x4 =5, xs5=73 (basic variables)
2
fmln - g

3.11 MATLAB SOLUTION OF LP PROBLEMS

The solution of linear programming problems, using simplex method, can be found as
illustrated by the following example.

Example 3.8 Find the solution of the following linear programming problem using
MATLAB (simplex method):

Minimize f = —x; — 2x — x3
subject to
2x1+xp —x3 <2

2x1 —x2 +5x3 <6
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dx;1+x3+x3 <6
x>0, i=1,2,3

SOLUTION
Step 1 Express the objective function in the form f(x) = f7x and identify the vectors
x and f as
X1 —1
X = 1{Xx2 and f=4{-2
X3 —1

Express the constraints in the form Ax < b and identify the matrix A and the

vector b as
2 1 —1 2
A=1|2 -1 5 and b=16
4 1 1 6

Step 2 Use the command for executing linear programming program using simplex
method as indicated below:

clc
clear all
t=[-1;-2;-11;

A=[2 1 - 1;
2 -1 5;
4 1 17;
b=[2;6;61;
lb=zeros (3,1);
Aeg=[];
beg=[1];
options = optimset ('LargeScale', 'off', 'Simplex', 'on');

[x,fval,exitflag,output] = linprog(f,A,b,Aeq,beqg,1b,[]1,[1],
optimset ('Display', 'iter'))

This produces the solution or output as follows:

Optimization terminated.
x=
0
4
2
fval =
-10
exitflag =
1
output =
iterations:3
algorithm: 'medium scale: simplex'
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cgiterations: []
message: 'Optimization terminated.'
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REVIEW QUESTIONS
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3.2
3.3
34
35
3.6
3.7

Define a line segment in n-dimensional space.

What happens when m = n in a (standard) LP problem?

How many basic solutions can an LP problem have?

State an LP problem in standard form.

State four applications of linear programming.

Why is linear programming important in several types of industries?

Define the following terms: point, hyperplane, convex set, extreme point.
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What is a basis?

What is a pivot operation?

What is the difference between a convex polyhedron and a convex polytope?
What is a basic degenerate solution?

What is the difference between the simplex algorithm and the simplex method?
How do you identify the optimum solution in the simplex method?

Define the infeasibility form.

What is the difference between a slack and a surplus variable?

Can a slack variable be part of the basis at the optimum solution of an LP problem?
Can an artificial variable be in the basis at the optimum point of an LP problem?
How do you detect an unbounded solution in the simplex procedure?

How do you identify the presence of multiple optima in the simplex method?
What is a canonical form?

Answer true or false:

(a) The feasible region of an LP problem is always bounded.

(b) An LP problem will have infinite solutions whenever a constraint is redundant.
(¢) The optimum solution of an LP problem always lies at a vertex.

(d) A linear function is always convex.

(e) The feasible space of some LP problems can be nonconvex.

(f) The variables must be nonnegative in a standard LP problem.

(g) The optimal solution of an LP problem can be called the optimal basic solution.

(h) Every basic solution represents an extreme point of the convex set of feasible solu-
tions.

(i) We can generate all the basic solutions of an LP problem using pivot operations.

(j) The simplex algorithm permits us to move from one basic solution to another basic
solution.

(k) The slack and surplus variables can be unrestricted in sign.
(I) An LP problem will have an infinite number of feasible solutions.
(m) An LP problem will have an infinite number of basic feasible solutions.

(n) The right-hand-side constants can assume negative values during the simplex proce-
dure.

(o) All the right-hand-side constants can be zero in an LP problem.

(p) The cost coefficient corresponding to a nonbasic variable can be positive in a basic
feasible solution.

(q) If all elements in the pivot column are negative, the LP problem will not have a
feasible solution.

(r) A basic degenerate solution can have negative values for some of the variables.

(s) If a greater-than or equal-to type of constraint is active at the optimum point, the
corresponding surplus variable must have a positive value.

(t) A pivot operation brings a nonbasic variable into the basis.
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(u) The optimum solution of an LP problem cannot contain slack variables in the basis.

(v) If the infeasibility form has a nonzero value at the end of phase I, it indicates an
unbounded solution to the LP problem.

(w) The solution of an LP problem can be a local optimum.
(x) In a standard LP problem, all the cost coefficients will be positive.
(y) In a standard LP problem, all the right-hand-side constants will be positive.

(z) In a LP problem, the number of inequality constraints cannot exceed the number of
variables.

(aa) A basic feasible solution cannot have zero value for any of the variables.

PROBLEMS
3.1 State the following LP problem in standard form:
Maximize f = —2x; — x3 + 5x3
subject to
xp—2x+x3 <8
3x; —2xp > —18
2x1 +x —2x3 < —4

3.2 State the following LP problem in standard form:
Maximize f = x; — 8x2

subject to
6

9x1 +7xy < 108
2x1 —5xp > =35

3x1 4+ 2xp

%

A

X1, X7 unrestricted in sign

3.3 Solve the following system of equations using pivot operations:
6x1 — 2xy + 3x3 =11
dxy +Txo +x3 =21
S5x1+ 8xy +9x3 =48

3.4 It is proposed to build a reservoir of capacity x; to better control the supply of water to
an irrigation district [3.15, 3.17]. The inflow to the reservoir is expected to be 4.5 x 10°
acre-ft during the wet (rainy) season and 1.1 x 10°% acre-ft during the dry (summer)
season. Between the reservoir and the irrigation district, one stream (A) adds water to
and another stream (B) carries water away from the main stream, as shown in Fig. 3.16.
Stream A adds 1.2 x 10° and 0.3 x 10° acre-ft of water during the wet and dry seasons,
respectively. Stream B takes away 0.5 x 10° and 0.2 x 10° acre-ft of water during the
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Inflow to reservoir
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: H (Water received: x,)
1
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1
)

Figure 3.16 Reservoir in an irrigation district.
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wet and dry seasons, respectively. Of the total amount of water released to the irrigation
district per year (x;), 30% is to be released during the wet season and 70% during the
dry season. The yearly cost of diverting the required amount of water from the main
stream to the irrigation district is given by 18(0.3x2) + 12(0.7x2). The cost of building
and maintaining the reservoir, reduced to an yearly basis, is given by 25x;. Determine

the values of x| and x, to minimize the total yearly cost.

3.5 Solve the following system of equations using pivot operations:

dxy — Txp + 2x3 = —8
3x; +4xy — Sx3 = —8
S5x1+xp —8x3 = —34
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3.6

3.7

3.8

3.9

What elementary operations can be used to transform
2x1+x2+x3=9
X1+x0+x3=06
2x1+3x 4+ x3 =13
into
x1 =3
xo =2
X1+ 3x2 +x3 =10
Find the solution of this system by reducing into canonical form.
Find the solution of the following LP problem graphically:
Maximize f = 2x; + 6x;
subject to
—x1+x <1
2x1+x <2

x120, x>0

Find the solution of the following LP problem graphically:
Minimize f = —3x; + 2x;
subject to
0<x <4
1<x<6

X1 +x2 <5

Find the solution of the following LP problem graphically:
Minimize f = 3x; + 2x;
subject to
8x1 +x2 > 8
2x1+x > 6
X1 +3x2>6
X1 +6xy >8

x1>20, x>0



3.10

3.11

3.12

3.13
3.14

3.15
3.16

Problems

Find the solution of the following problem by the graphical method:

Minimize f = x7x3
subject to
xix3 > el
xixy = et
xlx3 <e
x1>0, x>0

where e is the base of natural logarithms.

Prove Theorem 3.6.

163

For Problems 3.12 to 3.42, use a graphical procedure to identify (a) the feasible region,
(b) the region where the slack (or surplus) variables are zero, and (c) the optimum

solution.
Maximize f = 6x + 7y
subject to
Tx +6y <42
S5x +9y <45
x—y<4
x>0, y=>0

Rework Problem 3.12 when x and y are unrestricted in sign.
Maximize f = 19x + 7y
subject to
Tx +6y <42
S5x +9y <45
x—y<4

x>0, y>0

Rework Problem 3.14 when x and y are unrestricted in sign.
Maximize f = x + 2y
subject to
x—y>-8
Sx —y>0
x+y=>38
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—x 46y >12
S5x +2y <68
x <10

x>0, y=>0

3.17 Rework Problem 3.16 by changing the objective to Minimize f =x — y.
3.18 Maximize f = x + 2y
subject to
x—y>-8
Sx —y>0
x+y>38
—x 46y >12
S5x +2y > 68
x <10

x>0, y>0

3.19 Rework Problem 3.18 by changing the objective to Minimize f = x — y.
3.20 Maximize f = x + 3y

subject to

—4x +3y <12
x+y=<7
x—4y <2

x>0, y=0

3.21 Minimize f = x + 3y
subject to

—4x +3y <12
x+y=<7
x—4y <2

x and y are unrestricted in sign

3.22 Rework Problem 3.20 by changing the objective to Maximize f = x + y.
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3.23 Maximize f = x + 3y
subject to

—4x +3y <12
x+y<7
x—4y>2

x>0, y>0

3.24 Minimize f = x — 8y
subject to

3x4+2y>6
x—y<6
9x + 7y <108
3x+7y <70
2x — 5y > =35
x>0, y =0

3.25 Rework Problem 3.24 by changing the objective to Maximize f = x — 8y.
3.26 Maximize f = x — 8y

subject to

3x4+2y>6
x—y<6
9x +7y < 108
3x+7y <70
2x — 5y > =35

x >0, y is unrestricted in sign

3.27 Maximize f = 5x — 2y
subject to

3x+2y>6
x—y<6

165
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9x + 7y <108

3x+7y <70

2x — 5y > =35
x>0, y=0

3.28 Minimize f =x —4y

subject to

x—y>—4

4x + 5y <45
Sx —2y <20
S5x 4+2y <10
x>0, y=0

3.29 Maximize f = x — 4y

subject to

x—y>—-4
4x + 5y <45
Sx —2y <20
Sx +2y > 10

x >0, y is unrestricted in sign

3.30 Minimize f = x—4y

subject to

x—y>—4

4x +5y <45
Sx —2y <20
Sx+2y>10
x>0, y=0

3.31 Rework Problem 3.30 by changing the objective to Maximize f = x — 4y.
3.32 Minimize f = 4x + S5y
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subject to
10x +y > 10
Sx +4y > 20
3x+7y>21
x4+ 12y > 12
x>0, y=0

3.33 Rework Problem 3.32 by changing the objective to Maximize f = 4x + 5y.
3.34 Rework Problem 3.32 by changing the objective to Minimize f = 6x + 2y.
3.35 Minimize f = 6x + 2y

subject to

10x +y > 10
Sx +4y >20
3x +7y > 21
x+ 12y > 12

x and y are unrestricted in sign

3.36 Minimize f = 5x + 2y
subject to

3x +4y <24
x—y<3
x+4y >4
3x+y>3
x>0, y =0

3.37 Rework Problem 3.36 by changing the objective to Maximize f = 5x + 2y.
3.38 Rework Problem 3.36 when x is unrestricted in sign and y > 0.

3.39 Maximize f = 5x + 2y



168 Linear Programming I: Simplex Method

3.40

341
3.42

3.43

subject to
3x +4y <24
x—y<3
x+4y <4
3x+y>3
x>0, y=0

Maximize f = 3x + 2y
subject to
9x + 10y < 330
21x —4y > =36
x+2y>6
6x —y <72
3x+y <54

x>0, y =20

Rework Problem 3.40 by changing the constraint x + 2y > 6 to x + 2y < 6.
Maximize f = 3x 42y
subject to
9x + 10y < 330
21x —4y > —36
x+2y<6
6x —y <72
3x+y>54
x>0, y >0

Maximize f = 3x 42y
subject to
21x —4y > —36
x+2y>6
6x —y <72
x>0, y >0



3.44

345

3.46

3.47

Problems 169

Reduce the system of equations
2x1 +3x0 —2x3 — Txqg =2
X1+ x2—x3+3x4 =12
X —Xx2+x3+5x4 =28

into a canonical system with x;, x,, and x3 as basic variables. From this derive all other
canonical forms.

Maximize f = 240x; + 104x; + 60x3 + 19x4
subject to
20x1 + 9x7 + 6x3 + x4 < 20
10x1 + 4xp + 2x3 + x4 < 10
xi>0, i=1to4
Find all the basic feasible solutions of the problem and identify the optimal solution.

A progressive university has decided to keep its library open round the clock and gathered
that the following number of attendants are required to reshelve the books:

Time of day Minimum number of

(hours) attendants required
0-4 4
4-8 7
8§-12 8

12-16 9

16-20 14

20-24 3

If each attendant works eight consecutive hours per day, formulate the problem of finding
the minimum number of attendants necessary to satisfy the requirements above as a LP
problem.

A paper mill received an order for the supply of paper rolls of widths and lengths as
indicated below:

Number of rolls Width of roll Length
ordered (m) (m)
1 6 100
1 8 300
1 9 200

The mill produces rolls only in two standard widths, 10 and 20 m. The mill cuts the
standard rolls to size to meet the specifications of the orders. Assuming that there is no
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3.48

3.49
3.50
3.51

3.52

3.53

limit on the lengths of the standard rolls, find the cutting pattern that minimizes the trim
losses while satisfying the order above.

Solve the LP problem stated in Example 1.6 for the following data: [ =2 m,
Wi =3000 N, W, = 2000 N, W3 = 1000 N, and w; = wy = w3 = 200 N.

Find the solution of Problem 1.1 using the simplex method.
Find the solution of Problem 1.15 using the simplex method.

Find the solution of Example 3.1 using (a) the graphical method and (b) the simplex
method.

In the scaffolding system shown in Fig. 3.17, loads x; and x, are applied on beams 2 and
3, respectively. Ropes A and B can carry a load of W; = 300 Ib each; the middle ropes,
C and D, can withstand a load of W, =200 Ib each, and ropes E and F are capable
of supporting a load W3 = 100 1b each. Formulate the problem of finding the loads x;
and x; and their location parameters x3 and x4 to maximize the total load carried by the
system, x| + x2, by assuming that the beams and ropes are weightless.

A manufacturer produces three machine parts, A, B, and C. The raw material costs
of parts A, B, and C are $5, $10, and $15 per unit, and the corresponding prices of
the finished parts are $50, $75, and $100 per unit. Part A requires turning and drilling
operations, while part B needs milling and drilling operations. Part C requires turning
and milling operations. The number of parts that can be produced on various machines
per day and the daily costs of running the machines are given below:

Number of parts that can be produced on

Machine part Turning lathes Drilling machines Milling machines

A

c

15 15
20 30
25 10

Cost of running the
machines per day $250 $200 $300

Formulate the problem of maximizing the profit.

77 77 77
A B
12 ft
Beam 1
|<—> c *1
2 ft D
10 -x4 x4
Beam 2
I<—> E X2 F
2 ft 8-x3 x3
Beam 3

Figure 3.17 Scaffolding system with three beams.
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3.55
3.56
3.57
3.58
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3.63
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3.78
3.79
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Problem 1.22
Problem 1.23
Problem 1.24
Problem 1.25
Problem 3.7

Problem 3.12
Problem 3.13
Problem 3.14
Problem 3.15
Problem 3.16
Problem 3.17
Problem 3.18
Problem 3.19
Problem 3.20
Problem 3.21
Problem 3.22
Problem 3.23
Problem 3.24
Problem 3.25
Problem 3.26
Problem 3.27
Problem 3.28
Problem 3.29
Problem 3.30
Problem 3.31
Problem 3.32
Problem 3.33
Problem 3.34
Problem 3.35
Problem 3.36
Problem 3.37

Problems
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3.85
3.86
3.87
3.88
3.89
3.90
391

Problem 3.38
Problem 3.39
Problem 3.40
Problem 3.41
Problem 3.42
Problem 3.43

The temperatures measured at various points inside a heated wall are given below:

Distance from the heated surface as a
percentage of wall thickness, x; 0 20 40 60 80 100

Temperature, t; (°C) 400 350 250 175 100 50

3.92

3.93

It is decided to use a linear model to approximate the measured values as
t=a+bx (1)

where 7 is the temperature, x the percentage of wall thickness, and a and b the coefficients
that are to be estimated. Obtain the best estimates of a and b using linear programming
with the following objectives.

(a) Minimize the sum of absolute deviations between the measured values and those
given by Eq. (1): X¥;la + bx; — t;|.
(b) Minimize the maximum absolute deviation between the measured values and those
given by Eq. (1):
Max |a + bx; — t;|
1

A snack food manufacturer markets two kinds of mixed nuts, labeled A and B. Mixed
nuts A contain 20% almonds, 10% cashew nuts, 15% walnuts, and 55% peanuts. Mixed
nuts B contain 10% almonds, 20% cashew nuts, 25% walnuts, and 45% peanuts. A
customer wants to use mixed nuts A and B to prepare a new mix that contains at least
41b of almonds, 5 1b of cashew nuts, and 6 1b of walnuts, for a party. If mixed nuts A
and B cost $2.50 and $3.00 per pound, respectively, determine the amounts of mixed
nuts A and B to be used to prepare the new mix at a minimum cost.

A company produces three types of bearings, Bj, B, and Bz, on two machines, A
and A,. The processing times of the bearings on the two machines are indicated in the
following table:

Processing time (min) for bearing:
Machine B B> B3

A 10 6 12
A 8 4 4
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The times available on machines A; and A, per day are 1200 and 1000 minutes, respec-
tively. The profits per unit of By, By, and B3 are $4, $2, and $3, respectively. The
maximum number of units the company can sell are 500, 400, and 600 for By, B,, and
B3, respectively. Formulate and solve the problem for maximizing the profit.

3.94 Two types of printed circuit boards A and B are produced in a computer manufacturing
company. The component placement time, soldering time, and inspection time required
in producing each unit of A and B are given below:

Time required per unit (min) for:

Circuit board Component placement Soldering Inspection
A 16 10 4
B 10 12 8

If the amounts of time available per day for component placement, soldering, and inspec-
tion are 1500, 1000, and 500 person-minutes, respectively, determine the number of units
of A and B to be produced for maximizing the production. If each unit of A and B
contributes a profit of $10 and $15, respectively, determine the number of units of A
and B to be produced for maximizing the profit.

3.95 A paper mill produces paper rolls in two standard widths; one with width 20in. and
the other with width 50in. It is desired to produce new rolls with different widths as
indicated below:

Width (in.) Number of rolls required
40 150
30 200
15 50
6 100

The new rolls are to be produced by cutting the rolls of standard widths to minimize
the trim loss. Formulate the problem as an LP problem.

3.96 A manufacturer produces two types of machine parts, P; and P,, using lathes and
milling machines. The machining times required by each part on the lathe and the
milling machine and the profit per unit of each part are given below:

Machine time (hr) required by
each unit on:

Machine part Lathe Milling machine Cost per unit
Py 5 2 $200
P 4 4 $300

If the total machining times available in a week are 500 hours on lathes and 400 hours
on milling machines, determine the number of units of P; and P, to be produced per
week to maximize the profit.
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3.97 A bank offers four different types of certificates of deposits (CDs) as indicated below:

CD type Duration (yr) Total interest at maturity (%)
1 0.5 5
2 1.0 7
3 2.0 10
4 4.0 15

If a customer wants to invest $50,000 in various types of CDs, determine the plan that
yields the maximum return at the end of the fourth year.

3.98 The production of two machine parts A and B requires operations on a lathe (L), a
shaper (S), a drilling machine (D), a milling machine (M), and a grinding machine
(G). The machining times required by A and B on various machines are given below.

Machine time required (hours per unit) on:

Machine part L S D M G
A 0.6 0.4 0.1 0.5 0.2
B 0.9 0.1 0.2 0.3 0.3

The number of machines of different types available is given by L : 10, S :3, D : 4, M:
6, and G: 5. Each machine can be used for 8 hours a day for 30 days in a month.

(a) Determine the production plan for maximizing the output in a month

(b) If the number of units of A is to be equal to the number of units of B, find the
optimum production plan.

3.99 A salesman sells two types of vacuum cleaners, A and B. He receives a commission of
20% on all sales, provided that at least 10 units each of A and B are sold per month.
The salesman needs to make telephone calls to make appointments with customers and
demonstrate the products in order to sell the products. The selling price of the products,
the average money to be spent on telephone calls, the time to be spent on demonstrations,
and the probability of a potential customer buying the product are given below:

Selling  Money to be spent on Time to be spent in Probability of a
Vacuum price per telephone calls to find demonstrations to a potential customer
cleaner unit a potential customer  potential customer (hr)  buying the product
A $250 $3 3 0.4
B $100 $1 1 0.8

In a particular month, the salesman expects to sell at most 25 units of A and 45 units of
B. If he plans to spend a maximum of 200 hours in the month, formulate the problem
of determining the number of units of A and B to be sold to maximize his income.

3.100 An electric utility company operates two thermal power plants, A and B, using three
different grades of coal, C;, C», and C3. The minimum power to be generated at plants A
and B is 30 and 80 MWh, respectively. The quantities of various grades of coal required
to generate 1 MWh of power at each power plant, the pollution caused by the various
grades of coal at each power plant, and the costs of coal are given in the following table:
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Quantity of coal

required to generate 1 Pollution Cost of coal
MWh at the power caused at at power
plant (tons) power plant plant
Coal type A B A B A B
C 2.5 1.5 1.0 1.5 20 18
Cs 1.0 2.0 1.5 2.0 25 28
C3 3.0 25 2.0 2.5 18 12

Formulate the problem of determining the amounts of different grades of coal to be used
at each power plant to minimize (a) the total pollution level, and (b) the total cost of
operation.

3.101 A grocery store wants to buy five different types of vegetables from four farms in a
month. The prices of the vegetables at different farms, the capacities of the farms, and
the minimum requirements of the grocery store are indicated in the following table:

Price ($/ton) of vegetable type Maximum (of all
1 2 3 4 5 types combined)
Farm (Potato) (Tomato) (Okra) (Eggplant) (Spinach) they can supply
1 200 600 1600 800 1200 180
2 300 550 1400 850 1100 200
3 250 650 1500 700 1000 100
4 150 500 1700 900 1300 120
Minimum amount
required (tons) 100 60 20 80 40

Formulate the problem of determining the buying scheme that corresponds to a
minimum cost.

3.102 A steel plant produces steel using four different types of processes. The iron ore, coal,
and labor required, the amounts of steel and side products produced, the cost information,
and the physical limitations on the system are given below:

Side
Iron ore Coal Steel products
required required Labor required Produced Produced
Process type  (tons/day) (tons/day) (person-days) (tons/day) (tons/day)
1 5 3 6 4 1
2 8 5 12 6 2
3 3 2 5 2 1
4 10 7 12 6 4
Cost $50/ton $10/ton $150/person-day $350/ton $100/ton
Limitations 600 tons 250 tons No limita- All steel Only 200
available available tions on produced tons can
per per availability can be be sold

month month of labor sold per month
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3.103
3.104
3.105
3.106

3.107

Assuming that a particular process can be employed for any number of days in a
30-day month, determine the operating schedule of the plant for maximizing the profit.

Solve Example 3.7 using MATLAB (simplex method).
Solve Problem 3.12 using MATLAB (simplex method).
Solve Problem 3.24 using MATLAB (simplex method).

Find the optimal solution of the LP problem stated in Problem 3.45 using MATLAB
(simplex method).

Find the optimal solution of the LP problem described in Problem 3.101 using MATLAB.



Linear Programming II:
Additional Topics and Extensions

4.1 INTRODUCTION

If a LP problem involving several variables and constraints is to be solved by using the
simplex method described in Chapter 3, it requires a large amount of computer storage
and time. Some techniques, which require less computational time and storage space
compared to the original simplex method, have been developed. Among these tech-
niques, the revised simplex method is very popular. The principal difference between
the original simplex method and the revised one is that in the former we transform all
the elements of the simplex tableau, while in the latter we need to transform only the
elements of an inverse matrix. Associated with every LP problem, another LP problem,
called the dual, can be formulated. The solution of a given LP problem, in many cases,
can be obtained by solving its dual in a much simpler manner.

As stated above, one of the difficulties in certain practical LP problems is that the
number of variables and/or the number of constraints is so large that it exceeds the
storage capacity of the available computer. If the LP problem has a special structure,
a principle known as the decomposition principle can be used to solve the problem
more efficiently. In many practical problems, one will be interested not only in finding
the optimum solution to a LP problem, but also in finding how the optimum solution
changes when some parameters of the problem, such as cost coefficients change. Hence
the sensitivity or postoptimality analysis becomes very important.

An important special class of LP problems, known as transportation problems,
occurs often in practice. These problems can be solved by algorithms that are more
efficient (for this class of problems) than the simplex method. Karmarkar’s method is
an interior method and has been shown to be superior to the simplex method of Dantzig
for large problems. The quadratic programming problem is the best-behaved nonlinear
programming problem. It has a quadratic objective function and linear constraints and
is convex (for minimization problems). Hence the quadratic programming problem can
be solved by suitably modifying the linear programming techniques. All these topics
are discussed in this chapter.

4.2 REVISED SIMPLEX METHOD

We notice that the simplex method requires the computing and recording of an entirely
new tableau at each iteration. But much of the information contained in the tableau is
not used; only the following items are needed.
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1. The relative cost coefficients c; to compute’
¢y = min(c;) 4.1

¢,y determines the variable x; that has to be brought into the basis in the next
iteration.

2. By assuming that ¢; < 0, the elements of the updated column

a15
_ a25
A =

ams

and the values of the basic variables

b
_ by
Xp =

Em

have to be calculated. With this information, the variable x, that has to be
removed from the basis is found by computing the quantity

Er . { Ei }
= min { — 4.2)

and a pivot operation is performed on @,. Thus only one nonbasic column A, of
the current tableau is useful in finding x,. Since most of the linear programming
problems involve many more variables (columns) than constraints (rows), con-
siderable effort and storage is wasted in dealing with the A j for j #s. Hence
it would be more efficient if we can generate the modified cost coefficients ¢;
and the column A;, from the original problem data itself. The revised simplex
method is used for this purpose; it makes use of the inverse of the current basis
matrix in generating the required quantities.

Theoretical Development.  Although the revised simplex method is applicable for
both phase I and phase II computations, the method is initially developed by considering
linear programming in phase II for simplicity. Later, a step-by-step procedure is given
to solve the general linear programming problem involving both phases I and II.

Let the given linear programming problem (phase II) be written in column
form as

Minimize

fX) =cix; +cx2 4+ cpxp 4.3)

"The modified values of b;, a; i, and c¢; are denoted by overbars in this chapter (they were denoted by primes
in Chapter 3).
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subject to
AX=Aix;+Ax+---+A,x,=b “4.4)
X >0 (4.5)

nxl  nxl

where the jth column of the coefficient matrix A is given by

Amj
Assuming that the linear programming problem has a solution, let
B=1[Aji Ajp -+ Ajnl

be a basis matrix with

)Cj] Cj]
ij Cj2
Xp = . and ¢z =
mx1 . mx1
ij ij

representing the corresponding vectors of basic variables and cost coefficients, respec-
tively. If Xjp is feasible, we have

Xz=B'b=b>0

As in the regular simplex method, the objective function is included as the (m + 1)th
equation and — f is treated as a permanent basic variable. The augmented system can
be written as

n
D Pixj +Pui(—f) =q (4.6)
j=I
where

aj 0 b1
azj 0 bz
Pi=4 . ¢, j=1lton, P,=13: and q=1 :
Amj 0 bm
Cj 1 0

Since B is a feasible basis for the system of Eqs. (4.4), the matrix D defined by

B 0
D =[PPy - Py Pyl = [ T 1:|
m—+1xm-+1 CB

will be a feasible basis for the augmented system of Egs. (4.6). The inverse of D can

be found to be ]
B~ 0
-1 _
o= g 1
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Definition.  The row vector
T
T

T2
ch_l = ]'[T = . (47)

TTm

is called the vector of simplex multipliers relative to the f equation. If the computations
correspond to phase I, two vectors of simplex multipliers, one relative to the f equation,
and the other relative to the w equation are to be defined as

T

T
T_ Tp-1 T2
n =czBT =
T[m
o
T_ qTp-! 72
o =dzB7 =

Om

By premultiplying each column of Eq. (4.6) by D!, we obtain the following canonical
system of equations':

Xj1 by
Xj2 by
+ Z ijj =
Jjnonbasic
Xjim bm
-+ X Txj = —fo
jnonbasic

where

Al aoip _ [B' 0][A;
(o)== 1) 4

From Eq. (4.8), the updated column A ;j can be identified as

A, =B'A; (4.9)

TPremultiplication of P;x; by D! gives

_ B~ 0] [A;
SCRNIHE

_ BIA; U LY if x; is a basic variable
- *RTA_/ +ci| VT D‘lexj if x; is not a basic variable
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and the modified cost coefficient c¢; as
Ci=c;—m'A; (4.10)

Equations (4.9) and (4.10) can be used to perform a simplex iteration by generating

A ; and ¢; from the original problem data, A; and c;.

Once A; and ¢; are computed, the pivot element @, can be identified by using
Eqgs. (4.1) and (4.2). In the next step, Py is introduced into the basis and P;, is removed.
This amounts to generating the inverse of the new basis matrix. The computational
procedure can be seen by considering the matrix:

— P,
—
ais

PiyPpp - Py Poyy €1 € -+ €y ay

4.11)
D I :
m+1xm+1 m+1xm-+1 ay
Cs

where e; is a (m + 1)-dimensional unit vector with a one in the ith row. Premultipli-
cation of the above matrix by D! yields

_ -1 —
€1 € - € - €yl D ais

I m+1xm+41 g

m+1xm+1
[

PiVOt (4 12)
element

Ams
Cs

m+1x1 ]|

By carrying out a pivot operation on d,, this matrix transforms to
~1
[[e1e---e—1 Betr - enyr] Dy el (4.13)

where all the elements of the vector B are, in general, nonzero and the second partition

gives the desired matrix D}, .” It can be seen that the first partition (matrix I) is included

"This can be verified by comparing the matrix of Eq. (4.13) with the one given in Eq. (4.11). The columns
corresponding to the new basis matrix are given by

Duew =[Pji Pjp---Pj_ Py Py - Py Pryy]

Jr— Jr+1
brought in
place of P,

These columns are modified and can be seen to form a unit matrix in Eq. (4.13). The sequence of pivot
operations that did this must be equivalent to multiplying the original matrix, Eq. (4.11), by Dn’clw. Thus the
second partition of the matrix in Eq. (4.13) gives the desired Dn’C{N.
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only to illustrate the transformation, and it can be dropped in actual computations. Thus
in practice, we write the m + 1 x m + 2 matrix

alx
azs

-1 | =
D~ [a]

ams
Cs

and carry out a pivot operation on a@,,. The first m 4 1 columns of the resulting matrix
will give us the desired matrix D,

Procedure.  The detailed iterative procedure of the revised simplex method to solve
a general linear programming problem is given by the following steps.

1. Write the given system of equations in canonical form, by adding the artificial

variables X1, X,42, - - ., Xu+m, and the infeasibility form for phase I as shown
below:

anxy +apxy + -+ apX, + Xpq1 = b

a1 X1 + anxy + - -+ axyx, +xn12 = b

A1 X1 + AuaXy + - + A Xy +Xp4m = by

c1x) +caxa + -+ Cpxy —f =0

dixy +doxy + - -+ dyxy —w = —Wo

(4.14)

Here the constants b;, i = 1 to m, are made nonnegative by changing, if nec-
essary, the signs of all terms in the original equations before the addition of
the artificial variables x,;, i = 1 to m. Since the original infeasibility form is
given by

W= Xpt1 +Xpp2 + -+ X (4.15)

the artificial variables can be eliminated from Eq. (4.15) by adding the first m
equations of Egs. (4.14) and subtracting the result from Eq. (4.15). The resulting
equation is shown as the last equation in Egs. (4.14) with

m m
di=-Y aj and wo=) b (4.16)
i=1 i=1

Equations (4.14) are written in tableau form as shown in Table 4.1.

2. The iterative procedure (cycle 0) is started with x,, 1, X,42, ..., Xp4m, —f, and
—w as the basic variables. A tableau is opened by entering the coefficients of
the basic variables and the constant terms as shown in Table 4.2. The starting
basis matrix is, from Table 4.1, B = I, and its inverse B~! = [Bi;] can also be



Om— I 0 0 0 0 “p p ip 'p
0 0 I 0 0 0 9 5] (%} )

S& I uil g luryy Tuip luip

vy ov 'v iy v
47} I ugp 47} wp 47)
Iq I uip p [487) Iip
<—— sIseq [eU] ———>
juBISUOD) m— ,\.| W+ Uy Ttuy I+uy Uy .. Ix ... x Ix
J[qeLIeA 9A139[QO J[qeLIBA [BIOYNIY J[qeLeA ([euISLIO) 9[qQISSIWUPY

suonienby Jo wAIsAS [eUISLI)  ['p d[qeL
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Table 4.2 Tableau at the Beginning of Cycle 0

Columns of the canonical form Value of the
Basic variables Xnt1 Xn42 e Xntr e Xntm —f —w basic variable x5
Xn+1 1 bl
Xn+42 1 b2
Xn+r 1 b,
Xn+m 1 bm
<——— Inverse of the basis «—
—f 0 ... 0 1 0
—w 0 e 0 1 —wp=— b
i=1

“This column is blank at the beginning of cycle 0 and filled up only at the end of cycle 0.

seen to be an identity matrix in Table 4.2. The rows corresponding to —f and
—w in Table 4.2 give the negative of simplex multipliers 7z; and o; (i = 1 to m),
respectively. These are also zero since ¢z = dg = 0 and hence

7' =czB =0
o'=d;B' =0

In general, at the start of some cycle k (k = 0 to start with) we open a tableau
similar to Table 4.2, as shown in Table 4.4. This can also be interpreted as
composed of the inverse of the current basis, B~! = [Bij], two rows for the
simplex multipliers 7; and o;, a column for the values of the basic variables in
the basic solution, and a column for the variable x,. At the start of any cycle,
all entries in the tableau, except the last column, are known.

The values of the relative cost factors Ej (for phase I) or ¢; (for phase II) are
computed as

Ej Zdj —O’TAJ'

J— — T .
j=ci—mA;

ol

and entered in a tableau form as shown in Table 4.3. For cycle 0, 67 = 0 and
hence Ej =d;.

If the current cycle corresponds to phase I, find whether all Ej > 0. If all
Ej >0 and wg > 0, there is no feasible solution to the linear programming
problem, so the process is terminated. If all d j = 0and wp = 0, the current basic
solution is a basic feasible solution to the linear programming problem and hence
phase II is started by (a) dropping all variables x; with Ej >0, (b) dropping
the w row of the tableau, and (c) restarting the cycle (step 3) using phase
II rules.
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Table 4.3 Relative Cost Factor d jorc;

Variable x;

Cycle number X1 X2 e X, Xn+1 Xn+2 e Xn+m
0 d dy e d, 0 0 . 0
1
Phase I . Use the values of o; (if phase I) or 7; (if phase II) of the
: current cycle and compute
! dj =dj— (o1a1j + 0202 + - + Omam;)
or
cj=cj— (mayj+may; + -+ Tuan;)
I+ 1 J J J J j

Phase 11 {!+2

Enter d j or ¢; in the row corresponding to the current cycle
and choose the pivot column s such that d; = min d j
(if phase I) or ¢, = min ¢; (if phase II)

Table 4.4 Tableau at the Beginning of Cycle k

Basic variable

Columns of the original canonical form

Value of the basic

Xn+l *° Xngm —f —w variable x4

[Bij] = [@in+j]

<« Inverse of the basis —

— m
Xj1 Bt -+ Bim by aig =y Buiais
i=1
Xjr ﬂrl ce ﬂrm b, Ars = Z lgriais
i=1
’ _ m
Xjm ,Bml to 5mm b Ams = Z ,Bmiaix
i=1
— m
_f —T7 o — Ty 1 _fO Cy = C5 — Zﬂiais
(_nj = +En+j) i=l
_ m
—w —0p - - Om 1 —wy dy =ds — Z Oidis
(_Uj = +dn+j) i=l

“This column is blank at the start of cycle k and is filled up only at the end of cycle k.

If some d; < 0, choose x, as the variable to enter the basis in the next
cycle in place of the present rth basic variable (r will be determined later) such
that

dy; = min(d; < 0)

On the other hand, if the current cycle corresponds to phase II, find whether
all ¢; > 0. If all ¢; > 0, the current basic feasible solution is also an optimal
solution and hence terminate the process. If some ¢; < 0, choose x, to enter
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the basic set in the next cycle in place of the rth basic variable (r to be found
later), such that
¢; =min(c; < 0)

5. Compute the elements of the x; column from Eq. (4.9) as
A, =B7'A; = BA,
that is,
ais = Pnais + Praazs + - + Pimams
ans = Priais + Brnazs + -+ + Pomams

ms = PBmirais + Bmoaos + -+ - + Bumms

and enter in the last column of Table 4.2 (if cycle 0) or Table 4.4 (if cycle k).
6. Inspect the signs of all entries a;5, i =1 to m. If all a;; <0, the class of

solutions
Xxs > 0 arbitrary

Xj = b; — Qs - xs if xj; is a basic variable, and x; = 0 if x; is a nonbasic
variable (j # s), satisfies the original system and has the property

f=?0+65xs—>—oo as xy; —> 400

Hence terminate the process. On the other hand, if some a;; >0, select the
variable x, that can be dropped in the next cycle as

b, L
— = min (b;/ay)
Ayg ais >0

In the case of a tie, choose r at random.

7. To bring x; into the basis in place of x,, carry out a pivot operation on the
element @, in Table 4.4 and enter the result as shown in Table 4.5. As usual,
the last column of Table 4.5 will be left blank at the beginning of the current
cycle k + 1. Also, retain the list of basic variables in the first column of Table 4.5
the same as in Table 4.4, except that j, is changed to the value of s determined
in step 4.

8. Go to step 3 to initiate the next cycle, k + 1.

Example 4.1
Maximize F = x| + 2x5 + x3
subject to
2x1+x —x3 <2

—2x1 + x5 — S5x3 > —6
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Columns of the canonical form

Basic variables Xnt1 Xn4m —f —w Value of the basic variable X
Xji B — ais B Bim — arsPB, by —ab.*
* * T *
Xs rl U rm b,
— — - —_ —k
Xjm Bm1 — ams,B;kl Bimm — amsﬁ:m by — amxb,»
— * — * —_ Tk
—f —m — B —T — Cs Bl 1 —fo—¢sb,
- - _ — =%
—w —o1 —d, B} —om —ds B, 1 —wo — dsb,
,Bri . Tk br
Bl ==—(=1tom) and b, = —
Ars Ars

“This column is blank at the start of the cycle.

dx1+x2+x3 <6

x1>0, x>0, x3>0

(ED)

(E2)

SOLUTION  This problem can be stated in standard form as (making all the constants
b; positive and then adding the slack variables):
Minimize
f=—x1—2x; —x3

subject to

2x1 4+ xp — x3 + x4 =2

2x1 — xp + 5x3 + X5 =6

dx1 + x + x3 +x6 =6

x;i >0, i=1tob6

where x4, x5, and xg are slack variables. Since the set of equations (E;) are in canonical
form with respect to x4, x5, and x¢, x; =0 (@ =1,2,3)and x4 = 2, x5 =6, and x¢ = 6
can be taken as an initial basic feasible solution and hence there is no need for phase I.

Step 1 All the equations (including the objective function) can be written in canonical

form as

2x1 +x0 — x3 4+ x4

2x1 — X2 + 5x3
dxy + x2 + x3

—X] — 2x) — X3

=2
=6
=6
—f =0

+X5
+x6

These equations are written in tableau form in Table 4.6.

(E3)
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Table 4.6 Detached Coefficients of the Original System

Admissible variables

X1 X2 X3 X4 X5 X6 —f Constants
2 -1 1 0 0 2
2 - 0 1 0 6
4 1 0 0 1 6

-1 -2 -1 0 0 0 1 0

Table 4.7 Tableau at the Beginning of Cycle 0

Columns of the canonical form Value of the basic

Basic variables X4 X5 X6 —f variable (constant) x¢

x4 1 0 0 0 2

Pivot element

X5 0 1 0 0 6 asp = —1

X6 0 0 1 0 6 der = 1
Inverse of the basis = [B;;]

—f 0 0 0 1 0 crp=-2

“This column is entered at the end of step 5.

Step 2 The iterative procedure (cycle 0) starts with x4, x5, x¢, and — f as basic vari-
ables. A tableau is opened by entering the coefficients of the basic variables
and the constant terms as shown in Table 4.7. Since the basis matrix is B =
I, its inverse B~ = [Bij] =1. The row corresponding to —f in Table 4.7
gives the negative of simplex multipliers m;, i = 1,2, 3. These are all zero
in cycle 0. The entries of the last column of the table are, of course, not yet
known.

Step 3 The relative cost factors ¢; are computed as

EjZCj—JTTAjZCj, j=1t06

since all 7r; are zero. Thus

E]—Cl——l
522622—2
53—632—1
E4—C4=0
E5=C5=
co=ce =0

These cost coefficients are entered as the first row of a tableau (Table 4.8).
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Table 4.8 Relative Cost Factors ¢;

Variable x;

Cycle number X1 X2 X3 X4 X5 X6
Phase II
Cycle 0 -1 -1 0 0 0
Cycle 1 3 0 2 0 0
Cycle 2 6 0 0 o 2 0

Step 4 Find whether all ¢; > 0 for optimality. The present basic feasible solution is
not optimal since some ¢; are negative. Hence select a variable x; to enter
the basic set in the next cycle such that ¢; = min(¢; < 0) = ¢, in this case.
Therefore, x, enters the basic set.

Step 5 Compute the elements of the x; column as

XS = [ﬂij]As

where [B;;] is available in Table 4.7 and A, in Table 4.6.

These elements, along with the value of ¢;, are entered in the last column of
Table 4.7.
Step 6 Select a variable (x,) to be dropped from the current basic set as

In this case,

by 2
2
aqn 1
b _6_,
ae 1

Therefore, x, = x4.

Step 7 To bring x, into the basic set in place of x4, pivot on a,; = a4y in Table 4.7.
Enter the result as shown in Table 4.9, keeping its last column blank. Since a
new cycle has to be started, we go to step 3.

Step 3 The relative cost factors are calculated as

Ej =cCj— (7'[1611/' +7‘[2612j +7r3a3j)
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Table 4.9 Tableau at the Beginning of Cycle 1

Columns of the original canonical form Value of the basic

Basic variables X4 X5 X6 —f variable X3

a

X2 1 0 0 0 2 523 = —1

xs 1 1 0 0 8

Pivot element
X6 -1 0 1 1 4 dg3 =2
<Inverse of the basis = [8;;] —

—f 2=—7T] ()=—7'[2 0=—7T3 1 4 E3=_3

“This column is entered at the end of step 5.

where the negative values of my, m, and w3 are given by the row of —f in
Table 4.9, and a;; and ¢; are given in Table 4.6. Here 7y = —2, 1, =0, and
T3 = 0.

ci=c—man=—-1-(=2)2)=3
=c—man=-2-(-2)(1)=0
cs=c3—mapi=—1—(=2)(-1)=-3
ca=c4—mauy=0—-(=2)(1) =2
cs=cs—mais=0-(=2)(0)=0
¢ =c6 —maie=0—-(=2)(0)=0

Enter these values in the second row of Table 4.8.

Step 4 Since all ¢; are not >0, the current solution is not optimum. Hence
select a variable (x;) to enter the basic set in the next cycle such that

¢, = min(c; < 0) = c3 in this case. Therefore, x; = x3.
Step 5 Compute the elements of the x; column as

Xs = [,Bij]As

where [f;;] is available in Table 4.9 and Ay in Table 4.6:

_ ann 100 —1 -1
A3 =13as3¢ = 110 =
ag3 —101 1 2
Enter these elements and the value of ¢; = ¢3 = —3 in the last column of

Table 4.9.
Step 6 Find the variable (x,) to be dropped from the basic set in the next cycle as

br . bi
— = min _—
Apg ais>0 \ djg
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Table 4.10 Tableau at the Beginning of Cycle 2
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Columns of the original canonical form

Value of the basic

Basic variables X4 X5 X6 —f variable xg¢
X2 f—t % 0 0 4
1 1 0 0 2
A3 z 1
X6 -8 2 1 1 0
1 3
—f T I 0 1 10

“This column is blank at the beginning of cycle 2.

Here

bs 8
_—:—:2
asjy 4
by 4
2 _T_»
ae3 2

Since there is a tie between xs and x¢, we select x, = x5 arbitrarily.
Step 7 To bring x3 into the basic set in place of xs, pivot on a,; = as3 in Table 4.9.
Enter the result as shown in Table 4.10, keeping its last column blank. Since a
new cycle has to be started, we go to step 3.
Step 3 The simplex multipliers are given by the negative values of the numbers appear-
ing in the row of — f in Table 4.10. Therefore, 7; = —14—1, Ty = —%, and 3 = 0.
The relative cost factors are given by

Then

S
cj=cj=-—TA,

Cl=c|—may — may =—1— (—%)(2) - —%)(2) =6
Cy =y —Tmap —may = —2 — (—%)(1) — —%)(—1) =0
C3 =cC3—map — map =—1— (—%)(—1) - —%)(5) =0
C4=c4—mayu — max =0— (—H() = (=)(©0) =4
s = cs — mars — maps = 0 — (=) (0) — (=H() = 3

C6 = c6 — M1 — Taazs = 0 — (=) (0) — (=)(0) =0

These values are entered as third row in Table 4.8.
Step 4 Since all ¢; are > 0, the present solution will be optimum. Hence the optimum

solution is given by

xy =4, x3 =2, x¢ = 0 (basic variables)
x1 = x4 = x5 = 0 (nonbasic variables)

fmin =-10
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4.3 DUALITY IN LINEAR PROGRAMMING

Associated with every linear programming problem, called the primal, there is another
linear programming problem called its dual. These two problems possess very inter-
esting and closely related properties. If the optimal solution to any one is known, the
optimal solution to the other can readily be obtained. In fact, it is immaterial which
problem is designated the primal since the dual of a dual is the primal. Because of
these properties, the solution of a linear programming problem can be obtained by
solving either the primal or the dual, whichever is easier. This section deals with
the primal—dual relations and their application in solving a given linear programming
problem.

4.3.1 Symmetric Primal-Dual Relations

A nearly symmetric relation between a primal problem and its dual problem can be
seen by considering the following system of linear inequalities (rather than equations).

Primal Problem.

ayxy +apxy + -+ apx, > by

a1 X1 + anxy + -+ apux, > by

4.17)
Am1X1 + AmaX2 + -+ AppXn = by,
cixy+ x4 A epxy = f

(x; >0,i =1ton,and f is to be minimized)

Dual Problem. As a definition, the dual problem can be formulated by transposing
the rows and columns of Eq. (4.17) including the right-hand side and the objective
function, reversing the inequalities and maximizing instead of minimizing. Thus by
denoting the dual variables as yi, y», ..., Y», the dual problem becomes

anyr +ay2 + -+ amym < ci

apy) +any:+---+amx, <2

(4.18)
ainy1 + A y2 +-+ AmnYm = Cn
biyi +bayr + -+ buym = v

(yi >0,i =1 tom, andvis to be maximized)

Equations (4.17) and (4.18) are called symmetric primal—dual pairs and it is easy to
see from these relations that the dual of the dual is the primal.
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4.3.2 General Primal-Dual Relations

Although the primal—dual relations of Section 4.3.1 are derived by considering a system
of inequalities in nonnegative variables, it is always possible to obtain the primal—dual
relations for a general system consisting of a mixture of equations, less than or greater
than type of inequalities, nonnegative variables or variables unrestricted in sign by
reducing the system to an equivalent inequality system of Egs. (4.17). The correspon-
dence rules that are to be applied in deriving the general primal—dual relations are
given in Table 4.11 and the primal—dual relations are shown in Table 4.12.

4.3.3 Primal-Dual Relations When the Primal Is in Standard Form

If m* =m and n* = n, primal problem shown in Table 4.12 reduces to the standard
form and the general primal—dual relations take the special form shown in Table 4.13.
It is to be noted that the symmetric primal—dual relations, discussed in Section 4.3.1,
can also be obtained as a special case of the general relations by setting m* = 0 and
n* = n in the relations of Table 4.12.

Table 4.11 Correspondence Rules for Primal—Dual Relations

Primal quantity

Corresponding dual quantity

Objective function: Minimize ¢'X
Variable x; > 0

Variable x; unrestricted in sign

Jjth constraint, A ;X = b; (equality)
Jjth constraint, A;X > b; (inequality)
Coefficient matrix A = [A;...A,]
Right-hand-side vector b

Cost coefficients ¢

Maximize Y'h

ith constraint YTA; < ¢; (inequality)
ith constraint YTA; = ¢; (equality)
Jjth variable y; unrestricted in sign
Jjth variable y; > 0

Coefficient matrix AT = [A;, ..., A,]
Right-hand-side vector ¢

Cost coefficients b

T

Table 4.12 Primal-Dual Relations

Primal problem

Corresponding dual problem

n

Minimize f = Y ¢;x; subject to
i=1

*

n
a,-jxj =l’)i, i = ], 2, ce., M
Jj=1

n
ajjx; > b, i=m"+1, m*+2,
j=1

m
Maximize v = Y y;b; subject to

i=1

m
doyiaij =cj, j=n"+1,n"+2,

i=1

..,n

m
..,m Y oviaij<cj,j=12,...,n*
i=
where where
x;>0,i=1,2,...,n% yvi >0, i=m*"+1,m"+2,...,m;
and and
x; unrestricted in sign, i =n* 41, y; unrestricted in sign, i = 1,2,..., m*

n*+2,...,n
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Table 4.13 Primal—Dual Relations Where m* = m and n* =n

Primal problem Corresponding dual problem
n m
Minimize f = ) ¢;x; Maximize v = Y_ b;y;
i=1 i=1
subject to subject to
n m
Zai_ixj =b;,i=1,2,....m Zyia,'_i =cj, j= 1,2,....n
j=1 i=1
where where
x;>0,i=1,2,...,n y; is unrestricted in sign, i = 1,2, ---, m
In matrix form In matrix form
Minimize f = ¢TX Maximize v = Y'b
subject to subject to
AX=b ATY <e¢
where where
X>0 Y is unrestricted in sign

Example 4.2 Write the dual of the following linear programming problem:
Maximize f = 50x; + 100x;
subject to

2x1 + xp < 1250
2x1 + 5x, <1000

2x1 + 3x2 <900
Xy <150

IA

where

x1>0 and x, >0

SOLUTION Let y;, y2, y3, and y4 be the dual variables. Then the dual problem can
be stated as

Minimize v = 1250y; + 1000y, + 900y3 + 150y,
subject to
2y1 +2y2 +2y3 > 50
Yi+5y2+3y3+ y4 = 100
where y; >0, y, >0, y3 >0, and y4 > 0.

Notice that the dual problem has a lesser number of constraints compared to the
primal problem in this case. Since, in general, an additional constraint requires more
computational effort than an additional variable in a linear programming problem, it
is evident that it is computationally more efficient to solve the dual problem in the
present case. This is one of the advantages of the dual problem.
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4.3.4 Duality Theorems

The following theorems are useful in developing a method for solving LP problems
using dual relationships. The proofs of these theorems can be found in Ref. [4.10].

Theorem 4.1 The dual of the dual is the primal.

Theorem 4.2 Any feasible solution of the primal gives an f value greater than or at
least equal to the v value obtained by any feasible solution of the dual.

Theorem 4.3 If both primal and dual problems have feasible solutions, both have
optimal solutions and minimum f = maximum v.

Theorem 4.4 If either the primal or the dual problem has an unbounded solution, the
other problem is infeasible.

4.3.5 Dual Simplex Method

There exist a number of situations in which it is required to find the solution of a
linear programming problem for a number of different right-hand-side vectors b,
Similarly, in some cases, we may be interested in adding some more constraints to a
linear programming problem for which the optimal solution is already known. When
the problem has to be solved for different vectors b, one can always find the desired
solution by applying the two phases of the simplex method separately for each vector
b®. However, this procedure will be inefficient since the vectors b"”) often do not
differ greatly from one another. Hence the solution for one vector, say, b(!) may be
close to the solution for some other vector, say, b®. Thus a better strategy is to solve
the linear programming problem for b(" and obtain an optimal basis matrix B. If this
basis happens to be feasible for all the right-hand-side vectors, that is, if

B 'b® >0 for alli (4.19)

then it will be optimal for all cases. On the other hand, if the basis B is not feasible
for some of the right-hand-side vectors, that is, if

B 'b") <0 for some r (4.20)
then the vector of simplex multipliers
7l =cpB7! (4.21)
will form a dual feasible solution since the quantities
cj=c¢j— JITA]' >0

are independent of the right-hand-side vector b"”). A similar situation exists when the
problem has to be solved with additional constraints.

In both the situations discussed above, we have an infeasible basic (primal) solu-
tion whose associated dual solution is feasible. Several methods have been proposed,
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as variants of the regular simplex method, to solve a linear programming problem by
starting from an infeasible solution to the primal. All these methods work in an iterative
manner such that they force the solution to become feasible as well as optimal simulta-
neously at some stage. Among all the methods, the dual simplex method developed by
Lemke [4.2] and the primal—dual method developed by Dantzig, Ford, and Fulkerson
[4.3] have been most widely used. Both these methods have the following important
characteristics:

1. They do not require the phase I computations of the simplex method. This is a
desirable feature since the starting point found by phase I may be nowhere near
optimal, since the objective of phase I ignores the optimality of the problem
completely.

2. Since they work toward feasibility and optimality simultaneously, we can expect
to obtain the solution in a smaller total number of iterations.

We shall consider only the dual simplex algorithm in this section.

Algorithm.  As stated earlier, the dual simplex method requires the availability of
a dual feasible solution that is not primal feasible to start with. It is the same as the
simplex method applied to the dual problem but is developed such that it can make use
of the same tableau as the primal method. Computationally, the dual simplex algorithm
also involves a sequence of pivot operations, but with different rules (compared to the
regular simplex method) for choosing the pivot element.

Let the problem to be solved be initially in canonical form with some of the b; < 0,
the relative cost coefficients corresponding to the basic variables ¢; = 0, and all other
¢; > 0. Since some of the b; are negative, the primal solution will be infeasible, and
since all ¢; > 0, the corresponding dual solution will be feasible. Then the simplex
method works according to the following iterative steps.

1. Select row r as the pivot row such that
b, =minb; <0 (4.22)
2. Select column s as the pivot column such that

S _ min( < ) (4.23)

—dyrs arj<0 _a”j

If all @,; > 0, the primal will not have any feasible (optimal) solution.
3. Carry out a pivot operation on d,

4. Test for optimality: If all b; > 0, the current solution is optimal and hence stop
the iterative procedure. Otherwise, go to step 1.

Remarks:

1. Since we are applying the simplex method to the dual, the dual solution will
always be maintained feasible, and hence all the relative cost factors of the
primal (¢;) will be nonnegative. Thus the optimality test in step 4 is valid
because it guarantees that all b; are also nonnegative, thereby ensuring a feasible
solution to the primal.



4.3 Duality in Linear Programming 197

2. We can see that the primal will not have a feasible solution when all a,; are
nonnegative from the following reasoning. Let (xj, xp, ..., x;;) be the set of
basic variables. Then the rth basic variable, x,, can be expressed as

n

Xy Zbr — E E,jxj

Jj=m+1

It can be seen that if b, < 0 and a,; > 0 for all j, x, cannot be made non-
negative for any nonnegative value of x;. Thus the primal problem contains
an equation (the rth one) that cannot be satisfied by any set of nonnegative
variables and hence will not have any feasible solution.

The following example is considered to illustrate the dual simplex method.

Example 4.3
Minimize f = 20x; + 16x;
subject to
x; >2.5
X >6
2x1 +xp > 17

X1 +x2>12

X120, x>0

SOLUTION By introducing the surplus variables x3, x4, x5, and xg, the problem can
be stated in canonical form as

Minimize f
with

—X1 +x3 =-25

— X2 + x4 =-6
—2x1 — X2 + x5 =—17
(Ep)
—X1 — X2 + X6 =—12
20x1 4+ 16x, —f =0
x;i >0, i=1tob6

The basic solution corresponding to (E;) is infeasible since x3 = —2.5, x4 =
—6, xs = —17, and x¢ = —12. However, the objective equation shows optimality

since the cost coefficients corresponding to the nonbasic variables are nonnegative
(c1 = 20, ¢, = 16). This shows that the solution is infeasible to the primal but feasible
to the dual. Hence the dual simplex method can be applied to solve this problem as
follows.
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Step 1 Write the system of equations (E;) in tableau form:

Basic Variables ~
variables X1 X2 X3 X4 X5 X6 —f b;
X3 —1 0 1 0 0 0 2.5
X4 0 —1 0 1 0 0 0 —6
Xs -1 0 0 1 0 0  —17 < Minimum,
pivot row
Pivot element
X6 —1 —1 0 0 0 1 0 —12
—f 20 16 0 0 0 0 1 0
Select the pivotal row r such that
b, =min(b; < 0) =b3 = —17
in this case. Hence r = 3.
Step 2 Select the pivotal column s as
= _
= min /
Arg arj<0 —dyj
Since _ 20 _ 16
c c
1 10, 2 =—"=16, and s=1
—daj] 2 —daj3p 1

Step 3 The pivot operation is carried on a3; in the preceding table, and the result is

as follows:
Basic Variables ~

variables X1 X2 X3 X4 X5 X6 —f b;

X3 0 ! | . 0 6

X 0 0 1 0 0 0  —6<« Minimum,

pivot row
Pivot element

X1 1 ! 0o -1 o0 g

X6 0 ~1 -1 o I

—f 0 6 0 0 10 0 1 —170

Step 4 Since some of the b; are < 0, the present solution is not optimum. Hence we
proceed to the next iteration.

Step 1 The pivot row corresponding to minimum (b; < 0) can be seen to be 2 in the
preceding table.
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Step 2 Since ay; is the only negative coefficient, it is taken as the pivot element.
Step 3 The result of pivot operation on ap; in the preceding table is as follows:

Buasic Variables ~
variables X1 X2 X3 X4 X5 X6 —f b;
X3 0o o0 1 ] -1 0 0o 3
X7 0 1 0 -1 0 0 0 6
X1 1 0 0 : -1 0 o 4
X6 0 0 0 — % — % 1 0 — % < Minimum,
pivot row
Pivot element
—f 0 0 0 6 10 0 1 —206

Step 4 Since all b; are not > 0, the present solution is not optimum. Hence we go to
the next iteration.

Step 1 The pivot row (corresponding to minimum b; < 0) can be seen to be the fourth
row.

Step 2 Since

C4

— =12 and —
—dayy —da4s

=20

the pivot column is selected as s = 4.
Step 3 The pivot operation is carried on a44 in the preceding table, and the result is

as follows:
Basic Variables
variables X1 X2 X3 X4 X5 X6 —f b;
X3 0 0 1 0 -1 1 0 2
X2 0 1 0 0 1 -2 0 7
X1 1 0 0 0 -1 1 0 5
X4 0 0 0 1 -2 0 1
—f 0 0 0 0 4 12 1 212

Step 4 Since all b; are > 0, the present solution is dual optimal and primal feasible.
The solution is
x1=5 x=7 x3=32, x4=1 (dualbasic variables)
x5 = x¢ = 0 (dual nonbasic variables)

fmin =212
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44 DECOMPOSITION PRINCIPLE

Some of the linear programming problems encountered in practice may be very large
in terms of the number of variables and/or constraints. If the problem has some special
structure, it is possible to obtain the solution by applying the decomposition principle
developed by Dantzing and Wolfe [4.4]. In the decomposition method, the original
problem is decomposed into small subproblems and then these subproblems are solved
almost independently. The procedure, when applicable, has the advantage of making
it possible to solve large-scale problems that may otherwise be computationally very
difficult or infeasible. As an example of a problem for which the decomposition prin-
ciple can be applied, consider a company having two factories, producing three and
two products, respectively. Each factory has its own internal resources for production,
namely, workers and machines. The two factories are coupled by the fact that there
is a shared resource that both use, for example, a raw material whose availability is
limited. Let b, and b3 be the maximum available internal resources for factory 1, and
let b4 and bs be the similar availabilities for factory 2. If the limitation on the common
resource is by, the problem can be stated as follows:

Minimize f(xy, x2, X3, Y1, Y2) = c1X1 + c2Xx2 + c3x3 + cay1 + ¢5)2

subject to

‘6111)61 + apxy +apxz +ayr +aisyz | < b

az1 X1 + axnx + az3x3
az1xy + axnxy + azx <b3 (4.24)

anyr +agyr | < by
as\y1 +aspy> | < bs

where x; and y; are the quantities of the various products produced by the two factories
(design variables) and the a;; are the quantities of resource i required to produce 1 unit
of product j.

x; >0, i =0
(i=1,2,3) (j=1,2)

An important characteristic of the problem stated in Eqs. (4.24) is that its constraints
consist of two independent sets of inequalities. The first set consists of a coupling
constraint involving all the design variables, and the second set consists of two groups
of constraints, each group containing the design variables of that group only. This
problem can be generalized as follows:

Minimize f(X) = ¢]X; +¢;Xo 4 -+ +¢,X, (4.25a)

subject to
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AXy +AX, + - +Apo = by (4.25b)
B X, =b;
B, X, =bhb,

. (4.25¢)
B,X, =b,

X;>0, X;>0,---,X,>0

where
X1 Xml1+1
X2 Xm142
X; = . , X = . ey
Xm1 Xm1+m?2

Xml4m2+-4m,_+1

Xp = xml+in2+-~+mp_1+2
Xml4+m2+-tmp_+mp
Xi
X,
X=9 .
XP

It can be noted that if the size of the matrix Ay is (ro x my) and that of By is (ry x my),
the problem has Y 7_, rx constraints and Y ©_, my variables.

Since there are a large number of constraints in the problem stated in Egs. (4.25),
it may not be computationally efficient to solve it by using the regular simplex
method. However, the decomposition principle can be used to solve it in an efficient
manner. The basic solution procedure using the decomposition principle is given by
the following steps.

1. Define p subsidiary constraint sets using Eqs. (4.25) as

B X; =b;
B)X; =by
(4.26)
B X, = b,
B,X,=b,

The subsidiary constraint set
B Xy =by, k=1,2,...,p 4.27)

represents r; equality constraints. These constraints along with the requirement
X > 0 define the set of feasible solutions of Egs. (4.27). Assuming that this set
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of feasible solutions is a bounded convex set, let s; be the number of vertices
of this set. By using the definition of convex combination of a set of points,
any point Xy satisfying Egs. (4.27) can be represented as

Xi = s 1 X\ + w2 X5 + o g XE (4.28)

Mk + 2+ g =1 (4.29)

0 < <1, i=1,2,...,8, k=1,2,...,p (4.30)

where ng), X;k), R ng) are the extreme points of the feasible set defined by

Egs. (4.27). These extreme points X(k), X;k), R Xg,?; k=1,2,..., p, can be
found by solving the Egs. (4.27).

These new Egs. (4.28) imply the complete solution space enclosed by the con-
straints

B.X; = by
X, >0, k=12...,p

(4.31)

By substituting Eqgs. (4.28) into Egs. (4.25), it is possible to eliminate the
subsidiary constraint sets from the original problem and obtain the following
equivalent form:

sl 52
MMMmﬂ&:ﬁ(Xﬁuﬁﬂ+@(Xhm$ﬁ

i=1 i=1

sp
+ -4 c; <Z I’Lp,ixfp))
i=1

subject to

y (1) S @ & )
A (Z p1,iX; >+ A (E w2,i X; )+ 4 A, (Z Mp,iXip> — by
i=1

i=1 i=1
s
PNTN; =1
i=1
)
D M2 =1
i=1

‘YP
Z Mp,i =1
i=1

If XD and X are any two points in an n-dimensional space, any point lying on the line segment joining
X® and X@ is given by a convex combination of X' and X® as

X(w)=puXPV+(1-wX? 0=<p<l

This idea can be generalized to define the convex combination of r points XD XD X0 ag

X(pr, p2, oo ptr) = XD+ XD o, X0

where 1 + o+ +pu,=land 0<pu; <1, i=1,2,...,r.
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=0, i=12_..s, j=12..p (4.32)

Since the extreme points X(k), Xék) e, Xﬁi) are known from the solu-
tion of the set ByX; =by, Xy >0,k=1,2,...,p, and since ¢; and
Ay, k=1,2,..., p, are known as problem data, the unknowns in Eqgs. (4.32)
are pj,;, i =1,2,...,8;; j=1,2,..., p. Hence u;; will be the new decision
variables of the modified problem stated in Egs. (4.32).

3. Solve the linear programming problem stated in Egs. (4.32) by any of the known
techniques and find the optimal values of 1 ; ;. Once the optimal values %
determined, the optimal solution of the original problem can be obtalned as

X
x= |
X,
where
ZM* X(k) k=1,2,...,p
Remarks:

1. It is to be noted that the new problem in Egs. (4.32) has (r¢ + p) equality con-
straints only as against ry + ZZ:] ry in the original problem of Eq. (4.25). Thus
there is a substantial reduction in the number of constraints due to the applica-
tion of the decomposition principle. At the same time, the number of variables
might increase from Zf: | My to Z,le sk, depending on the number of extreme
points of the different subsidiary problems defined by Eqs. (4.31). The modified
problem, however, is computationally more attractive since the computational
effort required for solving any linear programming problem depends primarily
on the number of constraints rather than on the number of variables.

2. The procedure outlined above requires the determination of all the extreme
points of every subsidiary constraint set defined by Eqgs. (4.31) before the opti-
mal values u*; are found. However, this is not necessary when the revised
simplex method is used to implement the decomposition algorithm [4.5].

3. If the size of the problem is small, it will be convenient to enumerate all the
extreme points of the subproblems and use the simplex method to solve the
problem. This procedure is illustrated in the following example.

Example 4.4 A fertilizer mixing plant produces two fertilizers, A and B, by mixing
two chemicals, C; and C,, in different proportions. The contents and costs of the
chemicals C| and C, are as follows:

Contents
Chemical Ammonia Phosphates Cost ($/1b)

C 0.70 0.30 5
&) 0.40 0.60 4
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Fertilizer A should not contain more than 60% of ammonia and B should contain
at least 50% of ammonia. On the average, the plant can sell up to 1000 Ib/hr and due
to limitations on the production facilities, not more than 6001b of fertilizer A can be
produced per hour. The availability of chemical C; is restricted to 500 Ib/hr. Assuming
that the production costs are same for both A and B, determine the quantities of A
and B to be produced per hour for maximum return if the plant sells A and B at the

rates of $6 and $7 per pound, respectively.

SOLUTION Let x; and x, indicate the amounts of chemicals C; and C, used in
fertilizer A, and y; and y; in fertilizer B per hour. Thus the total amounts of A and
B produced per hour are given by x; + xo and y; + y», respectively. The objective

function to be maximized is given by

f = selling price — cost of chemical C; and C,

=06(x1 +x2) +7(y1 + y2) — 51 + y1) — 4(x2 + ¥2)

The constraints are given by

(x1 4+ x2) + (y1 + y2) <1000

X1 + y1 < 500
X1+ x2 < 600
l_x _|_ ix <
01 T 1042 =
17—0y1 + %yz >

Thus the problem can be restated as

(amount that can be sold)

(availability of Cy)

(production limitations on A)

16_0(x1 + x») (A should not contain more

than 60% of ammonia)

2(y1 4 y2) (B should contain at least

50% of ammonia)

Maximize f = x| + 2x2 +2y; + 3y

subject to

X1 +x2+y1+w0m < 1000

X1 + ¥ < 500
X1+ X2 < 600
X1 — 2xp <0

21t p] <0

x>0, ¥ >0,

i=1,2

This problem can also be stated in matrix notation as follows:

Maximize f(X) =¢|X; + 3 X,

(E»)

(E2)

(E3)

(Eg)
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subject to
A X+ AX3 < by
B X, <b
(Es)
BxX; < by
X120, X;>0
where
_ X1 _ Vi _ 1 _ 2
Xl_{XZ}’ 2_{)}2}5 cl—{z}’ c2—{3}’
11 11 1000
1 1 600
Blz[l _2:|7 blz:o}v B2:{_2 1}1b2_{0}1
_ X
=)
Step 1 We first consider the subsidiary constraint sets
BiX; <b;, X;>0 (Es)
BXo <b;, X5>0 (E7)

The convex feasible regions represented by (Eg) and (E7) are shown in Fig. 4.1a
and b, respectively. The vertices of the two feasible regions are given by

0 . 0
X’ =point P = {O}
M _ _]0
X, =point Q = {600}

Xgl) = point R = {400}

200

X
2 Yo

Q (0, 600) ft (400, 200) x,—2x,=0 2000 ;7777‘7(7:000, 2000)
1000

P
0,0 S0, 0)

brrsr =1
x) +x, =600 U (1000, 0)
(@) (b)

Figure 4.1 Vertices of feasible regions. To make the feasible region bounded, the constraint
y1 < 1000 is added in view of Eq. (E).
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2 . 0
X" = point § = {0}

@ _ . _J1000
X5 =point T = {2000

) . 1000
X5” = point U = { 0

Thus any point in the convex feasible sets defined by Eqgs. (Eg) and (E7) can
be represented, respectively, as

0 0 400 400113
X| =pun + 112 + 113 =
0 600 200 600412 + 2007413 )
8

with
Mt + pa2 +piz =1, O<pu=1, i=12,3
and
Xy = puo {0} + 1 {1000} + 123 {1000}
0 2000 0
1000 + 1000
S R &
with
Mo +untps=1 0=<uy=<1 =123

Step 2 By substituting the relations of (Eg) and (Eg), the problem stated in Egs. (Es)
can be rewritten as

L. 400
Maximize f (w11, 12, ..., n23) = (1 2) :600,u12 f%oﬂm}

1000122 + 10004423
@3 { 2000115 }

= 80013 + 12004412 + 8000142 + 20001423

subject to
11 400,LL13
1 0600wz 4+ 200113
1 1]])1000w22 + 1000£e23 - 1000
10 200022 — 1 500
that is,

6007412 4 600413 + 3000425 + 1000123 < 1000
4004213 + 10004422 + 1000423 < 500
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mir+ i+ gz =1
o1 + oo+ poz =1
with
i1 >0, w12 >0, w3 >0, uor >0, >0, w3 >0

The optimization problem can be stated in standard form (after adding the slack
variables @ and ) as

Minimize f = —1200u12 — 800713 — 80001225 — 20001423
subject to
600412 + 6007213 -+ 3000422 + 1000223 + @ = 1000
400413 4+ 100022 4+ 100023 + B = 500
mir+p+ =1 (E10)
Ma1 + o+ poz =1
pij=z0@0@=12;=123), a=0, =0

Step 3 The problem (E;p) can now be solved by using the simplex method.

4.5 SENSITIVITY OR POSTOPTIMALITY ANALYSIS

In most practical problems, we are interested not only in optimal solution of the LP
problem, but also in how the solution changes when the parameters of the problem
change. The change in the parameters may be discrete or continuous. The study of
the effect of discrete parameter changes on the optimal solution is called sensitivity
analysis and that of the continuous changes is termed parametric programming. One
way to determine the effects of changes in the parameters is to solve a series of new
problems once for each of the changes made. This is, however, very inefficient from a
computational point of view. Some techniques that take advantage of the properties of
the simplex solution are developed to make a sensitivity analysis. We study some of
these techniques in this section. There are five basic types of parameter changes that
affect the optimal solution:

1. Changes in the right-hand-side constants b;

2. Changes in the cost coefficients c;

3. Changes in the coefficients of the constraints a;;

4. Addition of new variables

5. Addition of new constraints
In general, when a parameter is changed, it results in one of three cases:
1. The optimal solution remains unchanged; that is, the basic variables and their

values remain unchanged.

2. The basic variables remain the same but their values are changed.
3. The basic variables as well as their values are changed.
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4.5.1 Changes in the Right-Hand-Side Constants b;

Suppose that we have found the optimal solution to a LP problem. Let us now change
the b; to b; + Ab; so that the new problem differs from the original only on the
right-hand side. Our interest is to investigate the effect of changing b; to b; + Ab; on
the original optimum. We know that a basis is optimal if the relative cost coefficients
corresponding to the nonbasic variables ¢; are nonnegative. By considering the pro-
cedure according to which ¢; are obtained, we can see that the values of ¢; are not
related to the b;. The values of ¢; depend only on the basis, on the coefficients of the
constraint matrix, and the original coefficients of the objective function. The relation
is given in Eq. (4.10):

Ej:Cj_nTAjZCj_c’]B;BilAj (4.33)

Thus changes in b; will affect the values of basic variables in the optimal solution and
the optimality of the basis will not be affected provided that the changes made in b; do
not make the basic solution infeasible. Thus if the new basic solution remains feasible
for the new right-hand side, that is, if

X, =B~ '(b+Ab) >0 (4.34)

then the original optimal basis, B, also remains optimal for the new problem. Since the

original solution, say’
X1
X2
Xp=1 .
Xm

Xz =B 'b (4.35)

is given by

Equation (4.34) can also be expressed as

m
x,{=xi+ZﬂijAijO’ i=1,2,....m (4.36)
j=1

where
B~ =81 (4.37)

Hence the original optimal basis B remains optimal provided that the changes made in
b;, Ab;, satisfy the inequalities (4.36). The change in the value of the ith optimal basic
variable, Ax;, due to the change in b; is given by

X3 — Xz = AXz =B 'Ab

It is assumed that the variables are renumbered such that the first m variables represent the basic variables
and the remaining n — m the nonbasic variables.
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that is,
m
Axi = BijAb;, i=12,....m (4.38)
j=1
Finally, the change in the optimal value of the objective function (Af) due to the
change Ab; can be obtained as

m
Af =cpAXp =cpB 'Ab=n"Ab =) m;Ab; (4.39)
j=1
Suppose that the changes made in b; (Ab;) are such that the inequality (4.34) is violated
for some variables so that these variables become infeasible for the new right-hand-side
vector. Our interest in this case will be to determine the new optimal solution. This can
be done without reworking the problem from the beginning by proceeding according
to the following steps:

1. Replace the b; of the original optimal tableau by the new values, b =B! (b +
Ab) and change the signs of all the numbers that are lying in the rows in which
the infeasible variables appear, that is, in rows for which E; < 0.

2. Add artificial variables to these rows, thereby replacing the infeasible variables
in the basis by the artificial variables.

3. Go through the phase I calculations to find a basic feasible solution for the
problem with the new right-hand side.

4. If the solution found at the end of phase I is not optimal, we go through the
phase II calculations to find the new optimal solution.

The procedure outlined above saves considerable time and effort compared to the
reworking of the problem from the beginning if only a few variables become infea-
sible with the new right-hand side. However, if the number of variables that become
infeasible are not few, the procedure above might also require as much effort as the
one involved in reworking of the problem from the beginning.

Example 4.5 A manufacturer produces four products, A, B, C, and D, by using two
types of machines (lathes and milling machines). The times required on the two machines
to manufacture 1 unit of each of the four products, the profit per unit of the product, and
the total time available on the two types of machines per day are given below:

Time required per unit (min) for product: Total time available
Machine A B C D per day (min)
Lathe machine 7 10 4 9 1200
Milling machine 3 40 1 1 800
Profit per unit ($) 45 100 30 50

Find the number of units to be manufactured of each product per day for maximizing
the profit.

Note: This is an ordinary LP problem and is given to serve as a reference problem
for illustrating the sensitivity analysis.



210 Linear Programming II: Additional Topics and Extensions

SOLUTION Let x;, x2, x3, and x4 denote the number of units of products A, B, C,
and D produced per day. Then the problem can be stated in standard form as follows:

subject to

Minimize f = —45x; — 100x, — 30x3 — 50x4

Tx1 + 10x + 4x3 + 9x4 < 1200
3x1 4+ 40x + x3 + x4 < 800

x;i >0, i=1to4

By introducing the slack variables x5 > 0 and xg > 0, the problem can be stated in
canonical form and the simplex method can be applied. The computations are shown

in tableau form below:

Basic Variables Ratio b; /a;y
variables  x; X2 X3 X4 X5 xe —f b; fora; >0
X5 7 10 4 9 1 0 0 1200 120
X6 3 1 1 0 1 0 80020 < Smaller

one, x¢ leaves

Pivot element the basis
—f —45 —100 -30 —-50 0 0 1 0
T

Minimum ¢; < 0; x, enters the next basis

Result of pivot operation:

xs 2 0 L % 1 10 1000 9% < Smaller
one, x5 leaves
Pivot element the basis
3 1 1 1
75 55 95 5
-5 -3 0 -2 -2 0 21 2000
T

Minimum ¢; < 0, x4 enters the basis

Result of pivot operation:

5 3 4 1 4,000 800
X4 7 0 7 1 35 35 0 35 3 <«Smaller
one, x4 leaves
Pivot element the basis
2 1 1 9 120
25 50 38 8 52,000
- -7 0 -7 0 7 7 1 7

T

Minimum c¢; < 0, x3 enters the basis
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Result of pivot operation:

X3 % 0 1 % % _% 3
% w ! 0 ~ % ~ 1% % T
—f 2 0 0 50 2 2 1 28,000
3 3 3 3 3
The optimum solution is given by
40 80 . .
X, = —, x3 = — (basic variables)
3 3
X1 = x4 = x5 = x¢ = 0 (nonbasic variables)
—28,000 . $28,000
Smin = — or maximum profit = 3
From the final tableau, one can find that
800
_Jx3| _ )3 | _ vector of basic variables in (E))
L EOY % " the optimum solution !
. _3 vector of original cost
cp = { c3} = { 1 00} = coefficients corresponding (Ep)
2 to the basic variables
B— 4 10| _ matrix of original coefficients (E3)
" |1 40| corresponding to the basic variables 3
By B 4 _ 1 inverse of the coefficient
B! = |: ,333 1332} = |: 115 125:| = matrix B, which appears (Eg)
23 P22 150 75 in the final tableau also
4 _ 1
_ Tn-1 _ 15 15
m =czB —(—30—100)|: ) 2i|
150 75

= negatives of which appear (Es)
in the final tableau also

{ _ % } simplex multipliers, the
3

Example 4.6 Find the effect of changing the total time available per day on the two
machines from 1200 and 800 min to 1500 and 1000 min in Example 4.5.

SOLUTION Equation (4.36) gives

m
Xi+ Y BijAb; =0, i=12....m (4.36)
j=1
where x; is the optimum value of the ith basic variable. (This equation assumes that
the variables are renumbered such that x| to x,, represent the basic variables.)
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If the variables are not renumbered, Eq. (4.36) will be applicable for i = 3 and
2 in the present problem with Abs = 300 and Ab, = 200. From Egs. (E;) to (Es) of
Example 4.5, the left-hand sides of Eq. (4.36) become

X3+ B33 Aby + B Aby = B2 + £(300) — 15(200) = AP
X2+ Bo3Abz + B Aby = % — %(300) + %(200) _ %

Since both these values are > 0, the original optimal basis B remains optimal even
with the new values of ;. The new values of the (optimal) basic variables are given
by Eq. (4.38) as

/
X
/
XB={§
X

800 4 1000
IS —15 | [300] _ ['F"
N N _ 1 21200 " | s

3 150 75 3

and the optimum value of the objective function by Eq. (4.39) as

}:XB—i—AXB =Xz +B'Ab

(=}

20
, 28,000 20
fminmein+Af=fmin+chXB=_ 3 +(_30_100){ 130}
3
35,000

3

Thus the new profit will be $35,000/3.

4.5.2 Changes in the Cost Coefficients c;

The problem here is to find the effect of changing the cost coefficients from c; to
¢j + Ac; on the optimal solution obtained with ¢;. The relative cost coefficients cor-
responding to the nonbasic variables, x,,+1, Xm42, - - -, X, are given by Eq. (4.10):

m

CjZCj—]TTAjZCj—Zﬂ,'aU, j=m+1,m+2,...,n (4.40)
i=1

where the simplex multipliers r; are related to the cost coefficients of the basic variables

by the relation
al = C};B*l

that is,

m
ﬂlzzckﬁklv i:l,z,--~,m (4.41)
k=1

From Eqgs. (4.40) and (4.41), we obtain

Ej =cj— Zaij (chﬁk,) =cCj — ch (Z%‘jﬁki) s
i=1

i=1 k=1 k=1
i=m+1m+2,...,n (4.42)
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If the ¢; are changed to c¢; + Ac;j, the original optimal solution remains optimal, pro-

vided that the new values of ¢}, Ej’. satisfy the relation

m m
=i+ Aci =Y (et Acy) (Z“w‘ﬁki> 20

k=1 i=1
m m
=¢;+ Acj — Z Acy (Zaijﬁki) >0,
k=1 i=1
j=m+1m+2,---.n (4.43)

where ¢; indicate the values of the relative cost coefficients corresponding to the
original optimal solution.

In particular, if changes are made only in the cost coefficients of the nonbasic
variables, Eq. (4.43) reduces to

If Eq. (4.43) is satisfied, the changes made in c;, Ac;, will not affect the optimal basis
and the values of the basic variables. The only change that occurs is in the optimal
value of the objective function according to

Af = xjAc; (4.45)

j=1

and this change will be zero if only the c¢; of nonbasic variables are changed.

Suppose that Eq. (4.43) is violated for some of the nonbasic variables. Then it
is possible to improve the value of the objective function by bringing any nonbasic
variable that violates Eq. (4.43) into the basis provided that it can be assigned a nonzero
value. This can be done easily with the help of the previous optimal tableau. Since
some of the ¢ c are negative, we start the optimization procedure again by using the old
optimum as an initial feasible solution. We continue the iterative process until the new
optimum is found. As in the case of changing the right-hand-side b;, the effectiveness
of this procedure depends on the number of violations made in Eq. (4.43) by the new
values ¢; + Ac;.

In some of the practical problems, it may become necessary to solve the opti-
mization problem with a series of objective functions. This can be accomplished
without reworking the entire problem for each new objective function. Assume that
the optimum solution for the first objective function is found by the regular proce-
dure. Then consider the second objective function as obtained by changing the first
one and evaluate Eq. (4.43). If the resulting c > 0, the old optimum still remains
as optimum and one can proceed to the next ObJeCtIVC function in the same manner.
On the other hand, if one or more of the resulting ¢’ ; <0, we can adopt the proce-
dure outlined above and continue the iterative process using the old optimum as the
starting feasible solution. After the optimum is found, we switch to the next objective
function.
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Example 4.7 Find the effect of changing c3 from —30 to —24 in Example 4.5.

SOLUTION Here Ac; = 6 and Eq. (4.43) gives that
¢y =1+ Act — Acs[an B + asi Bl = £+ 0 —6[3(—%) +7(:5)]1 = —3
¢, =4+ Acy — Acs[asBr + azaPp]l = 2+ 0 — 6[1(—15) +9(5)] = &
€5 =05+ Acs — Acs[axsBs + assPl = 2 +0 — 6[0(—5) + 1(;5)] =
Cy = Co + Ace — Acs[axPs + assfss] = 3 +0 — 6[1(—75) + 0(55)] = 12
The change in the value of the objective function is given by Eq. (4.45) as
28,000 n 4800 _ 23,200
3 3 3
Since €] is negative, we can bring x; into the basis. Thus we start with the optimal

tableau of the original problem with the new values of relative cost coefficients and
improve the solution according to the regular procedure.

4800
Af = Acixz = so that f =

Variables Ratio b; /a; J
Basic variables X1 X2 X3 X4 X5 x6 —f b; for a;; >0
X3 2 0 1 1 £ -L o X 160 «
Pivot element
1 1 1 2 40
X2 30 1 0 —30 ~ 150 75 O 3 400
5 8 86 16 23,200
—f -3 0 0 3 5 05 LT
X1 1 o 2 I L —-L 0 160
1 2 3 7
X2 0 1 —30 — 75 ~ 750 250 0 8
—f 0 0 1 5 6 1 1 8000

Since all the relative cost coefficients are nonnegative, the present solution is optimum
with

x; = 160, x, = 8 (basic variables)
X3 = x4 = x5 = x¢ = 0 (nonbasic variables)

Jfmin = —8000 and maximum profit = $8000

4.5.3 Addition of New Variables

Suppose that the optimum solution of a LP problem with n variables xj, xp, ..., X,
has been found and we want to examine the effect of adding some more variables
Xn+k, k=1,2,..., on the optimum solution. Let the constraint coefficients and the



4.54 Changes

4.5 Sensitivity or Postoptimality Analysis 215

cost coefficients corresponding to the new variables x,.; be denoted by a; 1, i =1
to m and c,4y, respectively. If the new variables are treated as additional nonbasic
variables in the old optimum solution, the corresponding relative cost coefficients are
given by

m
Cotk = Cutk — Y Tillinik (4.46)
i=1
where 7, 73, . .., 7, are the simplex multipliers corresponding to the original optimum

solution. The original optimum remains optimum for the new problem also provided
that ¢,4x > 0 for all k. However, if one or more ¢, < 0, it pays to bring some of
the new variables into the basis provided that they can be assigned a nonzero value.
For bringing a new variable into the basis, we first have to transform the coefficients
Qi n+k INtO @; 44 SO that the columns of the new variables correspond to the canonical
form of the old optimal basis. This can be done by using Eq. (4.9) as

An+k = B71 An+k

mx1 mxm mxl1
that is,
m
Ak =Y Bijajntk.  i=1tom (4.47)
Jj=1

where B! = [B; ;1 1s the inverse of the old optimal basis. The rules for bringing a new
variable into the basis, finding a new basic feasible solution, testing this solution for
optimality, and the subsequent procedure is same as the one outlined in the regular
simplex method.

Example 4.8 In Example 4.5, if a new product, E, which requires 15 min of work on
the lathe and 10 min on the milling machine per unit, is available, will it be worthwhile
to manufacture it if the profit per unit is $40?

SOLUTION Let x; be the number of units of product £ manufactured per day. Then
cy = —40, aj, = 15, and ay; = 10; therefore,

& = e — man — may = —40 + (2)(15) + (3)(10) = 22 > 0

Since the relative cost coefficient ¢; is nonnegative, the original optimum solution
remains optimum for the new problem also and the variable x; will remain as a nonbasic
variable. This means that it is not worth manufacturing product E.

in the Constraint Coefficients a;;

Here the problem is to investigate the effect of changing the coefficient a;; to a;; + Aa;;
after finding the optimum solution with g;;. There are two possibilities in this case. The
first possibility occurs when all the coefficients ;;, in which changes are made, belong
to the columns of those variables that are nonbasic in the old optimal solution. In this
case, the effect of changing a;; on the optimal solution can be investigated by adopting
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the procedure outlined in the preceding section. The second possibility occurs when
the coefficients changed a;; correspond to a basic variable, say, x ;o of the old optimal
solution. The following procedure can be adopted to examine the effect of changing
a; jo to a; jo + Aa; jo.

1. Introduce a new variable x,; to the original system with constraint coefficients

Qi a1 = G; jo + Ad; jo (4.48)
and cost coefficient
cnt1 = Cjo (original value itself) (4.49)

2. Transform the coefficients a; , 11 to @, ,+1 by using the inverse of the old optimal
basis, B~! = [Bij], as

m
Tintr =) Bijajnti, i=ltom (4.50)
j=1

3. Replace the original cost coefficient (c ;o) of x o by a large positive number N,
but keep c¢,+1 equal to the old value cjg.

4. Compute the modified cost coefficients using Eq. (4.43):

m m
c;=Cj+Ac;— Z Acy (Zaijﬁki>,
k=1 i=1

j=m+1m+2 - nn+1 4.51)

where Acy =0fork=1,2,...,jo—1,jo+1,...,mand Acjo = N — cjo.

5. Carry the regular iterative procedure of simplex method with the new objective
function and the augmented matrix found in Eqs. (4.50) and (4.51) until the
new optimum is found.

Remarks:

1. The number N has to be taken sufficiently large to ensure that x ;o cannot be
contained in the new optimal basis that is ultimately going to be found.

2. The procedure above can easily be extended to cases where changes in coeffi-
cients a;; of more than one column are made.

3. The present procedure will be computationally efficient (compared to reworking
of the problem from the beginning) only for cases where there are not too many
number of basic columns in which the g;; are changed.

Example 4.9 Find the effect of changing A; from {;} to {160} in Example 4.5 (i.e.,

changes are made in the coefficients a;; of nonbasic variables only).

SOLUTION The relative cost coefficients of the nonbasic variables (of the original
optimum solution) corresponding to the new a;; are given by

¢j=cj—n"A;, j = nonbasic (1,4, 5, 6)
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Since A is changed, we have

E] = (] —JtTAl

6
~as--%-d o=y

As ¢ is positive, the original optimum solution remains optimum for the new problem
also.

Example 4.10 Find the effect of changing A from {]} to {7} in Example 4.5.

SOLUTION
is given by

The relative cost coefficient of the nonbasic variable x; for the new A;

n 2 {5}
3 36

Since ¢; is negative, x; can be brought into the basis to reduce the objective function
further. For this we start with the original optimum tableau with the new values of A

Elzcl—nTA1:—45— =—]3—3

given by
4 _17(5 20 _6 14
- _ 15 15 15 15 15
A, =B 'A, = = =
_1 21]e 144 19
150 75 30 25 150
Variables
Basic variables X1 X2 X3 X4 X5 X6 —f b; (bi/aiy)
14 7 4 1 800 4000
X3 5 o0 1 3 s 15 9 3 a7
19 1 1 2 40 2000
X2 150 1 0 -5 - 75 0 3 o
Pivot element
- 13 50 22 2 28,000
—/ -3 o 0 35 3 3 I =5
T
140 49 6 5 3,200
x3 0 ~To i v~ 0 o
150 5 1 4 2,000
X1 B 0 -5 -1 w0 0
650 295 135 30 186,000
-f 0 T 0 T v 1 1 7o

Since all ¢; are nonnegative, the present tableau gives the new optimum solution as

x; =2000/19, x3 =3200/19 (basic variables)
Xy = X4 = x5 = X6 = 0 (nonbasic variables)
186,000 . $186,000
Smin = T and maximum profit = 19
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4.5.5 Addition of Constraints

Suppose that we have solved a LP problem with m constraints and obtained the optimal
solution. We want to examine the effect of adding some more inequality constraints on
the original optimum solution. For this we evaluate the new constraints by substituting
the old optimal solution and see whether they are satisfied. If they are satisfied, it means
that the inclusion of the new constraints in the old problem would not have affected
the old optimum solution, and hence the old optimal solution remains optimal for the
new problem also. On the other hand, if one or more of the new constraints are not
satisfied by the old optimal solution, we can solve the problem without reworking the
entire problem by proceeding as follows.

1. The simplex tableau corresponding to the old optimum solution expresses all the
basic variables in terms of the nonbasic ones. With this information, eliminate
the basic variables from the new constraints.

2. Transform the constraints thus obtained by multiplying throughout by —1.

3. Add the resulting constraints to the old optimal tableau and introduce one arti-
ficial variable for each new constraint added. Thus the enlarged system of
equations will be in canonical form since the old basic variables were elim-
inated from the new constraints in step 1. Hence a new basis, consisting of the
old optimal basis plus the artificial variables in the new constraint equations,
will be readily available from this canonical form.

4. Go through phase I computations to eliminate the artificial variables.
5. Go through phase II computations to find the new optimal solution.

Example 4.11 1f each of the products A, B, C, and D require, respectively, 2, 5, 3,
and 4 min of time per unit on grinding machine in addition to the operations specified
in Example 4.5, find the new optimum solution. Assume that the total time available
on grinding machine per day is 600 min and all this time has to be utilized fully.

SOLUTION The present data correspond to the addition of a constraint that can be
stated as

2x1 + Sxp 4+ 3x3 + 4x4 = 600 (Ep)

By substituting the original optimum solution,

40 800
=%, x3=°%, xp=x=x=x,=0

the left-hand side of Eq. (E;) gives
40 800 2600
2(0) +5(5) +3(5°) +4(0) = =5~ # 600

Thus the new constraint is not satisfied by the original optimum solution. Hence we
proceed as follows.
Step 1 From the original optimum tableau, we can express the basic variables as

800 5 7 4 1
X3 =73 3% T 3N T g3 e

40 _ 1 € R
X2 =73 = 3501+ 3%+ 15545 — 7546
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Thus Eq. (E;) can be expressed as
2x1 + 5(% — 3%)61 + %)&1 + %)@ — %X6)

+380 3y — Ty — 14—5x5 + %J%) + 4x4 = 600

3 3 3
that is,
19 17 23 1 800
—g X1 — gX4— X5 + (3X6 = — 7% (E2)
Step 2 Transform this constraint such that the right-hand side becomes positive,
that is,
19 17 23 1 800
TX1+ gXa+ 5555 — 5% = 3 (E3)

Step 3 Add an artifical variable, say, x;, the new constraint given by Eq. (E3) and the
infeasibility form w = x; into the original optimum tableau to obtain the new

canonical system as follows:

Basic Variables
variables X1 X2 X3 X4 X5 X6 X —f —w b; (bi/ais)
5 7 4 1 800
1 1 1 2 40
19 17 23 1 800 1600
Xk 3 o0 5 5 -5 I 0 0 55 o
Pivot element
25 50 2 2 28,000
—f K o 5 F 3 0 1 0 5
19 17 23 1 800
—w % ¢ "% 15 0 0 N
T

Step 4 Eliminate the artificial variable by applying the phase I procedure:

Basic Variables -
variables X1 X2 X3 X4 X5 X6 Xk —f —w b;
16 13 3 10 2,400
x3 o 1 g %’ % T 0 0 "o
6 7 13 1 200
%2 o0 mn 7 s 0 0 T
17 23 2 6 1,600
X1 1 0 0 Io) 95 —os 19 0 0 19
175 101 16 50 164,000
-/ L A AN 0 D
—w 0 0 0 0 0 0 0 0 1 0
Thus the new optimum solution is given by
x| = %, Xy = %, X3 = % (basic variables)
x4 = x5 = x¢ = 0 (nonbasic variables)
164,000 $164,000

fiin = ——g— and  maximum profit = ——



220 Linear Programming II: Additional Topics and Extensions

4.6 TRANSPORTATION PROBLEM

This section deals with an important class of LP problems called the transportation
problem. As the name indicates, a transportation problem is one in which the objec-
tive for minimization is the cost of transporting a certain commodity from a number
of origins to a number of destinations. Although the transportation problem can be
solved using the regular simplex method, its special structure offers a more convenient
procedure for solving this type of problems. This procedure is based on the same the-
ory of the simplex method, but it makes use of some shortcuts that yield a simpler
computational scheme.

Suppose that there are m origins Ry, Ry, ---, R, (e.g., warehouses) and n des-
tinations, Dy, Dy, ---, D, (e.g., factories). Let a; be the amount of a commodity
available at origin i (i =1,2,...,m) and b; be the amount required at destination
Jj (j=1,2,...,n). Let ¢;; be the cost per unit of transporting the commodity from
origin i to destination j. The objective is to determine the amount of commodity (x;;)
transported from origin i to destination j such that the total transportation costs are
minimized. This problem can be formulated mathematically as

m n
Minimize f =Y ) ¢ (4.52)
i=1 j=1
subject to
"
Sowj=a  i=12....m (4.53)
j=1
m
Yoxj=b, j=12...n (4.54)
i=1
xj >0, i=1,2,...,m, j=1,2,...,n (4.55)

Clearly, this is a LP problem in mn variables and m + n equality constraints.

Equations (4.53) state that the total amount of the commodity transported from
the origin i to the various destinations must be equal to the amount available at origin
i (i=1,2,...,m), while Eqgs. (4.54) state that the total amount of the commodity
received by destination j from all the sources must be equal to the amount required at
the destination j (j = 1, 2, ..., n). The nonnegativity conditions Eqgs. (4.55) are added
since negative values for any x;; have no physical meaning. It is assumed that the total
demand equals the total supply, that is,

i a; = Xn: bj (456)
i=1 j=1

Equation (4.56), called the consistency condition, must be satisfied if a solution is to
exist. This can be seen easily since

Ya-3(Ln)-L(Xu)-xn  wm
i=1 i 1 j=1

i=1 \ j=1 j=1

i=
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The problem stated in Eqs. (4.52) to (4.56) was originally formulated and solved by
Hitchcock in 1941 [4.6]. This was also considered independently by Koopmans in
1947 [4.7]. Because of these early investigations the problem is sometimes called the
Hitchcock-Koopmans transportation problem. The special structure of the transportation
matrix can be seen by writing the equations in standard form:

X1+ X4+ X, =a
X21 + X0 4 - X, =ap
(4.58a)
Xml + X2 + -+ -+ Xppn= ap,
X11 +x21 +xml = bl
X12 + x22 + Xm2 =b
(4.58b)
Xin + X2 + Xpn = by
criXi + X + s+ CiuXip + co1x21 + - A ConXop -
+ lexml + ttt + Cmnxmn == f (4.58C)

We notice the following properties from Egs. (4.58):

1. All the nonzero coefficients of the constraints are equal to 1.
2. The constraint coefficients appear in a triangular form.

3. Any variable appears only once in the first m equations and once in the next n
equations.

These are the special properties of the transportation problem that allow devel-
opment of the transportation technique. To facilitate the identification of a starting
solution, the system of equations (4.58) is represented in the form of an array, called
the transportation array, as shown in Fig. 4.2. In all the techniques developed for solv-
ing the transportation problem, the calculations are made directly on the transportation
array.

Computational Procedure. The solution of a LP problem, in general, requires a
calculator or, if the problem is large, a high-speed digital computer. On the other hand,
the solution of a transportation problem can often be obtained with the use of a pencil
and paper since additions and subtractions are the only calculations required. The basic
steps involved in the solution of a transportation problem are

1. Determine a starting basic feasible solution.

2. Test the current basic feasible solution for optimality. If the current solution is
optimal, stop the iterative process; otherwise, go to step 3.

3. Select a variable to enter the basis from among the current nonbasic variables.
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To Destination j Amount
. available
rom 1 2 3 n a;
l
1 X11 X12 X413 T Xin
‘1 €12 €13 Cin| @4
2 | xp X22 X23 | x2n
€21 Coo €23 Con| ap
Origin
; 3 | x3 X3p x33 U xan
€31 Ca32 €33 C3n| a3
m | Xmq Xm2 Xm3 Xmn
Cm1 Cm2 Cm3 Cmn| ap,
Amount
required by by ba e b,
bj

Figure 4.2 Transportation array.

4. Select a variable to leave from the basis from among the current basic variables
(using the feasibility condition).
5. Find a new basic feasible solution and return to step 2.

The details of these steps are given in Ref. [4.10].

4.7 KARMARKAR’S INTERIOR METHOD

Karmarkar proposed a new method in 1984 for solving large-scale linear programming
problems very efficiently. The method is known as an interior method since it finds
improved search directions strictly in the interior of the feasible space. This is in
contrast with the simplex method, which searches along the boundary of the feasible
space by moving from one feasible vertex to an adjacent one until the optimum point
is found. For large LP problems, the number of vertices will be quite large and hence
the simplex method would become very expensive in terms of computer time. Along
with many other applications, Karmarkar’s method has been applied to aircraft route
scheduling problems. It was reported [4.19] that Karmarkar’s method solved problems
involving 150,000 design variables and 12,000 constraints in 1 hour while the simplex
method required 4 hours for solving a smaller problem involving only 36,000 design
variables and 10,000 constraints. In fact, it was found that Karmarkar’s method is as
much as 50 times faster than the simplex method for large problems.
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x2

Minimum value off\

-

X1

Figure 4.3 Improvement of objective function from different points of a polytope.

Karmarkar’s method is based on the following two observations:

1. If the current solution is near the center of the polytope, we can move along the
steepest descent direction to reduce the value of f by a maximum amount. From
Fig. 4.3, we can see that the current solution can be improved substantially by
moving along the steepest descent direction if it is near the center (point 2) but
not near the boundary point (points 1 and 3).

2. The solution space can always be transformed without changing the nature of
the problem so that the current solution lies near the center of the polytope.

It is well known that in many numerical problems, by changing the units of data or
rescaling (e.g., using feet instead of inches), we may be able to reduce the numerical
instability. In a similar manner, Karmarkar observed that the variables can be trans-
formed (in a more general manner than ordinary rescaling) so that straight lines remain
straight lines while angles and distances change for the feasible space.

Statement of the Problem

Karmarkar’s method requires the LP problem in the following form:
Minimize f = ¢'X
subject to
[a]X =0
Xi+x 4t x, =1 (4.59)
X>0
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where X = {x1,x2, ..., x,}7, e={c1,c2,...,c,)T, and [a] is an m x n matrix. In
addition, an interior feasible starting solution to Egs. (4.59) must be known. Usually,

{1 1 1}T
X={— - .=
n n n

is chosen as the starting point. In addition, the optimum value of f must be zero for
the problem. Thus

o_ vt
X"V =1—- —...—% = interior feasible

n o n n (4.60)

fmin =0

Although most LP problems may not be available in the form of Eq. (4.59) while
satisfying the conditions of Eq. (4.60), it is possible to put any LP problem in a form
that satisfies Egs. (4.59) and (4.60) as indicated below.

4.7.2 Conversion of an LP Problem into the Required Form

Let the given LP problem be of the form
Minimize d"X
subject to
[¢]X =D
(4.61)
X>0

To convert this problem into the form of Eq. (4.59), we use the procedure suggested
in Ref. [4.20] and define integers m and n such that X will be an (n — 3)-component
vector and [a] will be a matrix of order m — 1 x n — 3. We now define the vector

z={z1,22,--~,23)" as
zZ= X (4.62)
B
where B is a constant chosen to have a sufficiently large value such that
n—=3
B> xi (4.63)
i=1

for any feasible solution X (assuming that the solution is bounded). By using Eq. (4.62),
the problem of Eq. (4.61) can be stated as follows:

Minimize d'z
subject to

@)z = lb
B (4.64)

NI
v
=
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We now define a new vector z as
Z
in-2
Zn—1
Zn

7 =

and solve the following related problem instead of the problem in Eqgs. (4.64):
Minimize {d" 0 0 M}z

subject to

n n
[a] 0 —Eb (Eb—[a]e) L {(1)}

00 0 (4.65)

eTz+Zn—2+Zn—l +Zn = l
z>0

where e is an (m — 1)-component vector whose elements are all equal to 1, z,_, is a
slack variable that absorbs the difference between 1 and the sum of other variables,
Zu—1 1s constrained to have a value of 1/n, and M is given a large value (corresponding
to the artificial variable z,,) to force z, to zero when the problem stated in Eqs. (4.61)
has a feasible solution. Equations (4.65) are developed such that if z is a solution to
these equations, X = Bz will be a solution to Egs. (4.61) if Egs. (4.61) have a feasible
solution. Also, it can be verified that the interior point z = (1/n)e is a feasible solution
to Eqgs. (4.65). Equations (4.65) can be seen to be the desired form of Egs. (4.61) except
for a 1 on the right-hand side. This can be eliminated by subtracting the last constraint
from the next-to-last constraint, to obtain the required form:

Minimize {dT 0 0 M}z

subject to

n n
[@] 0 —Eb (Eb—[a]e) Z:{g}

T
—e —1 n—1 —1 466

eTi'i‘ Zn2F+ 1+ =1
z>0

Note: When Egs. (4.66) are solved, if the value of the artificial variable z, > 0,
the original problem in Egs. (4.61) is infeasible. On the other hand, if the value
of the slack variable z,_» = 0, the solution of the problem given by Egs. (4.61) is
unbounded.

Example 4.12 Transform the following LP problem into a form required by Kar-
markar’s method:
Minimize 2x; + 3x,
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subject to
3x;1 +x0 —2x3 =3
le — ZXQ =2
Xi = 0, i=1,2,3
SOLUTION It can be seen that

xi

d={2 3 0, [Ot]=|:g _é _3i|,b={223},andX= xo
X3

We define the integers m and n as n = 6 and m = 3 and choose 8 = 10 so that

1 71
7= — 22
10 23

Noting that e = {1, 1, 1}T, Egs. (4.66) can be expressed as
Minimize {20 30 0 0 0 M}z

4 Bl

6 3] 3 1 -2 } o
“17012 5s-2 o)), =
(=1 1 11 -1 5 —1}z=0

u++ntuts+ze =1

z=1{z1 2 23 24 75 2z} >0

subject to

where M is a very large number. These equations can be seen to be in the desired
form.

4.7.3 Algorithm

Starting from an interior feasible point X", Karmarkar’s method finds a sequence of
points X® X® ... using the following iterative procedure:

1. Initialize the iterative process. Begin with the center point of the simplex as the

initial feasible point
xo_[L1 1 T
“lan onf

Set the iteration number as k = 1.
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2. Test for optimality. Since f = 0 at the optimum point, we stop the procedure
if the following convergence criterion is satisfied:

e X® < e (4.67)

where ¢ is a small number. If Eq. (4.67) is not satisfied, go to step 3.

3. Compute the next point, X*+D_ For this, we first find a point Y**1 in the
transformed unit simplex as

T
yern 1L L
n n n

(4.68)
a(U] = [PI"(PIPID) [PDIDX®)e

llell v/n(n —1)
where ||c|| is the length of the vector ¢, [/] the identity matrix of order n,

[D(X®)] an n x n matrix with all off-diagonal entries equal to 0, and diagonal
entries equal to the components of the vector X* as

(DX ) =x®, i=1,2,...,n (4.69)

[P]is an (m + 1) x n matrix whose first m rows are given by [a] [D(X®)]
and the last row is composed of 1’s:

(k)
(P] = [1 [a][?@ ] 1] 4.70)

and the value of the parameter « is usually chosen as o = % to ensure con-
vergence. Once Y**D is found, the components of the new point X*+D are
determined as

(k) (k+1)

k+) _ N P
xl. —W, l—1,2,...,l’l (471)

r=1"+r r

Set the new iteration number as k = k + 1 and go to step 2.

Example 4.13 Find the solution of the following problem using Karmarkar’s method:
Minimize f = 2x; + x, — x3
subject to
X —x3=0
X1+x+x3=1
x>0, i=1,2,3 (E.1)

Use the value of ¢ = 0.05 for testing the convergence of the procedure.

SOLUTION The problem is already in the required form of Eq. (4.59), and hence
the following iterative procedure can be used to find the solution of the problem.
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Step 1 We choose the initial feasible point as

XD —

W= W= W=

and set k = 1.

Step 2 Since | f(X)| = |%| > 0.05, we go to step 3.

Step 3 Since [al= {0, 1, —1},e= (2,1, =), lcl = V@2 + ()2 + (—1)2 = /6,
we find that

o
o O

[DXM)] =

S O Wi
S W=
|—

—_

[aDXM)]={0 I -1}

M 0ol -1
P = [[“{[Dfxl)]} :[ 3 3}
11 1

201" [%o0
(PP = [9 ] = {2 }
03 01

1 2

3007, 2
[DXMle=]0 1 0 1t=1 1
1 1

003 —3

(11— [PI"( PP IPDIDXM)]e

2
017 - 3
100 9 11 ;
(o rol-| I
001 _%1_05_111 B
3
2 1 17 2 4
3 3 3 3 9
-1 1 1 -} 2
- 3 6 6 3 9
IR N _2
3 6 6 3 9

Using & = 1, Eq. (4.68) gives

1 4 34
3 9 108
yo_Jil_1) b 1 )y
3 4 9 3(2)«/6 108
1 2 37
3 9 108
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Noting that
Z xDy®

Eq. (4.71) can be used to find

34
= 3(op) +

34

(2 2
X 37
(2)} — # =35 =

(1) (2) 37
Z Xr 34

{x

3(m) + 3(i0p) =

1

3

Set the new iteration number as k = k + 1 = 2 and go to step 2. The procedure

is to be continued until convergence is achieved.

Notes:

1. Although X® = Y@ in this example, they need not be, in general, equal to

one another.
2. The value of f at X® is

f(X(z)) = 2(108) + 108 13()78 = 17

4.8 QUADRATIC PROGRAMMING

A quadratic programming problem can be stated as

Minimize f(X) = C"X + 1X”DX
subject to
AX <B
X=>0
where
X1 c1 by
X2 (&) b2
X = s C= . s = P
Xn Cn by,
[d\y dip -+ din a1 ap -
oy dy -+ doy ar ayp ---
D= , and A=
_dnl an dnn _aml am2

< fX0) =48

4.72)

4.73)
(4.74)

din
dap

al‘ﬂ n

In Eq. (4.72) the term X'DX/2 represents the quadratic part of the objective
function with D being a symmetric positive-definite matrix. If D = 0, the problem
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reduces to a LP problem. The solution of the quadratic programming problem stated
in Egs. (4.72) to (4.74) can be obtained by using the Lagrange multiplier technique.
By introducing the slack variables sl.z, i=1,2,...,m, in Eqgs. (4.73) and the surplus
variables tjz, j=1,2,...,n, in Egs. (4.74), the quadratic programming problem can
be written as

Minimize f(X) = C'X + 1X'DX 4.72)
subject to the equality constraints
ANX+s2=b;, i=1,2,....,m (4.75)
—xj+1;=0, j=12....n (4.76)
where
aijl
a;p
Ai=4 .
din

The Lagrange function can be written as

m
L(X,S, T, %, 0) = C"X + IX"™DX + Y 1;(ATX + 57 — b))
i=1

+) 0 (—x; +13) 4.77)
j=1

The necessary conditions for the stationariness of L give

oL “ "
E:c,-jtZdijx,»Jeria,j—ej:o, j=12....n (4.78)
J i=1 i=1
aL .
— =2);5, =0, i=1,2,....m 4.79)
8Sl'
dL .
— =26;1; =0, i=12....n (4.80)
aL
=ATX +s5?—b; =0, i=1,2,....m (4.81)
I
oL 2 i 2 4.82
8_9j=_xj+tj20’ j=1L2,....n (4.82)

By defining a set of new variables Y; as
Yizsl.zz(), i=1,2,....,m (4.83)
Equations (4.81) can be written as

AX—bj=—st=-Y, i=12..,m (4.84)

i
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Multiplying Eq. (4.79) by s; and Eq. (4.80) by ¢;, we obtain
rist =AY =0, i=1,2,....m (4.85)
0;t; =0, ji=1,2,....n (4.86)
Combining Eqgs. (4.84) and (4.85), and Egs. (4.82) and (4.86), we obtain
1i(ATX — b)) =0, i=1,2,....m (4.87)
Oix; =0, j=12,....n (4.88)

Thus the necessary conditions can be summarized as follows:

ci—0;+ Xn:xidij + ixiaﬁ =0, j=12,....n (4.89)
i=1 i=1

ANX — b = v, i=1,2,....m (4.90)

x; >0, j=12,...,n 4.91)

Y; >0, i=1,2,...,m (4.92)

A >0, i=1,2,....m (4.93)

6; >0, j=12....n (4.94)

AiYi =0, i=1,2,....m (4.95)

jx; =0, j=1,2,....n (4.96)

We can notice one important thing in Eqs. (4.89) to (4.96). With the exception of
Egs. (4.95) and (4.96), the necessary conditions are linear functions of the variables
xj,Y;, A;, and 6;. Thus the solution of the original quadratic programming problem
can be obtained by finding a nonnegative solution to the set of m + n linear equations
given by Egs. (4.89) and (4.90), which also satisfies the m + n equations stated in Egs.
(4.95) and (4.96).

Since D is a positive-definite matrix, f(X) will be a strictly convex function,” and
the feasible space is convex (because of linear equations), any local minimum of the
problem will be the global minimum. Further, it can be seen that there are 2 (n 4 m)
variables and 2 (n 4+ m) equations in the necessary conditions stated in Egs. (4.89) to
(4.96). Hence the solution of the Egs. (4.89), (4.90), (4.95), and (4.96) must be unique.
Thus the feasible solution satisfying all the Eqgs. (4.89) to (4.96), if it exists, must give
the optimum solution of the quadratic programming problem directly. The solution
of the system of equations above can be obtained by using phase I of the simplex
method. The only restriction here is that the satisfaction of the nonlinear relations, Eqgs.
(4.95) and (4.96), has to be maintained all the time. Since our objective is just to find
a feasible solution to the set of Egs. (4.89) to (4.96), there is no necessity of phase
IT computations. We shall follow the procedure developed by Wolfe [4.21] to apply

"See Appendix A for the definition and properties of a convex function.
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phase I. This procedure involves the introduction of n nonnegative artificial variables
z; into the Eqgs. (4.89) so that

n m
ci—0;+ Y xidy+ Y aj+z;=0  j=12...n (4.97)

i=1 i=1

Then we minimize
n
F = Z zj (4.98)
j=1
subject to the constraints

n m
cj—9j+2xidij+ZAiaij+zj=O, j=1,2,...,n

i=1 i=1

ATX +Y; = b, i=1,2,....m
X>0, Y>>0, A>0, >0

While solving this problem, we have to take care of the additional conditions
)»l‘Yl‘ZO, j=1,2,...,m
(4.99)

ijj‘z(), j=1,2,...,l’l

Thus when deciding whether to introduce Y; into the basic solution, we first have to
ensure that either A; is not in the solution or A; will be removed when Y; enters the
basis. Similar care has to be taken regarding the variables 6; and x;. These additional
checks are not very difficult to make during the solution procedure.

Example 4.14
Minimize f = —4x; + x]2 —2x1x + 2x22

subject to
2x1 +x, <6
x; —4x, <0
x1>0, x>0

SOLUTION By introducing the slack variables Y| = S12 and YV, = s% and the surplus
variables 6; = t12 and 6, = t22, the problem can be stated as follows:

Minimize f = (—4 0) {2} + %(xl x2) |:_§ _421] {2}

et

—x1+6,=0

subject to

(Ep

—x2+6,=0
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By comparing this problem with the one stated in Eqs. (4.72) to (4.74), we find that

2 =2 2 1
61:_41 02205 Dz[_z 4]a Az[l _4}1

N AN A B

The necessary conditions for the solution of the problem stated in Egs. (E;) can be
obtained, using Eqgs. (4.89) to (4.96), as

—4 —0; +2x; —2x+ 201+ 1, =0
0—0, —2x1+4xo + A —4r =0

(E2)
2x1+x, —6=-Y]
X1—4X2—0=—Y2
x120, x>0, Y120, ¥2>0, 21 >0,
(E3)
A >0, 6>0, 6b>0
MY =0, 6ix;=0
(Es)

)»2Y2 = 0, 92)C2 =0

(If Y¥; is in the basis, A; cannot be in the basis, and if x; is in the basis, 6; cannot be
in the basis to satisfy these equations.) Equations (E;) can be rewritten as
2% —2x 420+ A — 60, + 2z =4
—2x1 +4x+ A =4k — 6 + 20 =0
2x1 + x2 + Y =6
X1 — 4x; + Y, =0

(Es)

where z; and z; are artificial variables. To find a feasible solution to Egs. (E;) to (E4)
by using phase I of simplex method, we minimize w = z; + z» with constraints stated
in Egs. (Es), (E3), and (E4). The initial simplex tableau is shown below:

Basic Variables B bi /@i
variables X X2 A Ay O 6 YT Yo oz oz w by forai>0
Yy 2 1 0 0 0 0 1 0 0 0 0 6 6
Y, 1 —4 0 0 0 0 0 1 0 0 0 0
7] 2 -2 2 1 -1 0 0 0 1 0 0 4
2 -2 1 =4 0 -1 0 0 0 1 0 0 0< Smaller
one
—w 0 -2 =3 3 1 1 0 0 0 0 1 —4
X, selected for Most negative

entering next basis
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According to the regular procedure of simplex method, A; enters the next basis since
the cost coefficient of A; is most negative and z, leaves the basis since the ratio b; /@
is smaller for z,. However, A cannot enter the basis, as Y is already in the basis [to
satisfy Eqs. (E4)]. Hence we select x, for entering the next basis. According to this
choice, z, leaves the basis. By carrying out the required pivot operation, we obtain the
following tableau:

Basic Variables b; /ais
variables X1 X2 A A B 6, Yy Yo zi z w b forai>0
Yy 20 = 10 41 1 0 0 -} 0 6 2<Smaler
one
Y, -1 0 1 —4 o -1 0 1 0 1 0 0
21 1 o 3 -1 -1 -f 0o o 1 {1 0 4 4
x -1 ;-1 0 -3 0 0 0 3 0
5 1 1
—w —1 0 -3 1 1 5 0 0 0 5 1 —4
T T
x1 selected to Most negative

enter the basis

This tableau shows that A; has to enter the basis and Y, or x; has to leave the basis.
However, A; cannot enter the basis since Y; is already in the basis [to satisfy the
requirement of Eqgs. (E4)]. Hence x; is selected to enter the basis and this gives Y] as
the variable that leaves the basis. The pivot operation on the element % results in the
following tableau:

Basic Variables bi /ais
variables x| xp A A B 6 Y Yo zi Zo W b; for @i >0
1 2 1 2 1 12
X1 v 5 0 5 0 -0 0 3
9 18 9 2 9 2 8
Y 0 v 5 O -w 5 v 0 3 3
13 7 3 2 3 8 8
one
1 4 1 1 1 6
13 7 3 2 2 8
T

Most negative

From this tableau we find that A; enters the basis (this can be permitted this time since
Y) is not in the basis) and z; leaves the basis. The necessary pivot operation gives the
following tableau:
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Basic Variables bi [ais
variables x; xp Ag Ao 61 6, Yi Y 71 z2 w by fora;>0
o100 % -x 7 & 0 x -1u5 0 F
L0000 -% % -5 5 1 -% # 0 {
o000 g - = - 0 f 0

»o 010 - 5 -F & 0 -5 f# 0f

—w 0O 0 O 0 0 0 0 0 1 I 1 0

Since both the artificial variables z; and z, are driven out of the basis, the present tableau
gives the desired solution as x; = %, Xy = %, Y, = %, A= % (basic variables),
Ay =0, Y1 =0, 6, =0, 6, = 0 (nonbasic variables). Thus the solution of the original

quadratic programming problem is given by

)

: 14 88
-xik:_:;v x;=ﬁ7 and fmln:f(xik,x;)z_ﬁ

—

4.9 MATLAB SOLUTIONS

The solutions of linear programming problems, based on interior point method, and
quadratic programming problems using MATLAB are illustrated by the following
examples.

Example 4.15 Find the solution of the following linear programming problem using
MATLAB (interior point method):

Minimize f = —x; — 2xp — x3
subject to
2x1+x0 —x3 <2
2x] —x2+5x3 <6
4x1+x2+x3 <6
x>0;i=1,2,3
SOLUTION
Step 1 Express the objective function in the form f(x) = fTx and identify the vectors
x and f as
X1 —1
x=14xy¢ and f=141-2

X3 -1
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Express the constraints in the form A x < b and identify the matrix A and the
vector b as

b=
Il
XN \S I S
|
— e —

—1 2
5| and b=16
1 6

Step 2 Use the command for executing linear programming program using interior
point method as indicated below:

clc
clear all
f=[-1;-2;-11;
A=[2 1-1;
2—=15;
4 1 17;
b=[2;6;6];
lb=zeros(3,1);
Aeg=[];
beqg=1[1;
options = optimset('Display', 'iter');
[x,fval,exitflag,output] = linprog(f,A,b,Aeq,beqg,1b,[]1,[],
options)

This produces the solution or ouput as follows:

Iter 0: 1.03e+003 7.97e+000 1.50e+003 4.00e+002
Iter 1: 4.11e+002 2.22e-016 2.78e+002 4.72e+001
Iter 2: 1.16e-013 1.90e-015 2.85e+000 2.33e-001
Iter 3: 1.78e-015 1.80e-015 3.96e-002 3.96e-003
Iter 4: 7.48e-014 1.02e-015 1.99e-006 1.99e-007
Iter 5: 2.51e-015 4.62e-015 1.99e-012 1.98e-013

Optimization terminated.
x =
0.0000
4.0000
2.0000
fval=-10.0000
exitflag= 1
output =
iterations: 5
algorithm: 'large-scale: interior point'
cgiterations: 0

message: 'Optimization terminated.'
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Example 4.16 Find the solution of the following quadratic programming problem
using MATLAB:

Minimize f = —4x; + x]2 —2x1x2 + 2x22
subject to 2x1+x2 <6, x; —4x, <0, x>0, x>0

SOLUTION

Step 1 Express the objective function in the form f(x) = %xTH x + fTx and identify
the matrix H and vectors f and x:

n=(57) =) =)

Step 2 State the constraints in the form: A x < b and identify the matrix A and vector

b:

=) =)

Step 3 Use the command for executing quadratic programming as

[x, fval] = quadprog (H, £,A,b)

which returns the solution vector x that minimizes

f=2%5xTHx + fTx subjectto Ax <b

The MATLAB solution is given below:

clear;clc;
H=[2-2;-2 4];

£f=[0-4 0];
A=1[2 1;1-47;
b=16; 0];

[x,fval] =quadprog(H, £f,A,Db)
Warning: Large-scale method does not currently solve this
problem formulation, switching to medium-scale method.
x =

2.4615

1.0769
fval =

-6.7692
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REVIEW QUESTIONS

PROBLEMS

4.1
4.2
4.3
44
4.5
4.6
4.7

4.8

4.9

Is the decomposition method efficient for all LP problems?

What is the scope of postoptimality analysis?

Why is Karmarkar’s method called an interior method?

What is the major difference between the simplex and Karmarkar methods?
State the form of LP problem required by Karmarkar’s method.

What are the advantages of the revised simplex method?

Match the following terms and descriptions:

(a) Karmarkar’s method Moves from one vertex to another
(b) Simplex method Interior point algorithm

(¢) Quadratic programming Phase I computations not required
(d) Dual simplex method Dantzig and Wolfe method

(e) Decomposition method Wolfe’s method

Answer true or false:

(a) The quadratic programming problem is a convex programming problem.
(b) It is immaterial whether a given LP problem is designated the primal or dual.

(c¢) If the primal problem involves minimization of f subject to greater-than constraints,
its dual deals with the minimization of f subject to less-than constraints.

(d) If the primal problem has an unbounded solution, its dual will also have an unbounded
solution.

(e) The transportation problem can be solved by simplex method.

Match the following in the context of duality theory:

(a) x; is nonnegative ith constraint is of less-than or
equal-to type
(b) x; is unrestricted Maximization type
(c) ith constraint is of equality type ith variable is unrestricted
(d) ith constraint is of greater-than or ith variable is nonnegative
equal-to type
(e) Minimization type ith constraint is of equality type

Solve LP problems 4.1 to 4.3 by the revised simplex method.

4.1

Minimize f = —5x; + 2x2 + 5x3 — 3x4
subject to
2x1+x—x3=06
3x1 +8x34+x4 =7

x; >0, i=1to4d
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4.2

4.3

44

4.5

4.6

4.7

Maximize f = 15x; + 6x3 + 9x3 + 2x4

subject to
10x; 4+ 5xp + 25x3 + 3x4 < 50
12x) 4+ 4xp + 12x3 + x4 < 48
Tx1 + x4 <35
xi>0, i=1to4
Minimize f = 2x; + 3x3 + 2x3 — x4 + X5
subject to

3x1 —3xp +4x3+2x4 —x5 =0
X1+ x4+ x34+3x4+x5 =2
x; >0, i=12,...,5

Discuss the relationships between the regular simplex method and the revised simplex
method.

Solve the following LP problem graphically and by the revised simplex method:
Maximize f = x;
subject to
—x1+x2<0
—2x1—3x, <6

X1, X unrestricted in sign

Consider the following LP problem:
Minimize f = 3x; + x3 + 2x5
subject to
X1 +x3—x4+x5=—1
Xp — 2x3 + 3x4 + 2x5 = —2
xi>0, i=1to5

Solve this problem using the dual simplex method.

Maximize f = 4x; + 2x,
subject to
xX] —2xp >2

X1 +2x =8
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X —xp <11

x1 > 0, xp unrestricted in sign

(a) Write the dual of this problem.
(b) Find the optimum solution of the dual.
(c) Verify the solution obtained in part (b) by solving the primal problem graphically.

4.8 A water resource system consisting of two reservoirs is shown in Fig. 4.4. The flows and
storages are expressed in a consistent set of units. The following data are available:

Quantity Stream 1 (i = 1) Stream 2 (i = 2)
Capacity of reservoir i 9 7
Available release from 9 6
reservoir i
Capacity of channel 4 4
below reservoir i
Actual release from X1 X2

reservoir i

The capacity of the main channel below the confluence of the two streams is 5 units.
If the benefit is equivalent to $2 x 10 and $3 x 10° per unit of water released from
reservoirs 1 and 2, respectively, determine the releases x; and x, from the reserovirs to
maximize the benefit. Solve this problem using duality theory.

4.9 Solve the following LP problem by the dual simplex method:

Minimize f = 2x; + 9xp + 24x3 + 8x4 + 5x5

Stream 1

Reservoir 1

Stream 2

Channel 1

Reservoir 2
(xl)

Channel 2

(x2)
Irrigation Irrigation
district 1 district 2
Main channel
(xl + xz)

Figure 4.4 Water resource system.
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4.10
4.11

4.12

4.13

subject to
X1+ x2+2x3 — x5 —x6=1
—2x1+ X3+ x4+ x5 —x7=2

x;i >0, i=1to7

Solve Problem 3.1 by solving its dual.
Show that neither the primal nor the dual of the problem
Maximize f = —x; + 2x;
subject to
—Xx1+x < -2
X —xy <1
x120, x>0
has a feasible solution. Verify your result graphically.

Solve the following LP problem by decomposition principle, and verify your result by
solving it by the revised simplex method:

Maximize f = 8x; 4+ 3xp 4+ 8x3 4 6x4
subject to

dxy +3x2 +x3+3x4 < 16
dx) —xp +x3 <12

X1 +2x <38
3x1 +x < 10

2x3+3x4 <9
dx3 4+ x4 < 12

x>0, i=1to4d

Apply the decomposition principle to the dual of the following problem and solve it:
Minimize f = 10x; + 2x; + 4x3 4+ 8x4 + x5
subject to
X1 +4xp —x3 > 16
2x1+x+x3 >4
3x1 +x4+x5>8
X1 4+ 2x4 — x5 > 20

xi>0, i=1to5
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4.14 Express the dual of the following LP problem:

4.15
4.16

4.17

4.18

4.19

Maximize f = 2x; + x;
subject to
Xp—2xp >2
X1 +2x, =8
X1 —xp <11

x1 >0, x, is unrestricted in sign

Find the effect of changing b = {1200} t {“80

400 120 } in Example 4.5 using sensitivity analysis.
Find the effect of changing the cost coefficients ¢; and ¢4 from —45 and —50 to —40
and —60, respectively, in Example 4.5 using sensitivity analysis.

Find the effect of changing c¢; from —45 to —40 and ¢, from —100 to —90 in Example
4.5 using sensitivity analysis.

If a new product, E, which requires 10 min of work on lathe and 10 min of work on
milling machine per unit, with a profit of $120 per unit is available in Example 4.5,
determine whether it is worth manufacturing E.

A metallurgical company produces four products, A, B, C, and D, by using copper and
zinc as basic materials. The material requirements and the profit per unit of each of the
four products, and the maximum quantities of copper and zinc available are given below:

Product Maximum quantity
A B C D available
Copper (1b) 4 9 7 10 6000
Zinc (Ib) 2 1 3 20 4000
Profit per unit ($) 15 25 20 60

Find the number of units of the various products to be produced for maximizing the
profit.

Solve Problems 4.20—4.28 using the data of Problem 4.19.

4.20
4.21

4.22

4.23

4.24

Find the effect of changing the profit per unit of product D to $30.

Find the effect of changing the profit per unit of product A to $10, and of product B to
$20.

Find the effect of changing the profit per unit of product B to $30 and of product C to
$25.

Find the effect of changing the available quantities of copper and zinc to 4000 and
6000 1b, respectively.

What is the effect of introducing a new product, E, which requires 61b of copper and
31b of zinc per unit if it brings a profit of $30 per unit?
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4.25

4.26

4.27

4.28

4.29

Assume that products A, B, C, and D require, in addition to the stated amounts of copper
and zinc, 4, 3, 2 and 51b of nickel per unit, respectively. If the total quantity of nickel
available is 2000 Ib, in what way the original optimum solution is affected?

If product A requires 51b of copper and 31b of zinc (instead of 41b of copper and 21b
of zinc) per unit, find the change in the optimum solution.

If product C requires 51b of copper and 41b of zinc (instead of 71b of copper and 3 1b
of zinc) per unit, find the change in the optimum solution.

If the available quantities of copper and zinc are changed to 8000 1b and 5000 Ib, respec-
tively, find the change in the optimum solution.

Solve the following LP problem:
Minimize f = 8x; — 2x;
subject to
—Adx1 +2x, <1
Sx; —4xy <3

x1>20, x>0

Investigate the change in the optimum solution of Problem 4.29 when the following changes are
made (a) by using sensitivity analysis and (b) by solving the new problem graphically:

4.30
4.31
4.32

4.36

4.37

b1 =2 4.33 Cy) = —4
b, =4 434 a;; =-5
c1 =10 435 ayp=-2
Perform one iteration of Karmarkar’s method for the LP problem:

Minimize f = 2x; — 2x3 + 5x3
subject to
x;—x2=0
X1+x+x3=1

x>0, i=12,3

Perform one iteration of Karmarkar’s method for the following LP problem:
Minimize f = 3x; + 5x3 — 3x3
subject to
x1—x3=0
X1+x+x3=1

x>0, i=1,2,3
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Transform the following LP problem into the form required by Karmarkar’s method:
Minimize f = x; +x2+x3
subject to
X1 +x—x3=4
3x1 —x, =0

x>0, i=1,23

A contractor has three sets of heavy construction equipment available at both New York
and Los Angeles. He has construction jobs in Seattle, Houston, and Detroit that require
two, three, and one set of equipment, respectively. The shipping costs per set between
cities i and j (c;;) are shown in Fig. 4.5. Formulate the problem of finding the shipping
pattern that minimizes the cost.

Minimize f(X) = 3x12 + 2x§ + 5x§ —dx1xp — 2x1x3 — 2xX3

subject to

3x1 4+ S5x3 +2x3 > 10
3x1 + 5x3 <15
x>0, i=1,2,3

by quadratic programming.
Find the solution of the quadratic programming problem stated in Example 1.5.

According to elastic—plastic theory, a frame structure fails (collapses) due to the formation
of a plastic hinge mechanism. The various possible mechanisms in which a portal frame
(Fig. 4.6) can fail are shown in Fig. 4.7. The reserve strengths of the frame in various
failure mechanisms (Z;) can be expressed in terms of the plastic moment capacities of the
hinges as indicated in Fig. 4.7. Assuming that the cost of the frame is proportional to 200
times each of the moment capacities M|, M>, Mg, and M7, and 100 times each of the
moment capacities M3, My, and Ms, formulate the problem of minimizing the total cost

Figure 4.5 Shipping costs between cities.
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Py
2£ ’ 4 ﬁ6
Yy
A7 7477

Figure 4.6 Plastic hinges in a frame.
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Z1=M3+ 2My + Ms - xP Zp =M+ 2M4 + Mg — xP; Z3 =M+ 2M4y + Ms — xP;
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= M3+ 2M4 + Mg - xP) Zs =M1+ M2 +Me + M7 - yP2 Zg = M1 + M3 + M5 + M7 - yP»

(d) (e) f)

EEEPEhe

Z7=M)+M3+Mg+M7-yPy Zg=M)+ M+ Ms+M7-yP> Z9g =M + 2My + 2Mg + M7
-xP1-yP?
) h) (i)

Z10=M) + 2My + 2Ms5 + M7
- xP1-yP>

()

Figure 4.7 Possible failure mechanisms of a portal frame.
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to ensure nonzero reserve strength in each failure mechanism. Also, suggest a suitable
technique for solving the problem. Assume that the moment capacities are restricted as
0<M; <2x10 Ib-in.,,i =1,2,...,7. Data: x = 100 in., y = 150 in., P; = 1000 Ib,
and P, = 500 Ib.

Solve the LP problem stated in Problem 4.9 using MATLAB (interior method).
Solve the LP problem stated in Problem 4.12 using MATLAB (interior method).
Solve the LP problem stated in Problem 4.13 using MATLAB (interior method).
Solve the LP problem stated in Problem 4.36 using MATLAB (interior method).
Solve the LP problem stated in Problem 4.37 using MATLAB (interior method).
Solve the following quadratic programming problem using MATLAB:
Maximize f = 2x; + x; — x12

subject to 2x; +3x; <6, 2x; +x2 <4, x1 >0, x>0

Solve the following quadratic programming problem using MATLAB:

Maximize f = 4x; + 6x; — xlz — x22

subject to x; +x <2, x; >0, x2 >0

Solve the following quadratic programming problem using MATLAB:
Minimize f = (x; — )2 +x, — 2

subjectto —x;+x0—1=0,x14+x—-2<0,x;,>0,x>0
Solve the following quadratic programming problem using MATLAB:
Minimize f = x} + x3 — 3x1x2 — 6x1 + 5x2

subject to x1 + x3 <4, 3x; + 6x3 <20, x; >0, xp >0



Nonlinear Programming I:
One-Dimensional Minimization

Methods

5.1 INTRODUCTION

248

In Chapter 2 we saw that if the expressions for the objective function and the constraints
are fairly simple in terms of the design variables, the classical methods of optimization
can be used to solve the problem. On the other hand, if the optimization problem
involves the objective function and/or constraints that are not stated as explicit functions
of the design variables or which are too complicated to manipulate, we cannot solve it
by using the classical analytical methods. The following example is given to illustrate a
case where the constraints cannot be stated as explicit functions of the design variables.
Example 5.2 illustrates a case where the objective function is a complicated one for
which the classical methods of optimization are difficult to apply.

Example 5.1 Formulate the problem of designing the planar truss shown in Fig. 5.1
for minimum weight subject to the constraint that the displacement of any node, in
either the vertical or the horizontal direction, should not exceed a value §.

SOLUTION Let the density p and Young’s modulus E of the material, the length
of the members /, and the external loads Q, R, and S be known as design data. Let

the member areas Ay, A,, ..., Aj; be taken as the design variables x, xo, ..., X1y,
respectively. The equations of equilibrium can be derived in terms of the unknown
nodal displacements uy, us, ..., u1o as' (the displacements uq, ujo, u13, and uy4 are

T According to the matrix methods of structural analysis, the equilibrium equations for the jth member are
given by [5.1]

[k j] u;, = P J

4x4  4x1 4x1

where the stiffness matrix can be expressed as

00529j cosd; sin6; —COSZGj —cos6; sinf;

E. . sin@; in2g. _ . sin@: —sinZ@;

k] = AE; cos®jsin@;  sin“0; cosf;sinf; —sin”0;
74 . 020, o8O <ind. 20. 0. Gng.
¥ cos” 6; cosd; sin6; cos” 6 cosf; sinf;

0. <inf: —sinZ@: . G20,

—cos6;sinf; sin” 6; cosd; sin6; sin” 6;

where 6; is the inclination of the jth member with respect to the x-axis, A; the cross-sectional area of the
Jjth member, /; the length of the jth member, u; the vector of displacements for the jth member, and P;

Engineering Optimization: Theory and Practice, Fourth Edition ~ Singiresu S. Rao
Copyright © 2009 by John Wiley & Sons, Inc.
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Figure 5.1 Planar truss: (a) nodal and member numbers; (b) nodal degrees of freedom.

zero, as they correspond to the fixed nodes)

(4x4 + x6 + x7)u; + \/g(x(, — X7y — dxquz — X717 + \/§X7u8 =0

4RI
V3(x6 — x7)us + 3(x6 + x7)uz + ~/3x707 — 3x7u8 = ~

— dxquy + (dxg + 4xs + x5 + x0)us + v/3(xg — xo)ug — dxsus

— Xgu7 — \/§x8ug — XoUg + \/gxgulo =0
«/5()(8 — x9)usz + 3(xg + x9)ug — x/gxgm
— 3xgug + \/§X9M9 — 3x9u1p =0
— dxsuz + (4xs + x10 + x11)us + V3010 — x11)ug
401

— X101 — V/3x10U10 = Nl

V3(x10 = x11)us + 3(xi0 + x11)ue — v/3x10u9 — 3x10u10 = 0
— x7u1 + «/§x7u2 — Xxgu3 — «/5ng4 + (4x1 + 4x,
+ x7 + xg)u7 — \/g(m — xg)ug — 4xoug9 =0
\/§x7u1 — 3x7uy — «/§Xgu3 — 3xguy — \/g(m — xg)u7
+ 3(x7 + xg)ug =0
— XoU3 + \/ngLm — X1oUs5 — \/gxlob% — 4dxou7
+ (4x2 + 4x3 + X0 + x10)tt9 — v/3(xo — x10)u19 = 0

\/§XQM3 - 3x9u4 - «/gxlous - 3)6101/[6 - \/g(XQ - xlo)ug

451
+ 3(x9 + x10)u10 = — 7

(ED

(E2)

(E3)

(Es)

(Es)

(Es)

(E7)

(Eg)

(Eo)

(E10)

the vector of loads for the jth member. The formulation of the equilibrium equations for the complete truss

follows fairly standard procedure [5.1].
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It is important to note that an explicit closed-form solution cannot be obtained for
the displacements as the number of equations becomes large. However, given any
vector X, the system of Egs. (E;) to (Ej¢) can be solved numerically to find the nodal
displacement uy, us, ..., uyp.

The optimization problem can be stated as follows:

11

Minimize f(X) =) pxil; (E1)
i=1
subject to the constraints
8iX) =lu;j(X)| =8 =0, J=12,...,10 (Er2)
x; >0, i=1,2,...,11 (E3)

The objective function of this problem is a straightforward function of the design vari-
ables as given in Eq. (Ej;). The constraints, although written by the abstract expressions
g;j(X), cannot easily be written as explicit functions of the components of X. How-
ever, given any vector X we can calculate g;(X) numerically. Many engineering design
problems possess this characteristic (i.e., the objective and/or the constraints cannot be
written explicitly in terms of the design variables). In such cases we need to use the
numerical methods of optimization for solution.

Example 5.2 The shear stress induced along the z-axis when two spheres are in contact
with each other is given by

Tix _1 3 1

Pmax 2 2{1 N (g)z}
a
where a is the radius of the contact area and pp,x is the maximum pressure developed
at the center of the contact area (Fig. 5.2):

—a+wnli- gtan* (E1)

Q| n| —

l—v]2+ 1—1)22 173
3F E E
a=|—— (E2)
8 1 n 1
d; d>
3F
Pmax = 27ra2 (Ei)

where F is the contact force, £ and E, are Young’s moduli of the two spheres, v;
and v, are Poisson’s ratios of the two spheres, and d; and d;, the diameters of the
two spheres. In many practical applications, such as ball bearings, when the contact
load (F) is large, a crack originates at the point of maximum shear stress and prop-
agates to the surface, leading to a fatigue failure. To locate the origin of a crack, it
is necessary to find the point at which the shear stress attains its maximum value.
Formulate the problem of finding the location of maximum shear stress for v = v; =
V) = 0.3.
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Contact area

Figure 5.2 Contact stress between two spheres.

SOLUTION  For v; = v, = 0.3, Eq. (E;) reduces to

1422

f) = +0.65x tan~! % —0.65 (E4)
where f = 1,/ pmax and A = z/a. Since Eq. (E4) is a nonlinear function of the distance,
A, the application of the necessary condition for the maximum of f, df/dx = 0, gives
rise to a nonlinear equation from which a closed-form solution for A* cannot easily be
obtained. In such cases, numerical methods of optimization can be conveniently used
to find the value of A*.

The basic philosophy of most of the numerical methods of optimization is to
produce a sequence of improved approximations to the optimum according to the
following scheme:

1. Start with an initial trial point Xj.

2. Find a suitable direction S; (i =1 to start with) that points in the general
direction of the optimum.

3. Find an appropriate step length A7 for movement along the direction ;.
4. Obtain the new approximation X;; as

Xip1 =X; +A7S; (5.1

5. Test whether X;;; is optimum. If X;;; is optimum, stop the procedure.
Otherwise, set a new i =i + 1 and repeat step (2) onward.
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Figure 5.3 Iterative process of optimization.

The iterative procedure indicated by Eq. (5.1) is valid for unconstrained as well as
constrained optimization problems. The procedure is represented graphically for a hypo-
thetical two-variable problem in Fig. 5.3. Equation (5.1) indicates that the efficiency
of an optimization method depends on the efficiency with which the quantities A} and
S; are determined. The methods of finding the step length A} are considered in this
chapter and the methods of finding S; are considered in Chapters 6 and 7.

If f(X) is the objective function to be minimized, the problem of determining A}
reduces to finding the value A; = A} that minimizes f(X;;1) = f(X; + A;S;) = f(X;)
for fixed values of X; and S;. Since f becomes a function of one variable A; only, the
methods of finding A in Eq. (5.1) are called one-dimensional minimization methods.
Several methods are available for solving a one-dimensional minimization problem.
These can be classified as shown in Table 5.1.

We saw in Chapter 2 that the differential calculus method of optimization is an
analytical approach and is applicable to continuous, twice-differentiable functions. In
this method, calculation of the numerical value of the objective function is virtually the
last step of the process. The optimal value of the objective function is calculated after
determining the optimal values of the decision variables. In the numerical methods
of optimization, an opposite procedure is followed in that the values of the objective
function are first found at various combinations of the decision variables and conclu-
sions are then drawn regarding the optimal solution. The elimination methods can be
used for the minimization of even discontinuous functions. The quadratic and cubic
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Table 5.1 One-dimensional Minimization Methods
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Analytical methods
(differential calculus methods)

Numerical methods

Elimination Interpolation
methods methods
Unrestricted
search Requiringno  Requiring
Exhaustive search derivatives derivatives
Dichotomous (quadratic) Cubic
search Direct root
Fibonacci method Newton
Golden section Quasi-Newton
method Secant

interpolation methods involve polynomial approximations to the given function. The
direct root methods are root finding methods that can be considered to be equivalent
to quadratic interpolation.

5.2 UNIMODAL FUNCTION

A unimodal function is one that has only one peak (maximum) or valley (minimum)
in a given interval. Thus a function of one variable is said to be unimodal if, given
that two values of the variable are on the same side of the optimum, the one nearer
the optimum gives the better functional value (i.e., the smaller value in the case of a
minimization problem). This can be stated mathematically as follows:

A function f(x) is unimodal if (i) x; < xp < x™ implies that f(x;) <
f(x1), and (i) xp > x; > x* implies that f(x;) < f(x), where x* is the
minimum point.

Some examples of unimodal functions are shown in Fig. 5.4. Thus a unimodal function
can be a nondifferentiable or even a discontinuous function. If a function is known to
be unimodal in a given range, the interval in which the minimum lies can be narrowed
down provided that the function values are known at two different points in the range.

fx) flx) )
I I
[ : ! N
|
| | | | I |
| ! | |
L o N
I T 1 | | |
a b * (Il X Xp b x a ;7 x
(@) ©®) ()

Figure 5.4 Unimodal function.
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Figure 5.5 Outcome of first two experiments: (a) f1 < f2; (b) f1> f2; (¢) f1 = fo.

For example, consider the normalized interval [0, 1] and two function evaluations
within the interval as shown in Fig. 5.5. There are three possible outcomes, namely,
f1 < fa, f1> fa, or fi = fp. If the outcome is that f; < f, the minimizing x cannot
lie to the right of x,. Thus that part of the interval [x;, 1] can be discarded and a new
smaller interval of uncertainty, [0, x;], results as shown in Fig. 5.5a. If f(x]) > f(x2),
the interval [0, x;] can be discarded to obtain a new smaller interval of uncertainty,
[x1, 1] (Fig. 5.5b), while if f(x;) = f(x»), intervals [0, x1] and [x,, 1] can both be
discarded to obtain the new interval of uncertainty as [x;, x] (Fig. 5.5¢). Further,
if one of the original experiments’ remains within the new interval, as will be the
situation in Fig. 5.5a and b, only one other experiment need be placed within the new
interval in order that the process be repeated. In situations such as Fig. 5.5¢, two more
experiments are to be placed in the new interval in order to find a reduced interval of
uncertainty.

The assumption of unimodality is made in all the elimination techniques. If a
function is known to be multimodal (i.e., having several valleys or peaks), the range of
the function can be subdivided into several parts and the function treated as a unimodal
function in each part.

Elimination Methods

5.3 UNRESTRICTED SEARCH

In most practical problems, the optimum solution is known to lie within restricted
ranges of the design variables. In some cases this range is not known, and hence the
search has to be made with no restrictions on the values of the variables.

5.3.1 Search with Fixed Step Size

The most elementary approach for such a problem is to use a fixed step size and move
from an initial guess point in a favorable direction (positive or negative). The step size

TEach function evaluation is termed as an experiment or a trial in the elimination methods.
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used must be small in relation to the final accuracy desired. Although this method is
very simple to implement, it is not efficient in many cases. This method is described
in the following steps:

1. Start with an initial guess point, say, xj.

. Find f; = f(x)).
. Assuming a step size s, find xp = x| + 5.

. Find fo = f(x2).

. If fo < fi, and if the problem is one of minimization, the assumption of uni-
modality indicates that the desired minimum cannot lie at x < x;. Hence the
search can be continued further along points x3, x4, ... using the unimodality
assumption while testing each pair of experiments. This procedure is con-
tinued until a point, x; = x;+ (i — 1)s, shows an increase in the function
value.

0N oA W N

6. The search is terminated at x;, and either x;_; or x; can be taken as the optimum

point.
7. Originally, if f, > fi, the search should be carried in the reverse direction at
points x_», x_3, ..., where x_; = x; — (j — Ds.

8. If f, = fi, the desired minimum lies in between x; and x,, and the minimum
point can be taken as either x; or x;.

9. If it happens that both f, and f_, are greater than fj, it implies that the desired
minimum will lie in the double interval x_, < x < x5.

5.3.2 Search with Accelerated Step Size

Although the search with a fixed step size appears to be very simple, its major limitation
comes because of the unrestricted nature of the region in which the minimum can lie.
For example, if the minimum point for a particular function happens to be xqp =
50, 000 and, in the absence of knowledge about the location of the minimum, if x; and
s are chosen as 0.0 and 0.1, respectively, we have to evaluate the function 5,000,001
times to find the minimum point. This involves a large amount of computational work.
An obvious improvement can be achieved by increasing the step size gradually until
the minimum point is bracketed. A simple method consists of doubling the step size
as long as the move results in an improvement of the objective function. Several other
improvements of this method can be developed. One possibility is to reduce the step
length after bracketing the optimum in (x;_1, x;). By starting either from x;_; or x;,
the basic procedure can be applied with a reduced step size. This procedure can be
repeated until the bracketed interval becomes sufficiently small. The following example
illustrates the search method with accelerated step size.

Example 5.3 Find the minimum of f = x(x — 1.5) by starting from 0.0 with an initial
step size of 0.05.

SOLUTION The function value at x; is f; = 0.0. If we try to start moving in the
negative x direction, we find that x_, = —0.05 and f_, = 0.0775. Since f_, > f], the
assumption of unimodality indicates that the minimum cannot lie toward the left of
x_p. Thus we start moving in the positive x direction and obtain the following results:
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i Value of s Xi =Xx1+s fi= fx) Is fi> fi-1?
1 — 0.0 0.0 —
2 0.05 0.05 —0.0725 No
3 0.10 0.10 —0.140 No
4 0.20 0.20 —0.260 No
5 0.40 0.40 —0.440 No
6 0.80 0.80 —0.560 No
7 1.60 1.60 +0.160 Yes

From these results, the optimum point can be seen to be xqp = x = 0.8. In this case,
the points xg and x7 do not really bracket the minimum point but provide information
about it. If a better approximation to the minimum is desired, the procedure can be
restarted from x5 with a smaller step size.

5.4 EXHAUSTIVE SEARCH

The exhaustive search method can be used to solve problems where the interval in
which the optimum is known to lie is finite. Let x; and x, denote, respectively, the
starting and final points of the interval of uncertainty.” The exhaustive search method
consists of evaluating the objective function at a predetermined number of equally
spaced points in the interval (x,, x ¢), and reducing the interval of uncertainty using the
assumption of unimodality. Suppose that a function is defined on the interval (xy, x )
and let it be evaluated at eight equally spaced interior points x; to xg. Assuming that
the function values appear as shown in Fig. 5.6, the minimum point must lie, according
to the assumption of unimodality, between points x5 and x7. Thus the interval (xs, x7)
can be considered as the final interval of uncertainty.

In general, if the function is evaluated at n equally spaced points in the original
interval of uncertainty of length Lo = xy — x,, and if the optimum value of the function
(among the n function values) turns out to be at point x;, the final interval of uncertainty

1 1
xXs X1 X2 X3 X4 X5 Xg X7 xg xf

Figure 5.6 Exhaustive search.

Since the interval (x;, Xy), but not the exact location of the optimum in this interval, is known to us, the
interval (xy, xy) is called the interval of uncertainty.
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is given by
2
n+1

Ly=Xj1—xj_1= Lo (5.2)

The final interval of uncertainty obtainable for different number of trials in the exhaus-
tive search method is given below:

Number of trials 2 3 4 5 6 - n
L,/Lo 2/3 2/4 2/5 2/6 2/7 - 2/n+1)

Since the function is evaluated at all n points simultaneously, this method can be called
a simultaneous search method. This method is relatively inefficient compared to the
sequential search methods discussed next, where the information gained from the initial
trials is used in placing the subsequent experiments.

Example 5.4 Find the minimum of f = x(x — 1.5) in the interval (0.0, 1.00) to within
10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken as the
approximate optimum point, the maximum deviation could be 1/(n + 1) times the
initial interval of uncertainty. Thus to find the optimum within 10% of the exact value,
we should have

1 _ 1
n+17 10

or n>9

By taking n = 9, the following function values can be calculated:

i 1 2 3 4 5 6 7 8 9
X; 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
fi=f(x) -014 -026 -036 —-044 -050 -054 -056 —-056 —0.54

Since x7 = xg, the assumption of unimodality gives the final interval of uncertainty as
Lo = (0.7, 0.8). By taking the middle point of Lg (i.e., 0.75) as an approximation to
the optimum point, we find that it is, in fact, the true optimum point.

5.5 DICHOTOMOUS SEARCH

The exhaustive search method is a simultaneous search method in which all the exper-
iments are conducted before any judgment is made regarding the location of the
optimum point. The dichotomous search method, as well as the Fibonacci and the
golden section methods discussed in subsequent sections, are sequential search meth-
ods in which the result of any experiment influences the location of the subsequent
experiment.

In the dichotomous search, two experiments are placed as close as possible at
the center of the interval of uncertainty. Based on the relative values of the objective
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f2
f1

A N

Ly/2

A
Y

L,

Figure 5.7 Dichotomous search.

function at the two points, almost half of the interval of uncertainty is eliminated. Let
the positions of the two experiments be given by (Fig. 5.7)

Lo &
X =— — —
2 2
Lo &
Xp = — + —
2T

where ¢ is a small positive number chosen so that the two experiments give significantly
different results. Then the new interval of uncertainty is given by (Lo/2 + §/2). The
building block of dichotomous search consists of conducting a pair of experiments
at the center of the current interval of uncertainty. The next pair of experiments is,
therefore, conducted at the center of the remaining interval of uncertainty. This results
in the reduction of the interval of uncertainty by nearly a factor of 2. The intervals
of uncertainty at the end of different pairs of experiments are given in the following
table:

Number of experiments 2 4 6

1 1 Lo+ 8 1 (Lo+é6 & 1)
Final interval of uncertainty E(LO +4) 3 ( 02+ ) + 3 5 ( 0: + E) + 5

In general, the final interval of uncertainty after conducting n experiments (n even) is

given by
Ly 1
L,= e +6(|1— TIE (5.3)

The following example is given to illustrate the method of search.

Example 5.5 Find the minimum of f = x(x — 1.5) in the interval (0.0, 1.00) to within
10% of the exact value.

SOLUTION The ratio of final to initial intervals of uncertainty is given by [from

Eq. (5.3)]
Ly_ 1 8/ 1
Lo 22 T\ T on
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where 6 is a small quantity, say 0.001, and »n is the number of experiments. If the

middle point of the final interval is taken as the optimum point, the requirement can
be stated as

1.€.,

L8 (11
T\ T ) =5

Since § = 0.001 and Ly = 1.0, we have

1 N 1 { 1 <1
27/2 1000 72 ) =5

1.€.,

999 1 995 999
—— <— or 2'?>_"2~50
1000 2/2 = 5000 199

Since n has to be even, this inequality gives the minimum admissible value of n as 6.
The search is made as follows. The first two experiments are made at

Lo

x = =2~ 2 —0.5—-0.0005 = 0.4995
22
Lo &

x2 = 2+ 7 =05 +0.0005 = 0.5005

with the function values given by

J1 = f(x1) =0.4995(—1.0005) >~ —0.49975
Jo= f(x2) =0.5005(—0.9995) ~ —0.50025

Since f, < fi, the new interval of uncertainty will be (0.4995, 1.0). The second pair
of experiments is conducted at

— 0.0005 = 0.74925

1.0 — 0.4995
x3= (04995 — "%

4+ 0.0005 = 0.75025

1.0 — 0.4995
X4 = (0.4995 + 799>

which give the function values as

£ = f(x3) = 0.74925(—0.75075) = —0.5624994375
fa = f(x4) = 0.75025(—0.74975) = —0.5624999375

Since f3 > f4, we delete (0.4995, x3) and obtain the new interval of uncertainty as

(x3, 1.0) = (0.74925, 1.0)
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The final set of experiments will be conducted at

1.0 — 0.74925)

X5 = (0.74925 + —0.0005 = 0.874125

+ 0.0005 = 0.875125

1.0 — 0.7492
xg = (0.74925 + M)

The corresponding function values are
f5s = f(xs) = 0.874125(—0.625875) = —0.5470929844
fo = f(xe) = 0.875125(—0.624875) = —0.5468437342

Since f5 < fs, the new interval of uncertainty is given by (x3, xg) = (0.74925,
0.875125). The middle point of this interval can be taken as optimum, and hence

Xopt = 0.8121875 and  fop =~ —0.5586327148

5.6 INTERVAL HALVING METHOD

In the interval halving method, exactly one-half of the current interval of uncertainty
is deleted in every stage. It requires three experiments in the first stage and two exper-
iments in each subsequent stage. The procedure can be described by the following
steps:
1. Divide the initial interval of uncertainty Lo = [a, b] into four equal parts and
label the middle point xo and the quarter-interval points x; and x.
2. Evaluate the function f(x) at the three interior points to obtain f; = f(x1),
fo= f(x0), and f> = f(x2).
3. (@) If fo> fo> f1 as shown in Fig. 5.8a, delete the interval (xg, b), label x;
and x¢ as the new x( and b, respectively, and go to step 4.
(b) If /> < fo < f1 as shown in Fig. 5.8, delete the interval (a, xg), label x;
and x( as the new x( and a, respectively, and go to step 4.

(c) If fi> fo and f, > fy as shown in Fig. 5.8c, delete both the intervals
(a,x;) and (x2, b), label x; and x, as the new a and b, respectively, and
go to step 4.

4. Test whether the new interval of uncertainty, L = b — a, satisfies the conver-
gence criterion L < g, where ¢ is a small quantity. If the convergence criterion
is satisfied, stop the procedure. Otherwise, set the new Ly = L and go to step 1.

Remarks:

1. In this method, the function value at the middle point of the interval of uncer-
tainty, fo, will be available in all the stages except the first stage.

2. The interval of uncertainty remaining at the end of n experiments (n > 3 and

odd) is given by
1 (n—1)/2
L, = <§> Ly 6.4
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f2
fo
f1
XXXXXXXEXXXXXXXX
a X1 X0 X2 b
(@) | Lo >
f1
fo
f2
XX XXX XX EXXXXXXX
a Xq X0 X2 b
|l -
) Lo >
fo
f1
fo
XXXXXXX XXXXXXX
a X1 xQ X2 b
() {= Ly :l

Figure 5.8 Possibilities in the interval halving method:

(¢) fi> foand f2> fo.

(@) f2> fo> fis 0) fi>fo> fas
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Example 5.6 Find the minimum of f = x(x — 1.5) in the interval (0.0, 1.0) to within
10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken as the
optimum point, the specified accuracy can be achieved if

an =< Lo or ! e Lo < Lo (Ep)
2 7710 2 -5
Since Ly =1, Eq. (E;) gives
! 1 (n-1)/2
SahE =5 O 2 >5 (E2)

Since n has to be odd, inequality (E;) gives the minimum permissible value of n as 7.
With this value of n = 7, the search is conducted as follows. The first three experiments
are placed at one-fourth points of the interval Ly = [a = 0,b = 1] as

x; =0.25, J1=0.25(-1.25) = —-0.3125
xo = 0.50, fo =0.50(—1.00) = —0.5000
x2 = 0.75, f>=0.75(-0.75) = —0.5625

Since fi; > fo> f>, we delete the interval (a, xo) = (0.0, 0.5), label x, and x¢ as the
new xo and a so that a = 0.5, xo = 0.75, and b = 1.0. By dividing the new interval of
uncertainty, L3 = (0.5, 1.0) into four equal parts, we obtain

x1 = 0.625, J1 =0.625(—-0.875) = —0.546875
xo = 0.750, Jfo =0.750(—=0.750) = —0.562500
xp = 0.875, J2 = 0.875(—0.625) = —0.546875

Since f} > fy and f, > f, we delete both the intervals (a, x;) and (x,, b), and label
X1, X9, and x, as the new a, xo, and b, respectively. Thus the new interval of uncer-
tainty will be Ls = (0.625, 0.875). Next, this interval is divided into four equal parts
to obtain

x; = 0.6875,  fi = 0.6875(—0.8125) = —0.558594
xo = 0.75, fo = 0.75(=0.75) = —0.5625
x, = 08125,  f, = 0.8125(—0.6875) = —0.558594

Again we note that f; > fy and f, > fp and hence we delete both the intervals (a, x;)
and (x2, b) to obtain the new interval of uncertainty as L7 = (0.6875, 0.8125). By
taking the middle point of this interval (L7) as optimum, we obtain

Xopt 2075 and  fop A —0.5625

(This solution happens to be the exact solution in this case.)
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5.7 FIBONACCI METHOD

As stated earlier, the Fibonacci method can be used to find the minimum of a function
of one variable even if the function is not continuous. This method, like many other
elimination methods, has the following limitations:
1. The initial interval of uncertainty, in which the optimum lies, has to be known.
2. The function being optimized has to be unimodal in the initial interval of uncer-
tainty.
3. The exact optimum cannot be located in this method. Only an interval known as
the final interval of uncertainty will be known. The final interval of uncertainty
can be made as small as desired by using more computations.

4. The number of function evaluations to be used in the search or the resolution
required has to be specified beforehand.

This method makes use of the sequence of Fibonacci numbers, {F),}, for placing the
experiments. These numbers are defined as

Fhb=F =1
F,=F,_1+ F,_», n=273,4,...
which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,. ...

Procedure. Let L be the initial interval of uncertainty defined by a < x < b and n
be the total number of experiments to be conducted. Define

Fu2
Fy

L= Lo (5.9)

and place the first two experiments at points x; and x;, which are located at a distance
of L3 from each end of L. This gives?

F,_
xi=a+Li=a+ ;2L0
F” - (5.6)
—bh—Li=b—"lo=a+ "L
X2 b F 0o=a F 0

Discard part of the interval by using the unimodality assumption. Then there remains
a smaller interval of uncertainty L, given by®

F,_ F,_
L2=L0—L§=L0(1— " 2) nl

= L 5.7
F, 0 (5.7)

If an experiment is located at a distance of (F,_»/F,)Lo from one end, it will be at a distance of
(Fu—1/Fy)Lo from the other end. Thus L; = (F,_;/F,)Lo will yield the same result as with L} =
(Fn—Z/Fn)L0~
It can be seen that
* Fn—2 1
L3 = Ly< =Ly for n>2
Fy 2

$The symbol L ;j is used to denote the interval of uncertainty remaining after conducting j experiments,
while the symbol L*/? is used to define the position of the jth experiment.
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and with one experiment left in it. This experiment will be at a distance of

F,_ F,_
Li="2Ly= 221, (5.8)
Fn Fn—l
from one end and
F,_ F,_
L,—Li="2r,="2p, (5.9)
Fy Fu

from the other end. Now place the third experiment in the interval L; so that the current
two experiments are located at a distance of

Lo = L (5.10)

from each end of the interval L,. Again the unimodality property will allow us to
reduce the interval of uncertainty to L3 given by

E,_ F,_ F,_
Ly=L,—Li=L,— 22, =""2p,=""2], (5.11)
Fu Fuy Fy

This process of discarding a certain interval and placing a new experiment in the
remaining interval can be continued, so that the location of the jth experiment and the
interval of uncertainty at the end of j experiments are, respectively, given by

F .
L= —""—L;, (5.12)
T Fagoo
Fo(ie
Lj=-—"YDr, (5.13)
Fy

The ratio of the interval of uncertainty remaining after conducting j of the n predeter-
mined experiments to the initial interval of uncertainty becomes

L; F,_i—
= (5.14)
Lo F,

and for j = n, we obtain
L, F 1
Lo 0 _ (5.15)
Lo F, F,

The ratio L, /Ly will permit us to determine 7, the required number of experiments,
to achieve any desired accuracy in locating the optimum point. Table 5.2 gives
the reduction ratio in the interval of uncertainty obtainable for different number of
experiments.
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Table 5.2 Reduction Ratios

Value of n Fibonacci number, F), Reduction ratio, L, /Lo

0 1 1.0

1 1 1.0

2 2 0.5

3 3 0.3333

4 5 0.2

5 8 0.1250

6 13 0.07692

7 21 0.04762

8 34 0.02941

9 55 0.01818
10 89 0.01124
11 144 0.006944
12 233 0.004292
13 377 0.002653
14 610 0.001639
15 987 0.001013
16 1,597 0.0006406
17 2,584 0.0003870
18 4,181 0.0002392
19 6,765 0.0001479
20 10,946 0.00009135

Position of the Final Experiment. In this method the last experiment has to be
placed with some care. Equation (5.12) gives
L Fpb 1
—— =—=— for alln (5.16)
Ln—l F. 2 2
Thus after conducting n — 1 experiments and discarding the appropriate interval in each
step, the remaining interval will contain one experiment precisely at its middle point.
However, the final experiment, namely, the nth experiment, is also to be placed at the
center of the present interval of uncertainty. That is, the position of the nth experiment
will be same as that of (m — 1)th one, and this is true for whatever value we choose
for n. Since no new information can be gained by placing the nth experiment exactly
at the same location as that of the (n — 1)th experiment, we place the nth experi-
ment very close to the remaining valid experiment, as in the case of the dichotomous
search method. This enables us to obtain the final interval of uncertainty to within
%Ln,l. A flowchart for implementing the Fibonacci method of minimization is given
in Fig. 5.9.

Example 5.7 Minimize f(x) =0.65—[0.75/(1 4+ x?)] —0.65x tan~'(1/x) in the
interval [0,3] by the Fibonacci method using n = 6. (Note that this objective is
equivalent to the one stated in Example 5.2.)
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[ Enter with N, A; and B, |

A = initial point

B, = final point

B, - Aj = Initial interval
of uncertainty

This comparison is made so that
x1 always lies to the left of x,

N * Yes =B, -L}
{;( ISLy > (Ly/2)7 el "1 51752

X2 =A1 +L’é
x1=A1+ L5
¥2=B1-L2 Calculate
L Jlh=fx)|e
fo=flx2)
fi>f2 Compare fo>h
f1 with £,
Y
Y { fi=rz lBl:EI
|A1=x1 | Al=x1, B, =x2
* "
Ly =Fn 4B1-ADFN_g-2)

Y
Find new LE = FN—JLI/FN—(J—Z) I

Find new L} = Fy_L1/Fy-y-2)|

No [ PrintA,, B,

Ly-Bia, ——{5tv]

Figure 5.9 Flowchart for implementing Fibonacci search method.
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SOLUTION Here n = 6 and Lo = 3.0, which yield

F,_» 5

Lo = —(3.0) = 1.153846

F, 13

Thus the positions of the first two experiments are given by x; = 1.153846 and
xp = 3.0 — 1.153846 = 1.846154 with fi; = f(x;) = —0.207270 and f> = f(xp) =
—0.115843. Since f; is less than f,, we can delete the interval [x;, 3.0] by using
the unimodality assumption (Fig. 5.10a). The third experiment is placed at x3 = 0+
(xy —x1) = 1.846154 — 1.153846 = 0.692308, with the corresponding function value
of f3 = —0.291364.

Since f1 > f3, we delete the interval [x;, xp] (Fig. 5.100). The next experiment
is located at x4 =0+ (x; —x3) = 1.153846 — 0.692308 = 0.461538 with f4 =
—0.309811. Nothing that f; < f3, we delete the interval [x3, x;] (Fig. 5.10c). The
location of the next experiment can be obtained as xs = 0 + (x3 — x4) = 0.692308 —
0.461538 = 0.230770 with the corresponding objective function value of f5 =
—0.263678. Since f5> f4, we delete the interval [0, xs5] (Fig. 5.10d). The final exper-
iment is positioned at xg = x5+ (x3 — x4) = 0.230770 + (0.692308 — 0.461538) =
0.461540 with fg = —0.309810. (Note that, theoretically, the value of x¢ should be
same as that of x4; however, it is slightly different from x4, due to round-off error).

Since fg > f4, we delete the interval [xg, x3] and obtain the final interval of uncer-
tainty as L¢ = [x5, x¢] = [0.230770, 0.461540] (Fig. 5.10¢). The ratio of the final to
the initial interval of uncertainty is

Le¢  0.461540 —0.230770
Ly 3.0
This value can be compared with Eq. (5.15), which states that if n experiments (n = 6)

are planned, a resolution no finer than 1/F, = 1/F¢ = % = 0.076923 can be expected
from the method.

Ly =

= 0.076923

5.8 GOLDEN SECTION METHOD

The golden section method is same as the Fibonacci method except that in the Fibonacci
method the total number of experiments to be conducted has to be specified before
beginning the calculation, whereas this is not required in the golden section method.
In the Fibonacci method, the location of the first two experiments is determined by
the total number of experiments, N. In the golden section method we start with the
assumption that we are going to conduct a large number of experiments. Of course,
the total number of experiments can be decided during the computation.

The intervals of uncertainty remaining at the end of different number of experiments
can be computed as follows:

Fy_

L, = lim Lo (5.17)
N—oo FN
Fy_ Fy_o Fy_
Ly = lim 221y = lim =221,/
N—oo Fy N—oo Fy_1 Fy
Fr 2
~ lim ( N 1) Lo (5.18)
N—oo FN
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f(x)
Ly ~
x1=1.153846 x5 =1.846154 3
0 XXX x XXX R X
‘ f>=-0.115843
f1 =-0.207270
fx)
L3 %i
x3=0.692308 =x1;=1.153846 x2 = 1.846154
0 XXXXXXXXX X
f1 =-0.207270
®
f3=-0.291364
flx)
fe————— L4 —
x4=0.461538 x3=0.692308
0 I - x
XXX = 1.153846
®
f3=-0.291364
®
fa=-0.309811

Figure 5.10 Graphical representation of the solution of Example 5.7.
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Figure 5.10 (continued)

This result can be generalized to obtain

Using the relation

we obtain, after dividing

By defining a ratio y as

Fv_ k—1
Lk = lim < N l) LO
N—o0 FN

Fy=Fy_1+ Fn2

both sides by Fy_1,

F Fy_
vy v
Fn_y Fn_y
: Fy
y = lim

269

(5.19)

(5.20)

(5.21)

(5.22)
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Eq. (5.21) can be expressed as

1
y~—+1
Y

that is,
y2—y—-1=0 (5.23)
This gives the root ¥ = 1.618, and hence Eq. (5.19) yields

1 k—1
Ly = (-) Lo = (0.618)F 'L, (5.24)
14

In Eq. (5.18) the ratios Fy_»/Fy—; and Fy_;/Fx have been taken to be same
for large values of N. The validity of this assumption can be seen from the following

table:

Value of N 2 3 4 5 6 7 8 9 10 00
Fy_

Ratio =1 05 0.667 0.6 0.625 06156 0619 06177 06181 06184 0.618

N

The ratio y has a historical background. Ancient Greek architects believed that a
building having the sides d and b satisfying the relation

d+b d

= = 5.25

p 5=V (5.25)

would have the most pleasing properties (Fig. 5.11). The origin of the name, golden

section method, can also be traced to the Euclid’s geometry. In Euclid’s geometry,

when a line segment is divided into two unequal parts so that the ratio of the whole to

the larger part is equal to the ratio of the larger to the smaller, the division is called
the golden section and the ratio is called the golden mean.

Procedure.  The procedure is same as the Fibonacci method except that the location
of the first two experiments is defined by
Fy_o ~ Fy_p Fy_g

Ly=——Lo=

Lo
Ly=— =0.382L 5.26
Fyi Fy 0 y? ’ (320

The desired accuracy can be specified to stop the procedure.

S

A
-

|
| d i Figure 5.11 Rectangular building of sides b and d.
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Example 5.8 Minimize the function
f(x) =0.65—1[0.75/(1 + x*)] — 0.65x tan~' (1/x)

using the golden section method with n = 6.

SOLUTION The locations of the first two experiments are defined by L} =
0.382Ly = (0.382)(3.0) = 1.1460. Thus x; = 1.1460 and x, = 3.0 — 1.1460 = 1.8540
with f; = f(x;) = —0.208654 and f, = f(xy) = —0.115124. Since f; < f», we
delete the interval [x,, 3.0] based on the assumption of unimodality and obtain the new
interval of uncertainty as L, = [0, x;] = [0.0, 1.8540]. The third experiment is placed
at x3 =04 (xp — x1) = 1.8540 — 1.1460 = 0.7080. Since f3 = —0.288943 is smaller
than f; = —0.208654, we delete the interval [x;, x»] and obtain the new interval of
uncertainty as [0.0, x;] = [0.0, 1.1460]. The position of the next experiment is given
by x4 =0+ (x; — x3) = 1.1460 — 0.7080 = 0.4380 with f; = —0.308951.

Since f4 < f3, we delete [x3, x;] and obtain the new interval of uncertainty as [0,
x3] = [0.0, 0.7080]. The next experiment is placed at x5 = 0 + (x3 — x4) = 0.7080 —
0.4380 = 0.2700. Since f5 = —0.278434 is larger than f4 = —0.308951, we delete the
interval [0, x5] and obtain the new interval of uncertainty as [xs, x3] = [0.2700, 0.7080].
The final experiment is placed at x¢ = x5 + (x3 — x4) = 0.2700 + (0.7080 — 0.4380) =
0.5400 with fs = —0.308234. Since fs > f4, we delete the interval [xg, x3] and obtain
the final interval of uncertainty as [x5, xg] = [0.2700, 0.5400]. Note that this final
interval of uncertainty is slightly larger than the one found in the Fibonacci method,
[0.461540, 0.230770]. The ratio of the final to the initial interval of uncertainty in the
present case is

L¢ 0.5400 — 0.2700  0.27

Ly 3.0 3.0

=0.09

5.9 COMPARISON OF ELIMINATION METHODS

The efficiency of an elimination method can be measured in terms of the ratio of the
final and the initial intervals of uncertainty, L,/Lg. The values of this ratio achieved
in various methods for a specified number of experiments (n =5 and n = 10) are
compared in Table 5.3. It can be seen that the Fibonacci method is the most effi-
cient method, followed by the golden section method, in reducing the interval of
uncertainty.

A similar observation can be made by considering the number of experiments (or
function evaluations) needed to achieve a specified accuracy in various methods. The
results are compared in Table 5.4 for maximum permissible errors of 0.1 and 0.01. It
can be seen that to achieve any specified accuracy, the Fibonacci method requires the
least number of experiments, followed by the golden section method.

Interpolation Methods

The interpolation methods were originally developed as one-dimensional searches
within multivariable optimization techniques, and are generally more efficient than
Fibonacci-type approaches. The aim of all the one-dimensional minimization methods
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Table 5.3 Final Intervals of Uncertainty

Method Formula n=>5 n=10
2
Exhaustive search L, = m lLo 0.33333L, 0.18182L,
n
. Lo 1 1 .
Dichotomous search L, = 2 +6(1— 2 7Lo 1+ 0.0075 with 0.03125Lo + 0.0096875
(8 =0.01 and n =4, 1Lo+0.00875
n = even) withn =6
Interval halving (n > 3 L, = ($H"=D2L, 0.25Ly 0.0625L¢ with n =9,
and odd) 0.03125L¢ with
n=11
1
Fibonacci L, = FLO 0.125Ly 0.01124L,
n
Golden section L, = (0.618""'L, 0.1459L¢ 0.01315Ly
Table 5.4 Number of Experiments for a Specified Accuracy
1L, 1L,
Method Error: —— < 0.1 Error: —— < 0.01
2 Ly 2 Lo
Exhaustive search n>9 n>99
Dichotomous search (§ = 0.01, Ly = 1) n>6 n>14
Interval halving (n > 3 and odd) n>717 n>13
Fibonacci n>4 n>9
Golden section n>>5 n>10

is to find 1*, the smallest nonnegative value of A, for which the function
fQ) = fX+2AS) (5.27)

attains a local minimum. Hence if the original function f(X) is expressible as an explicit
function of x; i = 1,2, ...,n), we can readily write the expression for f(A) = f(X
+ AS) for any specified vector S, set

af
=0 (5.28)

and solve Eq. (5.28) to find A* in terms of X and S. However, in many practical
problems, the function f(A) cannot be expressed explicitly in terms of A (as shown in
Example 5.1). In such cases the interpolation methods can be used to find the value
of 1*.

Example 5.9 Derive the one-dimensional minimization problem for the following
case:

Minimize f(X) = (x? — x3)> + (1 — x})? (E1)

1.00}'

from the starting point X; = {:5} along the search direction S = {0‘25
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SOLUTION The new design point X can be expressed as

Xx= 1" Zx, 428 2t
B EZ] e | -2+0251

By substituting x; = =2+ A and x, = =2+ 0.251 in Eq. (E;), we obtain f as a
function of X as

fo) = f<_2_ii)f;5,\) =[(=24+2)% = (=2+0.250)]%

+ 1 = (=24 1)]* = % — 8.54% + 31.06252% — 57.01 + 45.0
The value of A at which f(A) attains a minimum gives A*.

In the following sections, we discuss three different interpolation methods with
reference to one-dimensional minimization problems that arise during multivariable
optimization problems.

5.10 QUADRATIC INTERPOLATION METHOD

The quadratic interpolation method uses the function values only; hence it is useful
to find the minimizing step (1*) of functions f(X) for which the partial derivatives
with respect to the variables x; are not available or difficult to compute [5.2, 5.5].
This method finds the minimizing step length A* in three stages. In the first stage the
S-vector is normalized so that a step length of & = 1 is acceptable. In the second stage
the function f (1) is approximated by a quadratic function 4 () and the minimum, A*,
of h(3) is found. If 1* is not sufficiently close to the true minimum A*, a third stage is
used. In this stage a new quadratic function (refit) 2'(A) = a’ 4+ b'A + ¢'A? is used to
approximate f (i), and a new value of A* is found. This procedure is continued until
a A* that is sufficiently close to A* is found.

Stage 1. 1In this stage,” the S vector is normalized as follows: Find A = max|s; |,
where s; is the ith component of S and divide each component of S by A. Another
method of normalization is to find A = (512 + sg 4+ sf)l/ 2 and divide each com-
ponent of S byA.

Stage 2. Let
h(A) = a + bx + cA? (5.29)

be the quadratic function used for approximating the function f(1). It is worth noting
at this point that a quadratic is the lowest-order polynomial for which a finite minimum
can exist. The necessary condition for the minimum of 4(A) is that

dh

— =b+2cAh=0
7 + 2c¢

"This stage is not required if the one-dimensional minimization problem has not arisen within a multivariable
minimization problem.
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that is,
~ b
A= —— 5.30
2c ( )
The sufficiency condition for the minimum of 4()) is that
d’h
— 0
dx? T ~
that is,
c>0 (5.31)

To evaluate the constants a, b, and ¢ in Eq. (5.29), we need to evaluate the function
S () at three points. Let . = A, A = B, and A = C be the points at which the function
f () is evaluated and let f4, fp, and fc be the corresponding function values, that is,

fa=a+bA+ cA?
f3=a+bB+632
fec =a+bC + cC? (5.32)

The solution of Egs. (5.32) gives
u— faBC(C —B)+ fsCA(A—-C)+ fcAB(B — A)

(5.33)
(A—=B)(B—-C)(C —A)
2 _ 2 2 A2 2_ p2
b:fA(B C)+ fp(C™— A%) + fc(A” — B?) (5.34)
(A= B)(B-C)(C—A)

_ JaB=C)+ fB(C - A) + fc(A—B) (5.35)

N (A—B)(B—C)(C — A) '

From Egs. (5.30), (5.34), and (5.35), the minimum of #(X) can be obtained as
_ 2 _ 2 2 a2 2 p2

i b fa(B~—C?) + fp(C" — A") + fc(A” — B7) (5.36)

T 2 2fa(B—C)+ f5(C— A+ fc(A—B)]

provided that ¢, as given by Eq. (5.35), is positive.

To start with, for simplicity, the points A, B, and C can be chosen as 0, 7, and 2¢,
respectively, where ¢ is a preselected trial step length. By this procedure, we can save
one function evaluation since f4 = f(A = 0) is generally known from the previous
iteration (of a multivariable search). For this case, Eqs. (5.33) to (5.36) reduce to

a=fa (5.37)
b= 4fp = 3fa— Jfe (5.38)
2t
fc+ fa—2f
c= % (5.39)

Tx 4fB_3fA_fCt
4fp —2fc —2fa

(5.40)
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provided that
o fetfa—2fs

o >0 (5.41)

The inequality (5.41) can be satisfied if

fA+fc>

> /B (5.42)

(i.e., the function value fp should be smaller than the average value of f4 and f¢).
This can be satisfied if fp lies below the line joining f4 and f¢ as shown in Fig. 5.12.

The following procedure can be used not only to satisfy the inequality (5.42) but
also to ensure that the minimum A* lies in the interval 0 < A* < 21.

1. Assuming that f4 = f(A = 0) and the initial step size #y are known, evaluate
the function f at A = ¢ and obtain f; = f(A = 1y). The possible outcomes are
shown in Fig. 5.13.

2. If fi > f4 is realized (Fig. 5.13c¢), set fc = fi and evaluate the function f at
A = 1o/2 and A* using Eq. (5.40) with 1 = #(/2.

3. If fi < f4 isrealized (Fig. 5.13a or b), set fg = f1, and evaluate the function f
at A = 21y to find f, = f(A = 2ty). This may result in any one of the situations
shown in Fig. 5.14.

4. If f, turns out to be greater than f; (Fig. 5.14b or ¢), set fc = f> and compute
A* according to Eq. (5.40) with 1 = .

5. If f, turns out to be smaller than fi, set new f; = f, and #y) = 2¢y, and repeat
steps 2 to 4 until we are able to find A*.

Stage 3. The A* found in stage 2 is the minimum of the approximating quadratic
h(x) and we have to make sure that this 1* is sufficiently close to the true minimum A*
of f()) before taking A* ~ A*. Several tests are possible to ascertain this. One possible
test is to compare f(A*) with 2(1*) and consider A* a sufficiently good approximation

A B c
Figure 5.12  f smaller than (fa + fc)/2.
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f f
fa a
! Th
o b
| | A .\ 1
A bo 3 A o toir)»
(a) (b)
f
f1
a I
I
I
I I
I I
A N to A

(c)

Figul;e 5.13 Possible outcomes when the function is~ evaluated at A =19: (@) f1 < fa and
fo < A% (b) fi < fa and to>1"; (¢) f1> fa and fp> 21"

fO) Jo) F) fO)
A a fa f
n f 2 a i
! 2 f1 |
r | .f 2 L f1 :
I I I I | !
[ b [ ! |
| | | | | | | |
A to 29 > A tg 290 A A tg 2tp A A to 2tg X
— —~ J

Figure 5.14 Possible outcomes when function is evaluated at A = 7y and 27y: (a) f> < f1 and
fa < fa; () f2 < faand f2> fi;5(c) fa> fa and fo> fi.

if they differ not more than by a small amount. This criterion can be stated as

h(V) — (1)

— 5.43
I <eép (5.43)

Another possible test is to examine whether df/di is close to zero at A*. Since the
derivatives of f are not used in this method, we can use a finite-difference formula for
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df/d). and use the criterion

FOX 4+ AR — FOF — AL¥) _
QAL -

€ (5.44)

to stop the procedure. In Egs. (5.43) and (5.44), ¢; and &, are small numbers to be
specified depending on the accuracy desired.
If the convergence criteria stated in Eqgs. (5.43) and (5.44) are not satisfied, a new
quadratic function
WD) =d +br+cA?

is used to approximate the function f(A). To evaluate the constants a’, b’, and ¢,
the three best function values of the current f4 = f(A =0), fzg = f(A =1y), fc =
f(h.=21p), and f = f(A=21*) are to be used. This process of trying to fit
another polynomial to obtain a better approximation to A* is known as refirting the
polynomial.

For refitting the quadratic, we consider all possible situations and select the best
three points of the present A, B, C, and A*. There are four possibilities, as shown
in Fig. 5.15. The best three points to be used in refitting in each case are given in
Table 5.5. A new value of A* is computed by using the general formula, Eq. (5.36). If
this A* also does not satisfy the convergence criteria stated in Eqs. (5.43) and (5.44),
a new quadratic has to be refitted according to the scheme outlined in Table 5.5.

o) fo)

fa

J) F)

Figure 5.15 Various possibilities for refitting.
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Table 5.5 Refitting Scheme

New points for refitting

Case Characteristics New Old

1 A*>B A B
f<1rs B i
C C

Neglect old A
2 A*>B A A
f>fs B B
c A

Neglect old C
3 3 <B A A
f<1fs B rx
C B

Neglect old C
4 M < B A Ve
f>rs B B
C C

Neglect old A

Example 5.10 Find the minimum of f = A% — 513 — 201 + 5.

SOLUTION  Since this is not a multivariable optimization problem, we can proceed
directly to stage 2. Let the initial step size be taken as tp = 0.5 and A = 0.

Iteration 1
fa=fO=0)=5
fi=f=19) =0.03125 — 5(0.125) — 20(0.5) + 5 = —5.59375
Since fi < fa, we set fp = fi = —5.59375, and find that
fH=fh=2=1.0)=-19.0

As f, < fi, wesetnew fp = 1 and f; = —19.0. Again we find that f| < f4 and hence
set fp = f1 = —19.0, and find that f, = f(A = 2ty = 2) = —43. Since f, < f], we
again set fp =2 and f; = —43. As this f] < fa, set fp = f1 = —43 and evaluate
o= f(A =2t) =4) = 629. This time f, > f; and hence we set fc = f» = 629 and
compute A* from Eq. (5.40) as

5o _4(-43) ~3(5) — 629 0 - 1632
T 4(—43) —2(629) — 2(5) 1440

Convergence test: Since A =0, fa =5, B=2, fg = —43,C =4, and f¢c = 629,
the values of a, b, and ¢ can be found to be

=1.135

a=5 b=-204, ¢c=90
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and
h(¥) = h(1.135) = 5 — 204(1.135) +90(1.135)> = —110.9
Since
f=fGr = (1.135)° — 5(1.135)* — 20(1.135) + 5.0 = —23.127
we have . )
hOS — fON| _[-1165+23.127| ¢
£ B —23.127 -
As this quantity is very large, convergence is not achieved and hence we have to use
refitting .
Iteration 2

Since A* < B and f > f5, we take the new values of A, B, and C as

A=1135  f4=-23.127
B =20, f5 = —43.0
C =40, fe = 629.0

and compute new A*, using Eq. (5.36), as

(—23.127)(4.0 — 16.0) + (—43.0)(16.0 — 1.29)
- + (629.0)(1.29 — 4.0)

*

= 2[(=23.127)(2.0 — 4.0) + (—43.0)(4.0 — 1.135)
+ (629.0)(1.135 — 2.0)]

= 1.661

Convergence test: To test the convergence, we compute the coefficients of the

quadratic as
a=288.0, b=-4170, c=1253

As
h(L*) = h(1.661) = 288.0 — 417.0(1.661) + 125.3(1.661)> = —59.7
f=f(* =12.8 —5(4.59) — 20(1.661) 4 5.0 = —38.37
we obtain 3 )
() — f(A* —59.70 4 38.37
: jv(:\:;( |- ‘ 9—38J.r37 } = 0536

Since this quantity is not sufficiently small, we need to proceed to the next refit.
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5.11 CUBIC INTERPOLATION METHOD

The cubic interpolation method finds the minimizing step length A* in four stages [5.5,
5.11]. It makes use of the derivative of the function f:
df d
‘W) === —fX+2S) =STVf(X+1S

) ' dxf(+ ) f (X +18S)
The first stage normalizes the S vector so that a step size A = 1 is acceptable. The
second stage establishes bounds on A*, and the third stage finds the value of A* by
approximating f (1) by a cubic polynomial A(1). If the A* found in stage 3 does
not satisfy the prescribed convergence criteria, the cubic polynomial is refitted in the
fourth stage.

Stage 1.  Calculate A = max;|s;|, where |s;| is the absolute value of the ith compo-
nent of S, and divide each component of S by A. An alternative method of normalization
is to find

A=(t4si4-+sH?

and divide each component of S by A.

Stage 2.  To establish lower and upper bounds on the optimal step size 1*, we need
to find two points A and B at which the slope df/d\ has different signs. We know that
at A =0,

df

- =STVFX) <0
il fX) <

since S is presumed to be a direction of descent. "

Hence to start with we can take A = 0 and try to find a point A = B at which the
slope df/d) is positive. Point B can be taken as the first value out of #y, 2ty, 41, 8t, . . .
at which f” is nonnegative, where 1 is a preassigned initial step size. It then follows
that A* is bounded in the interval A < A* < B (Fig. 5.16).

Stage 3. If the cubic equation

h(A) = a+ br +cA? + 23 (5.45)
)

A
v

=

| |

| |

| |

| |

| |

L L >
0 A B

Figure 5.16 Minimum of f(A) lies between A and B.

In this case the angle between the direction of steepest descent and S will be less than 90°.
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is used to approximate the function f(A) between points A and B, we need to find the
values fa = f(A = A), fy =df/dr(h = A), fg = f(Ah=B), and fp =df/dr(h =
B) in order to evaluate the constants, a, b, ¢, and d in Eq. (5.45). By assuming that
A # 0, we can derive a general formula for X*. From Eq. (5.45) we have

fa=a+bA+cA’>+dA3
fs =a+bB+cB*+dB?
fa=b+2cA+3dA?

fp=b+2cB+3dB? (5.46)
Equations (5.46) can be solved to find the constants as
a= fa—bA—cA’>—dA> (5.47)
with
1
b=———(B>fi +A’f} +2AB 5.48
c:—m[(A—i—B)Z—}—Bf/Q—i—Afg] (5.49)
and
d=——Q2Z y ; 5.50
s 2t D (5.50)
where
3( - ) / /
z= 71;“‘_{3 + At 1 (5.51)

The necessary condition for the minimum of 4(A) given by Eq. (5.45) is that

dh 5
that is,
- —c =+ (% = 3bd)V/?
O ) (5.52)

3d

The application of the sufficiency condition for the minimum of #(X) leads to the
relation
dih 2¢ + 643 >0 (5.53)
—1 =2c > .
d)\.2 A*
By substituting the expressions for b, ¢, and d given by Egs. (5.48) to (5.50) into
Egs. (5.52) and (5.53), we obtain

fa+Z+0

M=A4 AT
fa+ fp+2Z

(B—A) (5.54)
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where
Q=(Z"~fafp)'? (5.55)
2B—-A)QRZA+ fa+ fR)(fa+Z+0)
—2(B — A)(fi>+ Zf +3Zf4 +22%)
2B+ A fifp>0 (5.56)

By specializing Eqgs. (5.47) to (5.56) for the case where A = 0, we obtain

a= fa

b= f,
1 /

C=—E(Z+f,4)
1 / /

d:m(ZZ‘i‘fA—i_fB)

X*:Bw (5.57)
fA+fB+ZZ

0=(Z>= fifp'?>0 (5.58)

where
2= g (559

B

The two values of A* in Eqgs. (5.54) and (5.57) correspond to the two possibilities
for the vanishing of A’'(A) [i.e., at a maximum of 4(1) and at a minimum]. To avoid
imaginary values of Q, we should ensure the satisfaction of the condition

Z*— fifp =0

in Eq. (5.55). This inequality is satisfied automatically since A and B are selected
such that f} <0 and f > 0. Furthermore, the sufficiency condition (when A = 0)
requires that Q > 0, which is already satisfied. Now we compute A* using Eq. (5.57)
and proceed to the next stage.

Stage 4. The value of A* found in stage 3 is the true minimum of 4 (1) and may
not be close to the minimum of f(2). Hence the following convergence criteria can be
used before choosing A* &~ A* :

M < g (5.60)
fan |

df

ld_k . =|STVf ;| <& (5.61)
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where €] and &, are small numbers whose values depend on the accuracy desired. The
criterion of Eq. (5.61) can be stated in nondimensional form as
STV f
IS[IV f1

=& (5.62)
i*

If the criteria stated in Eqgs. (5.60) and (5.62) are not satisfied, a new cubic equation
W) =d +br+cA>+d)°

can be used to approximate f(A). The constants a’, b’, ¢/, and d’ can be evaluated
by using the function and derivative values at the best two points out of the three
points currently available: A, B, and A*. Now the general formula given by Eq. (5.54)
is to be used for finding the optimal step size A*. If f'(A*) < 0, the new points A
and B are taken as A* and B, respectively; otherwise [if f’(1*) > 0], the new points
A and B are taken as A and 1*, and Eq. (5.54) is applied to find the new value of
AE. Equations (5.60) and (5.62) are again used to test for the convergence of A If
convergence is achieved, A* is taken as A* and the procedure is stopped. Otherwise,
the entire procedure is repeated until the desired convergence is achieved.

The flowchart for implementing the cubic interpolation method is given in Fig. 5.17.

Example 5.11 Find the minimum of f = A> — 543 — 20A + 5 by the cubic interpola-
tion method.

SOLUTION  Since this problem has not arisen during a multivariable optimization
process, we can skip stage 1. We take A = 0 and find that

d
—f(A=A=O)=5A4—15A2—20 =-20<0

To find B at which df/d\ is nonnegative, we start with #p = 0.4 and evaluate the
derivative at 1y, 21, 4tg, .. .. This gives

f(to = 0.4) = 5(0.4)* — 15(0.4)> — 20.0 = —22.272
£ty = 0.8) = 5(0.8)* — 15(0.8)> — 20.0 = —27.552
f'(4ty = 1.6) = 5(1.6)* — 15(1.6)> — 20.0 = —25.632
f' 8ty =3.2) =53.2)* — 15(3.2) — 20.0 = 350.688
Thus we find that

A =0.0, fa = 5.0, fi=—-20.0

B =32, fz=113.0, fj=2350.688

A<\ <B

TAs f’ has been found to be negative at A = 1.6 also, we can take A = 1.6 for faster convergence.
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| Enter with X, S and ¢ |

LSet fa=R0), fa=f(0)and A = O—l

\
—>|Set fz =fito) and f = f'(toTl
!
(1s 75 @& Seg:g

No

! indicates counter for
number of refits

Y

Set Set fA g Calculate
tO:2tO< fA=fB Z=(3(fA—fB)/(B—A))+f'A+f’B
A=ty Q=Z2-f,fp7 <—
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\

|Setl=l+1 !

Y
l h(A* )~ﬂ7»*)| No
ﬂK*

V

Take A* =% | o Y€S Is |3 Y/ st.vr l No
and Stop ISI-IVFIT; =
A

Yes

Is 7.7l 5. >
y No fa =1
Set fa=fa)
B=%*
=)
= ()

Figure 5.17 Flowchart for cubic interpolation method.
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Iteration 1
To find the value of A* and to test the convergence criteria, we first compute Z and Q
as
3(5.0-113.0
Z = % —20.0 + 350.688 = 229.588

0 = [229.588% + (20.0)(350.688)]'/% = 244.0

Hence

$v_ 139 ( —20.0 4-229.588 £ 244.0

=184 or —0.1396
—20.0 + 350.688 + 459.176

By discarding the negative value, we have
A =1.84

~Convergence criterion: If A* is close to the true minimum, A*, then f’ ():*) =
df (A*)/d) should be approximately zero. Since f’ = 5A* —151% — 20,

£ =5(1.84)* — 15(1.84)> =20 = —13.0

Since this is not small, we go to the next iteration or refitting. As f/'(1*) < 0, we take
A = A* and

fa= fOF) = (1.84)° —5(1.84)° —20(1.84) + 5 = —41.70

Thus
A =1.84, fa = —41.70, fi=-13.0
B =32, f5 = 113.0, fp = 350.688
A<A*<B
Iteration 2
3(—41.7 — 113.0)
= —13.0 4 350.688 = —3.312
3.20 — 1.84 +
0 = [(=3.312)% + (13.0)(350.688)]'/? = 67.5
Hence

- —13.0 - 33124+ 675
A =1.84+ (3.2 — 1.84) = 2.05
—13.0 + 350.688 — 6.624

Convergence criterion:

/() = 5.02.05)* — 15.0(2.05)% — 20.0 = 5.35

Since this value is large, we go the next iteration with B = 1* = 2.05 [as f'(A*) > 0]
and
f5 = (2.05)° — 5.0(2.05)* — 20.0(2.05) + 5.0 = —42.90
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Thus

A =1.84, fa = —41.70, fi=—13.00

B =12.05, fs = —42.90, fp =535

A<\ <B
Iteration 3
3.0(—41.70 + 42.90)
= — 13.00 +5.35=9.49
(2.05 — 1.84) +

0 =[(9.49)% + (13.0)(5.35)1"? = 12.61

Therefore,

= —13.00+9.49 £ 12.61
2F=1.84 2.05 — 1.84) = 2.0086
+ —13.00 +5.35 + 18.98( )

Convergence criterion:

/() = 5.0(2.0086)* — 15.0(2.0086)% — 20.0 = 0.855
Assuming that this value is close to zero, we can stop the iterative process and take

A~ A* = 2.0086

5.12 DIRECT ROOT METHODS

The necessary condition for f(A) to have a minimum of A* is that f’ (A*) = 0. The
direct root methods seek to find the root (or solution) of the equation, f'(1) = 0. Three
root-finding methods—the Newton, the quasi-Newton, and the secant methods—are
discussed in this section.

5.12.1 Newton Method

Consider the quadratic approximation of the function f(A) at A = A; using the Taylor’s
series expansion:

FO) = F0D)+ 00 =) + 51" i)k — 1) (5.63)

By setting the derivative of Eq. (5.63) equal to zero for the minimum of f(A), we
obtain

') =)+ " —2) =0 (5.64)

If A; denotes an approximation to the minimum of f (), Eq. (5.64) can be rearranged
to obtain an improved approximation as

£

Aiglr = Ai — 00

(5.65)
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Thus the Newton method, Eq. (5.65), is equivalent to using a quadratic approximation
for the function f(X) and applying the necessary conditions. The iterative process given
by Eq. (5.65) can be assumed to have converged when the derivative, f'(A;y1), is close
to zero:

lf izl < e (5.66)

where ¢ is a small quantity. The convergence process of the method is shown graphi-
cally in Fig. 5.18a.

Remarks:

1. The Newton method was originally developed by Newton for solving nonlinear
equations and later refined by Raphson, and hence the method is also known as
Newton—Raphson method in the literature of numerical analysis.

2. The method requires both the first- and second-order derivatives of f(}).

3. If f7(A;) #0 [in Eq. (5.65)], the Newton iterative method has a powerful
(fastest) convergence property, known as quadratic convergence.’

4. If the starting point for the iterative process is not close to the true solution A*,
the Newton iterative process might diverge as illustrated in Fig. 5.18b.

FAO)
A

Tangent at A;

(a)

Tangent at A;

Tangent at A; | |

(b)

Figure 5.18 Iterative process of Newton method: (a) convergence; (b) divergence.

"The definition of quadratic convergence is given in Section 6.7.
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Example 5.12 Find the minimum of the function

F(h) = 0.65 0-75
o 1+ A2

1
—0.651tan”! —
A

using the Newton—Raphson method with the starting point A; = 0.1. Use ¢ = 0.01 in
Eq. (5.66) for checking the convergence.

SOLUTION The first and second derivatives of the function f(A) are given by

0 1.5x N 0.651 0.65 tan-"! 1
= — L. an —
(1+212)2 1422 A
1.5(1 = 3x3)  0.65(1 — A2 0.65 2.8 —3.222
£69 = 22 ) 4 20 )4 =

(14223 (14222 1422 (1+22)3

Iteration 1

A =01, f()=-0.188197, f/(r;) =—0.744832, f" (1) = 2.68659
1'0q)
S ()
Convergence check: | f'(Ay)| = |—0.138230| > «.

Ay =Ap — = 0.377241

Iteration 2

f() = —0.303279, f'(r2) = —0.138230, f"(xy) = 1.57296
1)

S (h2)

Convergence check: | f'(r3)| = |—0.0179078| > &.

Iteration 3

f(r3) = —0.309881,  f'(A3) = —0.0179078, f"(r3) = 1.17126

f'(3)
S (A3)
Convergence check: | f'(L4)] = |—0.0005033]| < &.

Since the process has converged, the optimum solution is taken as A™ & Ay =
0.480409.

= 0.480409

Ao = A3 —

5.12.2 Quasi-Newton Method

If the function being minimized f(A) is not available in closed form or is difficult to
differentiate, the derivatives f'(1) and f” (1) in Eq. (5.65) can be approximated by the
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finite difference formulas as

oy SO+ AN = Fi — AN
fi) = 7N (5.67)

Ai AL =2 (A Ai — AA
Py = L0+ 0 22700 + ¢ )

where AX is a small step size. Substitution of Egs. (5.67) and (5.68) into Eq. (5.65)
leads to

(5.68)

MM Ga AN — fO— AV)]
2Lf i + AN =2F ) + f(i — A
The iterative process indicated by Eq. (5.69) is known as the quasi-Newton method.
To test the convergence of the iterative process, the following criterion can be used:
fQisi +AY) — fQiv1 =AM | _ .
2AA -

Aitl = A (5.69)

|f' Qs = (5.70)

where a central difference formula has been used for evaluating the derivative of f
and ¢ is a small quantity.

Remarks:
1. The central difference formulas have been used in Egs. (5.69) and (5.70). How-
ever, the forward or backward difference formulas can also be used for this
purpose.

2. Equation (5.69) requires the evaluation of the function at the points A; + AA
and A; — AX in addition to A; in each iteration.

Example 5.13 Find the minimum of the function

0.75 1

—— —0.65xrtan™ " —

1442 A

using quasi-Newton method with the starting point A; = 0.1 and the step size AA =
0.01 in central difference formulas. Use ¢ = 0.01 in Eq. (5.70) for checking the con-
vergence.

f(A) =0.65—

SOLUTION
Iteration 1
A1 =01, Ax=0.01, &£=0.01, fi= f()=-0.188197,

flJr = f(A1 + AL = —0.195512, f; = f(A — AL) = —0.180615

AMST = D)

A=A — 7 — = 0.377882
20" =20+ 1)
Convergence check:
+ _ —
|f'O2)] = % = 0.137300 > ¢
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Iteration 2
fo=f(a) =—0.303368, f," = f(h + AL) = —0.304662,
[y = f(a—Ak) =-0.301916
A = )

Az =Xy — - — = 0.465390
2(f2 _2f2 + fz )
Convergence check:
=1
‘)] = | B = 0.0177
| (23] N 0.017700 > ¢

Iteration 3
f3=f(3) = —-0.309885, fiF = f(h3 + Ax) = —0.310004,

fi = f3 — AXL) = —0.309650
AN = 1)

Ay = A3 — - — = 0.480600
20/ =2+ f3)
Convergence check:
/ f4+ — f47
Ay)| = |——————| =0.
[/ (Aa)] AL 0.000350 < ¢

Since the process has converged, we take the optimum solution as 1* ~ 14 = 0.480600.

5.12.3 Secant Method

The secant method uses an equation similar to Eq. (5.64) as
)= f0)+sG—2r)=0 (5.71)

where s is the slope of the line connecting the two points (A, f'(A)) and (B, f'(B)),
where A and B denote two different approximations to the correct solution, A*. The
slope s can be expressed as (Fig. 5.19)

5 = M (5.72)
B—A

Equation (5.71) approximates the function f’(1) between A and B as a linear equation

(secant), and hence the solution of Eq. (5.71) gives the new approximation to the root

of f/(1) as

o0 _ A J'(A)(B — A)
$ ' (B) — f'(A)

The iterative process given by Eq. (5.73) is known as the secant method (Fig. 5.19).

Since the secant approaches the second derivative of f(A) at A as B approaches A,

Aipl = A —

(5.73)
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)

Figure 5.19 Iterative process of the secant method.

the secant method can also be considered as a quasi-Newton method. It can also be
considered as a form of elimination technique since part of the interval, (A, A;11) in
Fig. 5.19, is eliminated in every iteration. The iterative process can be implemented by
using the following step-by-step procedure.

1. Set A; = A =0 and evaluate f'(A). The value of f'(A) will be negative.
Assume an initial trial step length f#y. Set i = 1.
2. Evaluate f'(1p).
3. 0IF f(tg) <0, set A =x; =19, f'(A) = f'(ty), new 1y = 21y, and go to step 2.
4. If f'(tp) > 0, set B =19, f'(B) = f'(1y), and go to step 3.
5. Find the new approximate solution of the problem as
"(A)(B — A
=4 LB 57
J'(B) — f'(A)
6. Test for convergence:
lf'i+ Dl <e (5.75)

where ¢ is a small quantity. If Eq. (5.75) is satisfied, take L* =~ X;;; and stop
the procedure. Otherwise, go to step 7.

I f'ig1) =0, set new B = X4y, f/(B) = f'(Aix1), i =i+ 1, and go to

step 5.

I /(A1) <0, set new A =X;11, f'(A) = f'(Aix1), i =i+ 1, and go to

step 5.
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I

Figure 5.20 Situation when f) varies very slowly.

Remarks:

1. The secant method is identical to assuming a linear equation for f’(1). This
implies that the original function, f (1), is approximated by a quadratic equation.

2. In some cases we may encounter a situation where the function f’(A) varies
very slowly with A, as shown in Fig. 5.20. This situation can be identified
by noticing that the point B remains unaltered for several consecutive refits.
Once such a situation is suspected, the convergence process can be improved
by taking the next value of X;;; as (A + B)/2 instead of finding its value from
Eq. (5.74).

Example 5.14 Find the minimum of the function

0.75 1
A)=065— —— —0.65rtan" ! =
f() =0.65 o2 0.65) tan i

using the secant method with an initial step size of 75 = 0.1, A; = 0.0, and ¢ = 0.01.

SOLUTION A;=A=0.0, ¢ =0.1, f/'(A)=-1.02102, B=A+1)=0.1,
f'(B) = —0.744832. Since f'(B) < 0, we setnew A = 0.1, f'(A) = —0.744832, 1ty =
2(0.1) = 0.2, B = A1 + 1o = 0.2, and compute f'(B) = —0.490343. Since f'(B) < 0,
we set new A =02, f'(A)=-0.490343, 10 =2(0.2) =04, B=A; +1) =04,
and compute f'(B) = —0.103652. Since f'(B) <0, we set new A = 0.4, f'(A) =
—0.103652, tp = 2(0.4) = 0.8, B = A1 + 1) = 0.8, and compute f'(B) = +0.180800.
Since f'(B) >0, we proceed to find A,.

Iteration 1
Since A = A1 =04, f'(A) = —0.103652, B = 0.8, f'(B) = +0.180800, we compute
"(AY(B — A
po=a— LDE=D 4 sust57
f'(B) — f'(A)

Convergence check: | f'(A2)| = |[+0.0105789| > ¢.
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Iteration 2

Since f/(A2) = +0.0105789 > 0, we set new A = 0.4, f'(A) = —0.103652, B = A, =

0.545757, f'(B) = f'(x2) = +0.0105789, and compute

_ f'(A)(B — A)
S (B) — f'(A)

Convergence check: | f'(r3)] = [+0.00151235| < «.

Since the process has converged, the optimum solution is given by A* & A3 =
0.490632.

= A = 0.490632

5.13 PRACTICAL CONSIDERATIONS
5.13.1 How to Make the Methods Efficient and More Reliable

In some cases, some of the interpolation methods discussed in Sections 5.10 to 5.12
may be very slow to converge, may diverge, or may predict the minimum of the func-
tion, f(A), outside the initial interval of uncertainty, especially when the interpolating
polynomial is not representative of the variation of the function being minimized. In
such cases we can use the Fibonacci or golden section method to find the minimum. In
some problems it might prove to be more efficient to combine several techniques. For
example, the unrestricted search with an accelerated step size can be used to bracket
the minimum and then the Fibonacci or the golden section method can be used to find
the optimum point. In some cases the Fibonacci or golden section method can be used
in conjunction with an interpolation method.

5.13.2 Implementation in Multivariable Optimization Problems

As stated earlier, the one-dimensional minimization methods are useful in multivariable
optimization problems to find an improved design vector X;; from the current design
vector X; using the formula

Xit1 =X + AfS, (5.76)

where S; is the known search direction and A} is the optimal step length found by
solving the one-dimensional minimization problem as

2 = min [f(X; + 4;8)] (5.77)

Here the objective function f is to be evaluated at any trial step length 7y as
fto) = fX; + 18S;) (5.78)

Similarly, the derivative of the function f with respect to A corresponding to the trial
step length £y is to be found as

af

= SIAflh=1 (5.79)

A=ty

Separate function programs or subroutines can be written conveniently to implement
Egs. (5.78) and (5.79).
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5.13.3 Comparison of Methods

It has been shown in Section 5.9 that the Fibonacci method is the most efficient elimina-
tion technique in finding the minimum of a function if the initial interval of uncertainty
is known. In the absence of the initial interval of uncertainty, the quadratic interpo-
lation method or the quasi-Newton method is expected to be more efficient when the
derivatives of the function are not available. When the first derivatives of the function
being minimized are available, the cubic interpolation method or the secant method are
expected to be very efficient. On the other hand, if both the first and second derivatives
of the function are available, the Newton method will be the most efficient one in
finding the optimal step length, A*.

In general, the efficiency and reliability of the various methods are problem depen-
dent and any efficient computer program must include many heuristic additions not
indicated explicitly by the method. The heuristic considerations are needed to handle
multimodal functions (functions with multiple extreme points), sharp variations in the
slopes (first derivatives) and curvatures (second derivatives) of the function, and the
effects of round-off errors resulting from the precision used in the arithmetic opera-
tions. A comparative study of the efficiencies of the various search methods is given in
Ref. [5.10].

5.14 MATLAB SOLUTION OF ONE-DIMENSIONAL
MINIMIZATION PROBLEMS

The solution of one-dimensional minimization problems, using the MATLAB program
optimset, is illustrated by the following example.

Example 5.15 Find the minimum of the following function:

fx) =0.65— =

0.75 (1
5~ 0.65x tan —
X X

Step 1: Write an M-file obj fun.m for the objective function.

SOLUTION

function f= objfun(x)
f= 0.65-(0.75/(1+x72)) -0.65*x*atan (1/x) ;

Step 2: Invoke unconstrained optimization program (write this in new MATLAB
file).

clc

clear all

warning off

options = optimset ('LargeScale', 'off');
[x,fval] = fminbnd(@objfun,0,0.5,options)
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This produces the solution or ouput as follows:

0.4809

fval =

-0.3100
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REVIEW QUESTIONS

51
5.2

5.3
54
5.5
5.6
5.7
5.8
59

What is a one-dimensional minimization problem?

What are the limitations of classical methods in solving a one-dimensional minimization
problem?

What is the difference between elimination and interpolation methods?
Define Fibonacci numbers.

What is the difference between Fibonacci and golden section methods?
What is a unimodal function?

What is an interval of uncertainty?

Suggest a method of finding the minimum of a multimodal function.

What is an exhaustive search method?
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PROBLEMS

5.10
511
5.12
5.13
5.14
5.15
5.16
517
5.18

51

5.2

5.3

54

What is a dichotomous search method?

Define the golden mean.

What is the difference between quadratic and cubic interpolation methods?
Why is refitting necessary in interpolation methods?

What is a direct root method?

What is the basis of the interval halving method?

What is the difference between Newton and quasi-Newton methods?

What is the secant method?

Answer true or false:

(a) A unimodal function cannot be discontinuous.
(b) All elimination methods assume the function to be unimodal.
(c) The golden section method is more accurate than the Fibonacci method.

(d) Nearly 50% of the interval of uncertainty is eliminated with each pair of experiments
in the dichotomous search method.

(e) The number of experiments to be conducted is to be specified beforehand in both the
Fibonacci and golden section methods.

Find the minimum of the function

0.75

. 1
f(x) =0.65— m —0.65xtan”' —

X
using the following methods:

(a) Unrestricted search with a fixed step size of 0.1 from the starting point 0.0

(b) Unrestricted search with an accelerated step size using an initial step size of 0.1 and
starting point of 0.0

(c) Exhaustive search method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

(d) Dichotomous search method in the interval (0, 3) to achieve an accuracy of within
5% of the exact value using a value of § = 0.0001

(e) Interval halving method in the interval (0, 3) to achieve an accuracy of within 5% of
the exact value

Find the minimum of the function given in Problem 5.1 using the quadratic interpolation
method with an initial step size of 0.1.

Find the minimum of the function given in Problem 5.1 using the cubic interpolation
method with an initial step size of 7o = 0.1.

Plot the graph of the function f(x) given in Problem 5.1 in the range (0, 3) and identify
its minimum.
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5.5 The shear stress induced along the z-axis when two cylinders are in contact with each
other is given by

Ty 1 1
Pmax 2 Z\?2 E 2
1*‘(;) 14—(b)

N

where 2b is the width of the contact area and pmax is the maximum pressure developed
at the center of the contact area (Fig. 5.21):

l—v12+ l—vg 12
2F  E, E>»
b= P 2)
d, dy
2F
Pmax = ﬁ (3)

F is the contact force; E| and E; are Young’s moduli of the two cylinders; v; and v, are
Poisson’s ratios of the two cylinders; d; and d, the diameters of the two cylinders, and /
the axial length of contact (length of the shorter cylinder). In many practical applications,

N\
-7 \
-
I \
=" I
_A
// /
S L
////
-
’/

Contact area

Figure 5.21 Contact stress between two cylinders.
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5.6

5.7

5.8

5.9

5.10

5.11

5.12
5.13

such as roller bearings, when the contact load (F) is large, a crack originates at the point
of maximum shear stress and propagates to the surface leading to a fatigue failure. To
locate the origin of a crack, it is necessary to find the point at which the shear stress
attains its maximum value. Show that the problem of finding the location of the maximum
shear stress for v; = v, = 0.3 reduces to maximizing the function

05 5 0.5
f(k)_m—\/l+k (1—1+k2>+x 4)

where f = sz/pmax and A = z/b.

Plot the graph of the function f (%) given by Eq. (4) in Problem 5.5 in the range (0, 3)
and identify its maximum.

Find the maximum of the function given by Eq. (4) in Problem 5.5 using the following
methods:

(a) Unrestricted search with a fixed step size of 0.1 from the starting point 0.0

(b) Unrestricted search with an accelerated step size using an initial step length of 0.1
and a starting point of 0.0

(c) Exhaustive search method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

(d) Dichotomous search method in the interval (0, 3) to achieve an accuracy of within
5% of the exact value using a value of § = 0.0001

(e) Interval halving method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

Find the maximum of the function given by Eq. (4) in Problem 5.5 using the following
methods:

(a) Fibonacci method with n = 8

(b) Golden section method with n = 8

Find the maximum of the function given by Eq. (4) in Problem 5.5 using the quadratic
interpolation method with an initial step length of 0.1.

Find the maximum of the function given by Eq. (4) in Problem 5.5 using the cubic
interpolation method with an initial step length of 7o = 0.1.

Find the maximum of the function f(A) given by Eq. (4) in Problem 5.5 using the
following methods:
(a) Newton method with the starting point 0.6

(b) Quasi-Newton method with the starting point 0.6 and a finite difference step size of
0.001

(c) Secant method with the starting point 1; = 0.0 and #y = 0.1

Prove that a convex function is unimodal.

Compare the ratios of intervals of uncertainty (L, /L) obtainable in the following meth-
ods forn =2,3,...,10:

(a) Exhaustive search
(b) Dichotomous search with § = 10~*
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5.15

5.16

517

5.18

5.19

5.20
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(¢) Interval halving method
(d) Fibonacci method
(e) Golden section method

Find the number of experiments to be conducted in the following methods to obtain a
value of L, /Ly = 0.001:

(a) Exhaustive search

(b) Dichotomous search with § = 10~*
(¢) Interval halving method

(d) Fibonacci method

(e) Golden section method

Find the value of x in the interval (0, 1) which minimizes the function f = x(x — 1.5)
to within +0.05 by (a) the golden section method and (b) the Fibonacci method.

Find the minimum of the function f = A% — 543 — 204 4 5 by the following methods:

(a) Unrestricted search with a fixed step size of 0.1 starting from A = 0.0

(b) Unrestricted search with accelerated step size from the initial point 0.0 with a starting
step length of 0.1

(¢) Exhaustive search in the interval (0, 5)

(d) Dichotomous search in the interval (0, 5) with § = 0.0001
(e) Interval halving method in the interval (0, 5)

(f) Fibonacci search in the interval (0, 5)

(g) Golden section method in the interval (0, 5)

Find the minimum of the function f = (A/log 1) by the following methods (take the
initial trial step length as 0.1):

(a) Quadratic interpolation method
(b) Cubic interpolation method

Find the minimum of the function f = A/log A using the following methods:

(a) Newton method
(b) Quasi-Newton method
(¢) Secant method

Consider the function

_ 2x12 + 2x§ + 3x32 — 2x1x2 — 2X2X3
x12 + x% + 2x32

f

Substitute X = X 4 AS into this function and derive an exact formula for the minimizing
step length A*.

Minimize the function f = x| — x5 + 2x7 + 2x1x2 + x3 starting from the point X; = {8}
along the direction S = {_(1)} using the quadratic interpolation method with an initial step
length of 0.1.
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5.21

5.22
5.23
5.24
5.25
5.26

5.27

5.28

5.29

5.30
5.31

5.32

5.33
5.34
5.35

5.36

Consider the problem
Minimize f(X) = 100(xa — x7)? + (1 — x;)?
and the starting point, X; = {71} Find the minimum of f(X) along the direction, S; =
{g} using quadratic interpolation method. Use a maximum of two refits.
Solve Problem 5.21 using the cubic interpolation method. Use a maximum of two refits.
Solve Problem 5.21 using the direct root method. Use a maximum of two refits.
Solve Problem 5.21 using the Newton method. Use a maximum of two refits.
Solve Problem 5.21 using the Fibonacci method with Ly = (0, 0.1).

Write a computer program, in the form of a subroutine, to implement the Fibonacci
method.

Write a computer program, in the form of a subroutine, to implement the golden section
method.

Write a computer program, in the form of a subroutine, to implement the quadratic
interpolation method.

Write a computer program, in the form of a subroutine, to implement the cubic interpo-
lation method.

Write a computer program, in the form of a subroutine, to implement the secant method.

Find the maximum of the function given by Eq. (4) in Problem 5.5 using MATLAB.
Assume the bounds on A as 0 and 3.

Find the minimum of the function f(}) given in Problem 5.16, in the range 0 and 5, using
MATLAB.

Find the minimum of f(x) = x(x — 1.5) in the interval (0, 1) using MATLAB.
Find the minimum of the function f(x) = % — 277" in the range (0, 10) using MATLAB.

Find the minimum of the function f(x) = x3 + x> —x — 2 in the interval —4 and 4 using
MATLAB.

—6
Find the minimum of the function f(x) = —1?5 + % in the interval —4 and 4 using

MATLAB.



Nonlinear Programming I1:
Unconstrained Optimization
Techniques

6.1 INTRODUCTION

This chapter deals with the various methods of solving the unconstrained minimization
problem:

X1

X2
Find X =1 . which minimizes f(X) (6.1)

Xn

It is true that rarely a practical design problem would be unconstrained; still, a study
of this class of problems is important for the following reasons:

1. The constraints do not have significant influence in certain design problems.

2. Some of the powerful and robust methods of solving constrained minimization
problems require the use of unconstrained minimization techniques.

3. The study of unconstrained minimization techniques provide the basic under-
standing necessary for the study of constrained minimization methods.

4. The unconstrained minimization methods can be used to solve certain complex
engineering analysis problems. For example, the displacement response (linear
or nonlinear) of any structure under any specified load condition can be found
by minimizing its potential energy. Similarly, the eigenvalues and eigenvectors
of any discrete system can be found by minimizing the Rayleigh quotient.

As discussed in Chapter 2, a point X* will be a relative minimum of f(X) if the
necessary conditions

af
Y x=x=0, i=1,2,....n (6.2)
0x i
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are satisfied. The point X* is guaranteed to be a relative minimum if the Hessian matrix
is positive definite, that is,

3 f
8x,~ axj

Jxt =[x = |: (X*)] = positive definite (6.3)
Equations (6.2) and (6.3) can be used to identify the optimum point during numerical
computations. However, if the function is not differentiable, Eqs. (6.2) and (6.3) cannot
be applied to identify the optimum point. For example, consider the function

ax for x>0

fo) = {—bx for x <0

where a >0 and b > 0. The graph of this function is shown in Fig. 6.1. It can be
seen that this function is not differentiable at the minimum point, x* = 0, and hence
Egs. (6.2) and (6.3) are not applicable in identifying x*. In all such cases, the commonly
understood notion of a minimum, namely, f(X*) < f(X) for all X, can be used only
to identify a minimum point. The following example illustrates the formulation of a
typical analysis problem as an unconstrained minimization problem.

Example 6.1 A cantilever beam is subjected to an end force Py and an end moment
My as shown in Fig. 6.2a. By using a one-finite-element model indicated in Fig. 6.2b,
the transverse displacement, w(x), can be expressed as [6.1]

uj
wx) = {Ni(x) Na(x) N3(x) Na(x)} Z:j (Epn)
Us

where N;(x) are called shape functions and are given by
Ni(x) =20 —3a® + 1 (E»)
No(x) = (o — 20% + )l (E3)
N3(x) = —2a° + 30> (E4)
Ny(x) = (@ — a?)l (Es)

o =x/1, and uy, up, uz, and uy are the end displacements (or slopes) of the beam.
The deflection of the beam at point A can be found by minimizing the potential energy

fx)

f(x) = -bx - flx) = ax

Figure 6.1 Function is not differentiable at mini-
0 o mum point.
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u) = 0 PO
Uy = 0 w+(x) MO
N y
< ! .|
|
(@)
u) u3
w2 w(x) ug

v

)

Figure 6.2 Finite-element model of a cantilever beam.

of the beam (F'), which can be expressed as [6.1]

1! w\’
F = E/(; EI (W) dx — Pousz — Moyuy (Ee)

where E is Young’s modulus and / is the area moment of inertia of the beam. Formulate
the optimization problem in terms of the variables x; = u3 and x, = u4l for the case
Pol3/EI =1 and Myl?/EI = 2.

SOLUTION  Since the boundary conditions are given by u; = up = 0, w(x) can be
expressed as

wx) = (=20 + 30 us + (@ — a®)lus (E7)
so that
w63 oy + PG (Es)
—_— = —(—2x R o —
dx2 P2 I 8
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Equation (Eg) can be rewritten as

1 dPw
FZ—/ EI(—) ldOl—P()u3—M()M4
0

2 dx?
EIl ('T6u? 24 2
El 2 272
= 1—3(6143 + 2u4l — 6usugl) — Pouz — Mougy (Eog)

By using the relations u3 = x1, usl = x», Pol’/EI =1, and Myl*>/EI = 2, and intro-
ducing the notation f = FI3/EI, Eq. (E9) can be expressed as

f= 6)c12 — 6x1x2 + 2x% — X1 — 2xp (E10)

Thus the optimization problem is to determine x; and x,, which minimize the function
f given by Eq. (Ejp).

6.1.1 Classification of Unconstrained Minimization Methods

Several methods are available for solving an unconstrained minimization problem.
These methods can be classified into two broad categories as direct search methods
and descent methods as indicated in Table 6.1. The direct search methods require only
the objective function values but not the partial derivatives of the function in finding
the minimum and hence are often called the nongradient methods. The direct search
methods are also known as zeroth-order methods since they use zeroth-order derivatives
of the function. These methods are most suitable for simple problems involving a
relatively small number of variables. These methods are, in general, less efficient than
the descent methods. The descent techniques require, in addition to the function values,
the first and in some cases the second derivatives of the objective function. Since
more information about the function being minimized is used (through the use of
derivatives), descent methods are generally more efficient than direct search techniques.
The descent methods are known as gradient methods. Among the gradient methods,

Table 6.1 Unconstrained Minimization Methods

Direct search methods® Descent methods”
Random search method Steepest descent (Cauchy) method
Grid search method Fletcher—Reeves method
Univariate method Newton’s method
Pattern search methods Marquardt method

Powell’s method Quasi-Newton methods

Davidon—Fletcher—Powell method
Broyden—Fletcher—Goldfarb—Shanno method
Simplex method

“Do not require the derivatives of the function.
bRequire the derivatives of the function.
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those requiring only first derivatives of the function are called first-order methods; those
requiring both first and second derivatives of the function are termed second-order
methods.

6.1.2 General Approach

All the unconstrained minimization methods are iterative in nature and hence they start
from an initial trial solution and proceed toward the minimum point in a sequential
manner as shown in Fig. 5.3. The iterative process is given by

Xit1 =X + AfS, (6.4)

where X; is the starting point, S; is the search direction, A} is the optimal step length,
and X is the final point in iteration i. It is important to note that all the unconstrained
minimization methods (1) require an initial point X; to start the iterative procedure,
and (2) differ from one another only in the method of generating the new point X
(from X;) and in testing the point X;;; for optimality.

6.1.3 Rate of Convergence

Different iterative optimization methods have different rates of convergence. In general,
an optimization method is said to have convergence of order p if [6.2]

X1 =X _

——— <k, k>0, > 1 6.5
IX; — X7 =0 r (62)

where X; and X;;; denote the points obtained at the end of iterations i and i + 1,
respectively, X* represents the optimum point, and ||X]| denotes the length or norm of
the vector X:

||X||=\/x12+x§+~--+x3

If p=1and 0 <k <1, the method is said to be linearly convergent (corresponds
to slow convergence). If p =2, the method is said to be quadratically convergent
(corresponds to fast convergence). An optimization method is said to have superlinear
convergence (corresponds to fast convergence) if

IXi+1 — X*||

im (6.6)
imoo || X; — X*||

The definitions of rates of convergence given in Eqgs. (6.5) and (6.6) are applica-
ble to single-variable as well as multivariable optimization problems. In the case of
single-variable problems, the vector, X;, for example, degenerates to a scalar, x;.

6.1.4 Scaling of Design Variables

The rate of convergence of most unconstrained minimization methods can be improved
by scaling the design variables. For a quadratic objective function, the scaling of the
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design variables changes the condition number’ of the Hessian matrix. When the con-
dition number of the Hessian matrix is 1, the steepest descent method, for example,
finds the minimum of a quadratic objective function in one iteration.

If f= %XT[A]X denotes a quadratic term, a transformation of the form

X = [R]Y or {xl} = [’“ ”2} {yl} 6.7)
X2 1 2| | )2
can be used to obtain a new quadratic term as
IYT[A]Y = SYT[RIT[A][R]Y (6.8)

The matrix [R] can be selected to make [A] = [R]T[A][R] diagonal (i.e., to eliminate
the mixed quadratic terms). For this, the columns of the matrix [R] are to be chosen
as the eigenvectors of the matrix [A]. Next the diagonal elements of the matrix [A]
can be reduced to 1 (so that the condition number of the resulting matrix will be 1) by
using the transformation

_ il _[su 07 [z
Y=[SIZ or {y2}—|:0 522i| {Zz} (6.9

where the matrix [S] is given by

(6.10)

Thus the complete transformation that reduces the Hessian matrix of f to an identity
matrix is given by

X=[RI[SIZ=1T]Z (6.11)

so that the quadratic term 3X"[A]X reduces to 1Z"[I]Z.
If the objective function is not a quadratic, the Hessian matrix and hence the
transformations vary with the design vector from iteration to iteration. For example,

"The condition number of an n x n matrix, [A], is defined as
cond([A]) = I[A]ll AT~ = 1

where |[[A]|| denotes a norm of the matrix [A]. For example, the infinite norm of [A] is defined as the
maximum row sum given by

n

I[ATlec = max > aj;|
I<i<n % 1
pm

If the condition number is close to 1, the round-off errors are expected to be small in dealing with the
matrix [A]. For example, if cond[A] is large, the solution vector X of the system of equations [A]X = B is
expected to be very sensitive to small variations in [A] and B. If cond[A] is close to 1, the matrix [A] is
said to be well behaved or well conditioned. On the other hand, if cond[A] is significantly greater than 1,
the matrix [A] is said to be not well behaved or ill conditioned .
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the second-order Taylor’s series approximation of a general nonlinear function at the
design vector X; can be expressed as

fX) = c+BTX + IXT[AIX (6.12)
where
c= f(X;) (6.13)
af
8)(1 X;
B — (6.14)
af
9xn |x,
e 82 f -
3)612 X; 0x10x, X;
[A] = E : (6.15)
2 f 3 f
| 3x, 0 x, axy Ix. |

The transformations indicated by Egs. (6.7) and (6.9) can be applied to the matrix [A]
given by Eq. (6.15). The procedure of scaling the design variables is illustrated with
the following example.

Example 6.2 Find a suitable scaling (or transformation) of variables to reduce the
condition number of the Hessian matrix of the following function to 1:

f(x1, x2) = 6x7 — 6x1x2 4 2x5 — x| — 2x2 (E1)

SOLUTION The quadratic function can be expressed as
fX) =B'X + ;XT[AIX (E2)

) ne Y o[

As indicated above, the desired scaling of variables can be accomplished in two
stages.

where

Stage 1: Reducing [A] to a Diagonal Form, [ A ]

The eigenvectors of the matrix [A] can be found by solving the eigenvalue problem

[([A] = Ai[I]] u; =0 (E3)
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where A; is the ith eigenvalue and u; is the corresponding eigenvector. In the present
case, the eigenvalues, A;, are given by

12-% -6
=7 — 163 +12=0 (E4)

—6 4—

which yield A} = 8 4+ /52 =15.2111 and X, = 8 — /52 = 0.7889. The eigenvector
u; corresponding to A; can be found by solving Eq. (E3):

12 — -6 Uit 0 (12— ) 6 0
_ or _ _ _
—6 4— X un 0 v 1l

or ujz = —0.5332M11

that is,

uil 1.0

ul = =

Un| —0.5332

and
12 — Ay -6 ui 0
= 12— — 06Uy =0
[ -6 4—)»2] {Mzz} :0} or itz = 02
or uj = 1.8685u12

that is,

_juiz| _ 1.0
- un> — ]11.8685
Thus the transformation that reduces [A] to a diagonal form is given by

_ _ _ 1 Ty
X=[RY =lm w]Y= [—0.5352 1.8685] {yz} (Es)

that is,

Xr=y1+»n

xy = —0.5352y; + 1.8685y,
This yields the new quadratic term as %YT[A]Y, where

19.5682 0.0 i|

Al = [R]"[A][R] =
LAT = [RITIAILR] [0.0 3.5432
and hence the quadratic function becomes

fO1,y2) =BI[RIY + 3YT[A]Y

= 0.0704y; — 4.7370y, + 1(19.8682)y? + 1(3.5432)y3 (Eg)
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Stage 2: Reducing [ A] to a Unit Matrix

The transformation is given by Y = [S]Z, where

1
—_— 0
(5] — 19,5682 _ 0.2262 0.0
! 0.0  0.5313
~/3.5432
Stage 3: Complete Transformation
The total transformation is given by
X =[R]Y =[RI[SIZ =[T]Z (E7)
where
1 1 0.2262 0
[T]=[RI[S] =
—0.5352 1.8685| |0 0.5313
0.2262 0.5313
= (Eg)
—0.1211 0.9927
or
x1 =0.2262z; + 0.53132;
x; = —0.1211z; + 0.9927z,
With this transformation, the quadratic function of Eq. (E;) becomes
f(z1.22) = BYTIZ+ 3ZT[T|"[AlT]Z
=0.0160z; — 2.5167z, + 122 + 122 (Eo)

The contours of the quadratic functions given by Egs. (E), (E¢), and (Ey) are shown
in Fig. 6.3a, b, and c, respectively.

Direct Search Methods

6.2 RANDOM SEARCH METHODS

Random search methods are based on the use of random numbers in finding the min-
imum point. Since most of the computer libraries have random number generators,
these methods can be used quite conveniently. Some of the best known random search
methods are presented in this section.
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Figure 6.3 Contours of the original and transformed functions.
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f(zp 22)

Figure 6.3 (continued).

6.2.1 Random Jumping Method

Although the problem is an unconstrained one, we establish the bounds /; and u; for

each design variable x;,i = 1,2, ..., n, for generating the random values of x;:
l,~§x,-§u,~, i=1,2,....n (616)
In the random jumping method, we generate sets of n random numbers, (7, 72, ..., Fp),

that are uniformly distributed between 0 and 1. Each set of these numbers is used to
find a point, X, inside the hypercube defined by Egs. (6.16) as

X1 Iy +ri(uy — 1)
X2 Iy +ry(ux — Ip)

x=1"1_ . (6.17)
. ln + rn(un - ln)

=

and the value of the function is evaluated at this point X. By generating a large number
of random points X and evaluating the value of the objective function at each of these
points, we can take the smallest value of f(X) as the desired minimum point.
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6.2.2 Random Walk Method

The random walk method is based on generating a sequence of improved approxima-
tions to the minimum, each derived from the preceding approximation. Thus if X; is
the approximation to the minimum obtained in the (i — 1)th stage (or step or iteration),
the new or improved approximation in the ith stage is found from the relation

Xit1 =X; + Ay (6.18)

where A is a prescribed scalar step length and u; is a unit random vector generated in the
ith stage. The detailed procedure of this method is given by the following steps [6.3]:

1.

]

9.

Start with an initial point X, a sufficiently large initial step length A, a minimum
allowable step length ¢, and a maximum permissible number of iterations N.

. Find the function value f; = f(X)).
. Set the iteration number as i = 1.
. Generate a set of n random numbers ry, rp, ..., r, each lying in the interval

[—1, 1] and formulate the unit vector u as
1
1 )
u=
(rl2 +r22 4+t rl%)l/2

(6.19)
I'n

The directions generated using Eq. (6.19) are expected to have a bias toward
the diagonals of the unit hypercube [6.3]. To avoid such a bias, the length
of the vector, R, is computed as

R=(F+r3 4 +r)P

and the random numbers generated (ry, r2, ..., r,) are accepted only if R <1
but are discarded if R > 1. If the random numbers are accepted, the unbiased
random vector u; is given by Eq. (6.19).

Compute the new vector and the corresponding function value as X = X; + Au
and f = f(X).

Compare the values of f and f;. If f < fj, set the new values as X; = X and
f1 = f and go to step 3. If f > f}, go to step 7.

If i < N, set the new iteration number as i =i + 1 and go to step 4. On the
other hand, if i > N, go to step 8.

. Compute the new, reduced, step length as A = A/2. If the new step length is

smaller than or equal to &, go to step 9. Otherwise (i.e., if the new step length
is greater than ¢), go to step 4.

Stop the procedure by taking Xop ~ X1 and fope &~ f1.

This method is illustrated with the following example.

Example 6.3 Minimize f(x,xp) = x; — X2 + 2x12 + 2x1x2 + x22 using random walk
method from the point X; = {8:8} with a starting step length of A = 1.0. Take ¢ = 0.05
and N = 100.
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Table 6.2 Minimization of f by Random Walk Method

Step Number of Current objective
length, trials Components of X; + Au function value,
A required? 1 2 fi=fX; + ru)

1.0 1 —0.93696 0.34943 —0.06329

1.0 2 —1.15271 1.32588 —1.11986
Next 100 trials did not reduce the function value.

0.5 1 —1.34361 1.78800 —1.12884

0.5 3 —1.07318 1.36744 —1.20232
Next 100 trials did not reduce the function value.

0.25 4 —0.86419 1.23025 —1.21362

0.25 2 —0.86955 1.48019 —1.22074

0.25 8 —1.10661 1.55958 —1.23642

0.25 30 —0.94278 1.37074 —1.24154

0.25 6 —1.08729 1.57474 —1.24222

0.25 50 —0.92606 1.38368 —1.24274

0.25 23 —1.07912 1.58135 —1.24374
Next 100 trials did not reduce the function value.

0.125 1 —0.97986 1.50538 —1.24894
Next 100 trials did not reduce the function value.

0.0625 100 trials did not reduce the function value.

0.03125 As this step length is smaller than €, the program is terminated.

“QOut of the directions generated that satisfy R < 1, number of trials required to find a direction that also
reduces the value of f.

SOLUTION  The results are summarized in Table 6.2, where only the trials that pro-
duced an improvement are shown.

Walk Method with Direction Exploitation

In the random walk method described in Section 6.2.2, we proceed to generate a new
unit random vector u; 4 as soon as we find that u; is successful in reducing the function
value for a fixed step length 1. However, we can expect to achieve a further decrease
in the function value by taking a longer step length along the direction u;. Thus the
random walk method can be improved if the maximum possible step is taken along
each successful direction. This can be achieved by using any of the one-dimensional
minimization methods discussed in Chapter 5. According to this procedure, the new
vector X;; is found as

X =X + )»;-klli (6.20)
where A7 is the optimal step length found along the direction u; so that

fir1 = X+ Ajw) = minf(X; + A;u;) (6.21)

The search method incorporating this feature is called the random walk method with
direction exploitation.
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6.2.4 Advantages of Random Search Methods

1. These methods can work even if the objective function is discontinuous and
nondifferentiable at some of the points.

2. The random methods can be used to find the global minimum when the objective
function possesses several relative minima.

3. These methods are applicable when other methods fail due to local difficulties
such as sharply varying functions and shallow regions.

4. Although the random methods are not very efficient by themselves, they can be
used in the early stages of optimization to detect the region where the global
minimum is likely to be found. Once this region is found, some of the more effi-
cient techniques can be used to find the precise location of the global minimum
point.

6.3 GRID SEARCH METHOD

This method involves setting up a suitable grid in the design space, evaluating the
objective function at all the gird points, and finding the grid point corresponding to
the lowest function value. For example, if the lower and upper bounds on the ith
design variable are known to be /; and u;, respectively, we can divide the range (I;, u;)
into p; — 1 equal parts so that xl.(l), xi(z), RN xi(p D denote the grid points along the x;
axis (i =1,2,...,n). This leads to a total of p;p,---p, grid points in the design
space. A grid with p; = 4 is shown in a two-dimensional design space in Fig. 6.4. The
grid points can also be chosen based on methods of experimental design [6.4, 6.5].
It can be seen that the grid method requires prohibitively large number of function
evaluations in most practical problems. For example, for a problem with 10 design

X2
A
Usl = = = = 0
2 xzr X X 1
} } !
3): [} ] !
x(g r""j""'j"““f
! [} [} !
@ i ! ! '
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Figure 6.4 Grid with p; = 4.
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variables (n = 10), the number of grid points will be 3!° = 59,049 with p; = 3 and
410 = 1,048,576 with pi = 4. However, for problems with a small number of design
variables, the grid method can be used conveniently to find an approximate minimum.
Also, the grid method can be used to find a good starting point for one of the more
efficient methods.

6.4 UNIVARIATE METHOD

In this method we change only one variable at a time and seek to produce a sequence
of improved approximations to the minimum point. By starting at a base point X; in the
ith iteration, we fix the values of n — 1 variables and vary the remaining variable. Since
only one variable is changed, the problem becomes a one-dimensional minimization
problem and any of the methods discussed in Chapter 5 can be used to produce a new
base point X; ;. The search is now continued in a new direction. This new direction
is obtained by changing any one of the n — 1 variables that were fixed in the previous
iteration. In fact, the search procedure is continued by taking each coordinate direction
in turn. After all the n directions are searched sequentially, the first cycle is complete
and hence we repeat the entire process of sequential minimization. The procedure is
continued until no further improvement is possible in the objective function in any of
the n directions of a cycle. The univariate method can be summarized as follows:

1. Choose an arbitrary staring point X; and set i = 1.
2. Find the search direction S; as

(1,0,0,...,0) for i=1,n+1,2n+1,...
(1,0,0,...,0) for i=2,n+2,2n+2,...
ST= 0,0,1,...,0) for i=3,n+32n+3,... (6.22)

0,0,0,...,1) for i=mn,2n3n,...

3. Determine whether A; should be positive or negative. For the current direction
Si, this means find whether the function value decreases in the positive or
negative direction. For this we take a small probe length (¢) and evaluate f; =
X)), ff=FfX;+¢€S),and f~ = fX; —&S;). If fT < f;, S; will be the
correct direction for decreasing the value of f and if f~ < f;, —S; will be the
correct one. If both f* and f~ are greater than f;, we take X; as the minimum
along the direction S;.

4. Find the optimal step length A} such that
FX £A7S) = n}\i_n(X,- +X;Si) (6.23)

where + or — sign has to be used depending upon whether S; or —S; is the
direction for decreasing the function value.

5. Set X;11 = X; £A]S; depending on the direction for decreasing the function
value, and f;+| = f(X;+1).

6. Set the new value of i =i + 1 and go to step 2. Continue this procedure until
no significant change is achieved in the value of the objective function.
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The univariate method is very simple and can be implemented easily. However,
it will not converge rapidly to the optimum solution, as it has a tendency to oscil-
late with steadily decreasing progress toward the optimum. Hence it will be better to
stop the computations at some point near to the optimum point rather than trying to
find the precise optimum point. In theory, the univariate method can be applied to find
the minimum of any function that possesses continuous derivatives. However, if the
function has a steep valley, the method may not even converge. For example, consider
the contours of a function of two variables with a valley as shown in Fig. 6.5. If the
univariate search starts at point P, the function value cannot be decreased either in
the direction £S; or in the direction &S,. Thus the search comes to a halt and one
may be misled to take the point P, which is certainly not the optimum point, as the
optimum point. This situation arises whenever the value of the probe length ¢ needed
for detecting the proper direction (£S; or £S;) happens to be less than the number of
significant figures used in the computations.

Example 6.4 Minimize f(x;,x2) =x; —x2+ 2x12 + 2x1x7 + x% with the starting
point (0, 0).

SOLUTION We will take the probe length (¢) as 0.01 to find the correct direction for
decreasing the function value in step 3. Further, we will use the differential calculus
method to find the optimum step length A} along the direction &S; in step 4.

Iteration i =1

Step 2: Choose the search direction S| as S| = {(1)}

Line of steep
valley

Optimum point

x2

X1

Figure 6.5 Failure of the univariate method on a steep valley.
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Step 3: To find whether the value of f decreases along S; or —S;, we use the probe
length ¢. Since

Sfi=FX) = £0,0)=0,

= fX; +6S)) = f(e,0) = 0.01 — 0+ 2(0.0001)
+04+0=0.0102> f

= fX; —&81) = f(—e,0) = —0.01 — 0+ 2(0.0001)
+040=-0.0098 < f;,

—S; is the correct direction for minimizing f from X;.
Step 4: To find the optimum step length A%, we minimize

S X1 = 2181) = f(=21,0)
=(=2) —0+2(=2)>+0+0=227 — &,

As df/dry =0 at A; = 1, we have A% = 1
1 _1
1 — 1
ol =17

i
Step 5: Set
0
fr=fX) = f(=3.0) = —4.

Xy = X; — A'S) = {0} -

Iteration i = 2

Step 2: Choose the search direction S, as S, = {?}
Step 3: Since f, = f(X;) = —0.125,

ft=fX2+¢8y) = £(—0.25,0.01) = —0.1399 < f,
= X +£Sy) = £(=0.25,—0.01) = —0.1099 > £,

S, is the correct direction for decreasing the value of f from X,.
Step 4: We minimize f (X, 4 A285) to find AJ.

Here
S (Xo +A282) = f(=0.25, 12)
= —0.25 — Xy +2(0.25)> — 2(0.25)(h2) + A3
=25 —1.50, —0.125
%:2@-1.5:0 at A3 =0.75
Step 5: Set

0 1 0.75
= f(X3) = —0.6875

X3 = X, + 43S, = {_0‘25} +0.75 {0} - {‘0'25}
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Next we set the iteration number as i = 3, and continue the procedure until the optimum
solution X* = {71} with f(X*) = —1.25 is found.
Note: If the method is to be computerized, a suitable convergence criterion has to

be used to test the point X; (i = 1,2, ...) for optimality.

6.5 PATTERN DIRECTIONS

In the univariate method, we search for the minimum along directions parallel to the
coordinate axes. We noticed that this method may not converge in some cases, and that
even if it converges, its convergence will be very slow as we approach the optimum
point. These problems can be avoided by changing the directions of search in a favorable
manner instead of retaining them always parallel to the coordinate axes. To understand
this idea, consider the contours of the function shown in Fig. 6.6. Let the points
1,2, 3, ... indicate the successive points found by the univariate method. It can be
noticed that the lines joining the alternate points of the search (e.g., 1, 3; 2, 4; 3, 5; 4,
6; ...) lie in the general direction of the minimum and are known as pattern directions.
It can be proved that if the objective function is a quadratic in two variables, all such
lines pass through the minimum. Unfortunately, this property will not be valid for
multivariable functions even when they are quadratics. However, this idea can still
be used to achieve rapid convergence while finding the minimum of an n-variable
function. Methods that use pattern directions as search directions are known as pattern
search methods.

One of the best-known pattern search methods, the Powell’s method, is discussed
in Section 6.6. In general, a pattern search method takes n univariate steps, where n

Minimum point

7z [ ]
/1 -
s 2
V2 -
4 z
4 Z
[ 54—
s - 6
X Z- ’
2 4
3
7’ ;4
P 4
’
s ’
4 ’
7 /
, /
-L
1 2
*1

Figure 6.6 Lines defined by the alternate points lie in the general direction of the minimum.
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denotes the number of design variables and then searches for the minimum along the
pattern direction S;, defined by

Si=X; - X, (6.24)

where X; is the point obtained at the end of n univariate steps and X;_,, is the starting
point before taking the n univariate steps. In general, the directions used prior to taking
a move along a pattern direction need not be univariate directions.

6.6 POWELL’S METHOD

Powell’s method is an extension of the basic pattern search method. It is the most
widely used direct search method and can be proved to be a method of conjugate
directions [6.7]. A conjugate directions method will minimize a quadratic function in
a finite number of steps. Since a general nonlinear function can be approximated rea-
sonably well by a quadratic function near its minimum, a conjugate directions method
is expected to speed up the convergence of even general nonlinear objective functions.
The definition, a method of generation of conjugate directions, and the property of
quadratic convergence are presented in this section.

6.6.1 Conjugate Directions

Definition: Conjugate Directions. Let A = [A] be an n x n symmetric matrix. A set
of n vectors (or directions) {S;} is said to be conjugate (more accurately A-conjugate) if

S/AS; =0 for alli#j, i=12,...,n, j=12,...,n (6.25)

It can be seen that orthogonal directions are a special case of conjugate directions
(obtained with [A] =[] in Eq. (6.25)).

Definition: Quadratically Convergent Method. 1f a minimization method, using
exact arithmetic, can find the minimum point in n steps while minimizing a quadratic
function in n variables, the method is called a quadratically convergent method.

Theorem 6.1 Given a quadratic function of n variables and two parallel hyperplanes
1 and 2 of dimension k < n. Let the constrained stationary points of the quadratic
function in the hyperplanes be X; and X, respectively. Then the line joining X; and
X is conjugate to any line parallel to the hyperplanes.

Proof : Let the quadratic function be expressed as
o0X) = %XTAX +B'X +C (6.26)
The gradient of Q is given by

VO(X) = AX +B
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and hence
VO(X;) —VO(Xo) = AX; —Xo) (6.27)

If S is any vector parallel to the hyperplanes, it must be orthogonal to the gradients
VO (X;) and VQ(X3). Thus

STVO(X;) = STAX; +STB =0 (6.28)
STVO(X;) = STAX, + STB =0 (6.29)

By subtracting Eq. (6.29) from Eq. (6.28), we obtain
STAX; - X)) =0 (6.30)
Hence S and (X; — X;) are A-conjugate.

The meaning of this theorem is illustrated in a two-dimensional space in Fig. 6.7.
If X, and X are the minima of Q obtained by searching along the direction S from two

X

Figure 6.7 Conjugate directions.



6.6 Powell’s Method 321

different starting points X, and X, respectively, the line (X; — X;) will be conjugate
to the search direction S.

Theorem 6.2 If a quadratic function
0(X) = IXTAX +BTX + C (6.31)

is minimized sequentially, once along each direction of a set of n mutually conjugate
directions, the minimum of the function Q will be found at or before the nth step
irrespective of the starting point.

Proof : Let X* minimize the quadratic function Q(X). Then
VOX") =B+AX" =0 (6.32)

Given a point X; and a set of linearly independent directions Sy, Sy, ..., S,, constants
B; can always be found such that

n
X* =X+ Y B8 (6.33)
i=1
where the vectors S1, S», ..., S, have been used as basis vectors. If the directions S;

are A-conjugate and none of them is zero, the S; can easily be shown to be linearly
independent and the g; can be determined as follows.

Equations (6.32) and (6.33) lead to

B+AX, +A <Z ,3,»8,») =0 (6.34)
i=1
Multiplying this equation throughout by S”, we obtain
ST(B+AX)) +STA (Z ,8,~S,~> =0 (6.35)
i=1
Equation (6.35) can be rewritten as
(B +AX))'S; + B;STAS; =0 (6.36)
that is,
B+ AX])TSj
=" 6.37
B STAS, (6.37)

Now consider an iterative minimization procedure starting at point X;, and successively
minimizing the quadratic Q(X) in the directions Sy, S,, ..., S,, where these directions
satisfy Eq. (6.25). The successive points are determined by the relation

X =X, + A;“S,-, i=1ton (6.38)
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where A7 is found by minimizing Q(X; + A;S;) so that"
SIVO(Xiy1) =0 (6.39)

Since the gradient of Q at the point X, is given by

VOXi11) =B+ AX; (6.40)
Eq. (6.39) can be written as
S/{B+AX; +A58)} =0 (6.41)
This equation gives
o (B + AX))'S; (6.42)
' ST AS;

From Eq. (6.38), we can express X; as
i—1
X; =X; + Y WIS, (6.43)
j=1
so that
i—1
T T T
XTAS; = X[AS; + ) " 21STAS;
j=1

= X[ AS; (6.44)

using the relation (6.25). Thus Eq. (6.42) becomes

S.
A= B+ AX) T 6.45
; (B +AXy) STAS, (6.45)

which can be seen to be identical to Eq. (6.37). Hence the minimizing step lengths are
given by B; or A'. Since the optimal point X* is originally expressed as a sum of n
quantities By, B, ..., By, which have been shown to be equivalent to the minimizing
step lengths, the minimization process leads to the minimum point in n steps or less.
Since we have not made any assumption regarding X; and the order of S;, S», ..., S,,
the process converges in n steps or less, independent of the starting point as well as
the order in which the minimization directions are used.

TSTVQ (X;4+1) = 0 is equivalent to dQ/d); =0 at Y = X4

d_Q_iﬂﬁ

d)»i = E)y_,- 3)»,‘

where y; are the components of Y = X .
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Example 6.5 Consider the minimization of the function
fxy, xp) = 6x12 + 2x§ —6x1x3 — X1 — 2xp

If S, = {;} denotes a search direction, find a direction S, that is conjugate to the
direction S;.

SOLUTION The objective function can be expressed in matrix form as

fX)=B'X + %XT[A]X

= (-1 —2}{§;}+%{x1 x) [126 ‘Z] {2}

and the Hessian matrix [A] can be identified as
12 —6

The direction S; = {;} will be conjugate to S; = {;} if

T _ 12 -6 St
ST[AIS; = (1 2)[_6 4”s2}_0

which upon expansion gives 2s; = 0 or s; = arbitrary and s, = 0. Since s; can have
any value, we select s; = 1 and the desired conjugate direction can be expressed as

S2 = {o}-

6.6.2 Algorithm

The basic idea of Powell’s method is illustrated graphically for a two-variable func-
tion in Fig. 6.8. In this figure the function is first minimized once along each of the
coordinate directions starting with the second coordinate direction and then in the cor-
responding pattern direction. This leads to point 5. For the next cycle of minimization,
we discard one of the coordinate directions (the x; direction in the present case) in
favor of the pattern direction. Thus we minimize along u, and S; and obtain point 7.
Then we generate a new pattern direction S, as shown in the figure. For the next
cycle of minimization, we discard one of the previously used coordinate directions
(the x, direction in this case) in favor of the newly generated pattern direction. Then,
by starting from point 8, we minimize along directions S; and S;, thereby obtaining
points 9 and 10, respectively. For the next cycle of minimization, since there is no
coordinate direction to discard, we restart the whole procedure by minimizing along
the x; direction. This procedure is continued until the desired minimum point is found.

The flow diagram for the version of Powell’s method described above is given
in Fig. 6.9. Note that the search will be made sequentially in the directions S,;
$1,82,85, .., 81,805 85 82,85, ..., Sty Suy 8Y5 SY5 85,84, ..., 801, S,
SE,I) s Sﬁ,z); Sf), ... until the minimum point is found. Here S; indicates the coordi-
nate direction u; and Sg,]) the jth pattern direction. In Fig. 6.9, the previous base point
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X

Figure 6.8 Progress of Powell’s method.

is stored as the vector Z in block A, and the pattern direction is constructed by sub-
tracting the previous base point from the current one in block B. The pattern direction
is then used as a minimization direction in blocks C and D. For the next cycle, the
first direction used in the previous cycle is discarded in favor of the current pattern
direction. This is achieved by updating the numbers of the search directions as shown
in block E. Thus both points Z and X used in block B for the construction of pattern
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Start with X; l

Y

Set §; equal to the coordinate unit
vectors i =1 ton

\
| Find 2* to minimize AAX; + Aan

Y
L SetX =X, + x*sn—|

A Set new E
SetZ=X - S;=S; .1 <
— t=1,2,...,n

N Yes
—»En+l? ) 7]~| Set§i=X-2 |B

No
\/ Y
Find A* to minimize f(X+ AS;) Find A* to minimize C
Set X = X + A*§; f(X + 1S;)

\ ISetX:X+A*S,;lD
( Is X optimum?  p——-
Yes

No Is X optimum?
Yes No

Y \ A

Figure 6.9 Flowchart for Powell’s Method.

direction are points that are minima along S,, in the first cycle, the first pattern direction
S;l) in the second cycle, the second pattern direction SE,Z) in the third cycle, and so on.

Quadratic Convergence. It can be seen from Fig. 6.9 that the pattern direc-

tions SE,I) , SE,Z),SS),... are nothing but the lines joining the minima found along
the directions S,,,SE,]),Sf),..., respectively. Hence by Theorem 6.1, the pairs of

directions (S,,, SE,I)), (SE,I), Sg)), and so on, are A-conjugate. Thus all the directions
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S., Sﬁ,l), SE,Z) , ... are A-conjugate. Since, by Theorem 6.2, any search method involv-
ing minimization along a set of conjugate directions is quadratically convergent,
Powell’s method is quadratically convergent. From the method used for construct-
ing the conjugate directions Sf,,l),S(z),..., we find that » minimization cycles are
required to complete the construction of n conjugate directions. In the ith cycle,
the minimization is done along the already constructed i conjugate directions and
the n — i nonconjugate (coordinate) directions. Thus after n cycles, all the n search
directions are mutually conjugate and a quadratic will theoretically be minimized in
n? one-dimensional minimizations. This proves the quadratic convergence of Powell’s
method.

It is to be noted that as with most of the numerical techniques, the convergence in
many practical problems may not be as good as the theory seems to indicate. Powell’s
method may require a lot more iterations to minimize a function than the theoretically
estimated number. There are several reasons for this:

1. Since the number of cycles n is valid only for quadratic functions, it will take
generally greater than n cycles for nonquadratic functions.

2. The proof of quadratic convergence has been established with the assumption
that the exact minimum is found in each of the one-dimensional minimizations.
However, the actual minimizing step lengths A* will be only approximate, and
hence the subsequent directions will not be conjugate. Thus the method requires
more number of iterations for achieving the overall convergence.

3. Powell’s method, described above, can break down before the minimum point
is found. This is because the search directions S; might become dependent or
almost dependent during numerical computation.

Convergence Criterion. The convergence criterion one would generally adopt in a
method such as Powell’s method is to stop the procedure whenever a minimization
cycle produces a change in all variables less than one-tenth of the required accuracy.
However, a more elaborate convergence criterion, which is more likely to prevent
premature termination of the process, was given by Powell [6.7].

Example 6.6 Minimize f(x1,x2) =x; — X +2x7 + 2x1x2 + x5 from the starting
point X; = {(} using Powell’s method.

SOLUTION
Cycle 1: Univariate Search

We minimize f along S; =S, = {?} from X;. To find the correct direction (4S;
or —S,) for decreasing the value of f, we take the probe length as ¢ = 0.01. As
f1i=f(X;) =0.0, and

T =fX; 4S5 = £(0.0,0.01) = —0.0099 < f;

f decreases along the direction +S,. To find the minimizing step length A* along S,,
we minimize

FXi +185) = £(0.0,4) =212 —2
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As df/dh =0 at 2* = L, we have X» = X, + A*S, = :8 5}_
Next we minimize f along S; = {;} from X, = {0}. Since
= fX3) = £(0.0,0.5) = —-0.25
= fXs+&8S)) = £(0.01,0.50) = —0.2298 > f>
[ =fX;—eS;) = f(-0.01,0.50) = —0.2698

f decreases along —S;. As f(X2 —A81) = f(=1,0.50) = 22% — 21 — 0.25, df/dA =
0at A* = 1 . Hence X5 = A*S) = { 85}
Now we minimize f along S, = {1} from X3 = {78:2}. As f3 = f(X3) = —0.75,

fr=7rX3+eSy) = f(—0.5,0.51) = —0.7599 < f3, f decreases along +S, direc-
tion. Since

df

FX34+18y) = f(—=0.5,0.5+ 1) =22 — 1 —0.75, = 0 at A*=—

This gives

—-0.5
Xy =X3+1*S, = : 10}

Cycle 2: Pattern Search

Now we generate the first pattern direction as

11 (o —0.5
SV =X4-X,=1 21— =
p =T EE = e 0.5

and minimize f along Sg) from X4. Since
fo=fX)=-10
fH=rXy+e80) = f(—0.5-0.005, I +0.005)
= f(—0.505, 1.005) = —1.004975
f decreases in the positive direction of Si,l). As
fX4+280P) = f(=0.5—-0.51, 1.0+ 0.5%)
= 0.251% — 0.50% — 1.00,

d
—f =0 at A* = 1.0 and hence

dn
_1 _1
X5=X4+A*s§}>={ 2}+1.0{ 2}
! 3

The point X5 can be identified to be the optimum point.

)
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If we do not recognize X5 as the optimum point at this stage, we proceed to
minimize f along the direction S» = {7} from Xs. Then we would obtain

fs=fXs)=—-125 = f(Xs+¢Sy) > fs,
and [T = f(X5—¢8y)> f5

This shows that f cannot be minimized along S;, and hence Xs will be the optimum
point. In this example the convergence has been achieved in the second cycle itself.
This is to be expected in this case, as f is a quadratic function, and the method is a
quadratically convergent method.

6.7 SIMPLEX METHOD

Definition: Simplex. The geometric figure formed by a set of n + 1 points in an
n-dimensional space is called a simplex. When the points are equidistant, the simplex
is said to be regular. Thus in two dimensions, the simplex is a triangle, and in three
dimensions, it is a tetrahedron.

The basic idea in the simplex method’ is to compare the values of the objective
function at the n + 1 vertices of a general simplex and move the simplex gradu-
ally toward the optimum point during the iterative process. The following equations
can be used to generate the vertices of a regular simplex (equilateral triangle in
two-dimensional space) of size a in the n-dimensional space [6.10]:

n
Xi=Xo+pu+ Y qu. i=12...n (6.46)
j=1j#i

where

p=—_(Vafl4+n—1) and ¢g= —(ntl-1 (6.47)
n\/i nv2

where X is the initial base point and u; is the unit vector along the jth coordinate axis.
This method was originally given by Spendley, Hext, and Himsworth [6.10] and was
developed later by Nelder and Mead [6.11]. The movement of the simplex is achieved
by using three operations, known as reflection, contraction, and expansion.

6.7.1 Reflection

If X, is the vertex corresponding to the highest value of the objective function among
the vertices of a simplex, we can expect the point X, obtained by reflecting the point
X, in the opposite face to have the smallest value. If this is the case, we can construct
a new simplex by rejecting the point X, from the simplex and including the new point
X,. This process is illustrated in Fig. 6.10. In Fig. 6.10a, the points X;, X, and X3
form the original simplex, and the points X, X5, and X, form the new one. Similarly,
in Fig. 6.10b, the original simplex is given by points Xi, X, X3, and X4, and the new
one by X, X5, X3, and X,. Again we can construct a new simplex from the present one

"This simplex method should not be confused with the simplex method of linear programming.
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Figure 6.10 Reflection.

by rejecting the vertex corresponding to the highest function value. Since the direction
of movement of the simplex is always away from the worst result, we will be moving
in a favorable direction. If the objective function does not have steep valleys, repetitive
application of the reflection process leads to a zigzag path in the general direction of

the minimum as shown in Fig. 6.11. Mathematically, the reflected point X, is given
by

X, = (1 4+ o)Xy — aXj (6.48)
where X, is the vertex corresponding to the maximum function value:

FXp) = max f(X;), (6.49)
i=1 to n+l

Points 8 and 10
are mirror points
X about 7-9

Figure 6.11 Progress of the reflection process.



330 Nonlinear Programming II: Unconstrained Optimization Techniques

X is the centroid of all the points X; except i = h:

1 n+l1
X, = - Z X; (6.50)

i=1

i#h
and o > 0 is the reflection coefficient defined as

__ distance between X, and X

= — (6.51)
distance between X;, and X,
Thus X, will lie on the line joining X, and Xy, on the far side of Xy from X, with
X, — Xo| = «|Xp, — Xp|. If f(X,) lies between f(X;) and f(X;), where X; is the
vertex corresponding to the minimum function value,
fXp)=_min f(Xp) (6.52)
i=1 to n+1
X, is replaced by X, and a new simplex is started.

If we use only the reflection process for finding the minimum, we may encounter
certain difficulties in some cases. For example, if one of the simplexes (triangles in
two dimensions) straddles a valley as shown in Fig. 6.12 and if the reflected point X,
happens to have an objective function value equal to that of the point X;, we will
enter into a closed cycle of operations. Thus if X, is the worst point in the simplex
defined by the vertices X, X5, and X3, the reflection process gives the new simplex
with vertices X, X3, and X,. Again, since X, has the highest function value out of
the vertices X, X3, and X,, we obtain the old simplex itself by using the reflection
process. Thus the optimization process is stranded over the valley and there is no way
of moving toward the optimum point. This trouble can be overcome by making a rule
that no return can be made to points that have just been left.

X1

Figure 6.12 Reflection process not leading to a new simplex.
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Whenever such situation is encountered, we reject the vertex corresponding to the
second worst value instead of the vertex corresponding to the worst function value.
This method, in general, leads the process to continue toward the region of the desired
minimum. However, the final simplex may again straddle the minimum, or it may lie
within a distance of the order of its own size from the minimum. In such cases it may
not be possible to obtain a new simplex with vertices closer to the minimum compared
to those of the previous simplex, and the pattern may lead to a cyclic process, as shown
in Fig. 6.13. In this example the successive simplexes formed from the simplex 123
are 234, 245, 456, 467, 478, 348, 234, 245, ..., T which can be seen to be forming
a cyclic process. Whenever this type of cycling is observed, one can take the vertex
that is occurring in every simplex (point 4 in Fig. 6.13) as the best approximation to
the optimum point. If more accuracy is desired, the simplex has to be contracted or
reduced in size, as indicated later.

6.7.2 Expansion

If a reflection process gives a point X, for which f(X,) < f (X)), (i.e., if the reflection
produces a new minimum), one can generally expect to decrease the function value
further by moving along the direction pointing from X, to X,. Hence we expand X,

— X7

Figure 6.13 Reflection process leading to a cyclic process.

TSimplexes 456, 467, and 234 are formed by reflecting the second-worst point to avoid the difficulty
mentioned earlier.
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to X, using the relation
Xe=yX: + (1 —-y)Xo (6.53)
where y is called the expansion coefficient, defined as

distance between X, and X,

Y= >

distance between X, and X

If fX,) < f(X)), we replace the point X; by X, and restart the process of reflec-
tion. On the other hand, if f(X,)> f (X)), it means that the expansion process is not
successful and hence we replace point X; by X, and start the reflection process again.

6.7.3 Contraction

If the reflection process gives a point X, for which f(X,) > f(X;) for all i except
i =h,and f(X,) < f(X;), we replace point X, by X,. Thus the new X, will be X,.
In this case we contract the simplex as follows:

X. = BX;, + (1 — )Xo (6.54)
where B is called the contraction coefficient (0 < B < 1) and is defined as

distance between X, and X,

distance between X; and Xj

If f(X,)> f(X}p), we still use Eq. (6.54) without changing the previous point Xj. If
the contraction process produces a point X, for which f(X.) < min[ f(X}), f(X,)], we
replace the point X, in X, X», ..., X4 by X, and proceed with the reflection process
again. On the other hand, if f(X.) > min[ f(X}), f(X,)], the contraction process will
be a failure, and in this case we replace all X; by (X; + X;)/2 and restart the reflection
process.

The method is assumed to have converged whenever the standard deviation of the
function at the n + 1 vertices of the current simplex is smaller than some prescribed
small quantity &, that is,

D) - fFXOR )
. Z i) — 0
Q_{izl n+l } = (02

Example 6.7 Minimize f(x1,x2) =x; —x3 + 2x12 + 2x1xp + x%. Take the points
defining the initial simplex as

4.0 5.0 4.0
Xl:{4.0}’ X2={4.0}’ and X3={5.0}

and « = 1.0, B =0.5, and y = 2.0. For convergence, take the value of ¢ as 0.2.
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SOLUTION
Iteration 1

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

The function value at each of the vertices of the current simplex is given by
fi= X)) =4.0-4.0+2(16.0) +2(16.0) + 16.0 = 80.0
fr=f(X3) =5.0-4.0+2(25.0) + 2(20.0) + 16.0 = 107.0
3= f(X3)=4.0-5.0+4+2(16.0) + 2(20.0) + 25.0 = 96.0

Therefore,

5.0

Xn =X = 4.0}’

f (X)) = 107.0,
X =X, = 4.0 , and f(X;) =80.0
4.0
The centroid X is obtained as

1[40+ 4.0}

1 4.0
o= Xi+X) =3 {4.0+5.0

5 5 ={45} with  f(Xo) = 87.75

The reflection point is found as
8.0 5.0 3.0
Xy =2Xo =Xy = {9.0} - {4.0} = {5.0}

fX,)=3.0-5.0+209.0) +2(15.0) +25.0 =71.0
As f(X,) < f(X)), we find X, by expansion as

60] [40] (20
Xe =2X, —Xo = {10.0} - {4.5} = :5.5}

f(X,) =2.0-5.54+2(4.0) +2(11.0) 4+ 30.25 = 56.75

Then

Then

Since f(X,) < f(X;), we replace X, by X, and obtain the vertices of the new

simplex as
4.0 2.0 4.0
Xi = {4.0}’ X2 = {5.5}’ and - X3 = {5.0}

To test for convergence, we compute

0 [(80.0 — 87.75)% + (56.75 — 87.75)> + (96.0 — 87.75)2]”2
B 3

= 19.06

As this quantity is not smaller than ¢, we go to the next iteration.
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Iteration 2
Step 1: As f(X;) =80.0, f(Xp) =56.75, and f(X3) = 96.0,

X, =X3 = {4518} and X; =X, = :g(s)}
Step 2: The centroid is

I 1 [40+20] _ [3.0
XYo=Xi+X) =7 {4.0 + 5.5} = {4.75}

F(Xo) = 67.31

Step 3:
60| [40] _[20
Xy =2Xo Xy = {9.5} - {5.0} = {4.5}

F(X,) =2.0 — 4.5+ 2(4.0) + 2(9.0) + 20.25 = 43.75

Step 4: As f(X,) < £(X;), we find X, as

40| _[3.0 1.0
Xe=2Xr —Xo = {9.0} - {4.75} - {4.25}

J(X,) =1.0—-4.2542(1.0) +2(4.25) + 18.0625 = 25.3125
Step 5: As f(X,) < f(X;), we replace X;, by X, and obtain the new vertices as
4.0 2.0 1.0
X = {4.0} » Xo= {5.5} , and X5 = :4.25}

Step 6: For convergence, we compute Q as

0 |:(80.0 — 67312 + (56.75 — 67.31)% + (25.3125 — 67.31)2]‘/2
N 3

=26.1

Since Q > ¢, we go to the next iteration.

This procedure can be continued until the specified convergence is satisfied. When
the convergence is satisfied, the centroid X of the latest simplex can be taken as the
optimum point.
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Indirect Search (Descent) Methods

6.8 GRADIENT OF A FUNCTION

The gradient of a function is an n-component vector given by

af/9x
af/0xz

(6.56)

nxl

af /.an

The gradient has a very important property. If we move along the gradient direction
from any point in n-dimensional space, the function value increases at the fastest rate.
Hence the gradient direction is called the direction of steepest ascent. Unfortunately, the
direction of steepest ascent is a local property and not a global one. This is illustrated
in Fig. 6.14, where the gradient vectors V f evaluated at points 1, 2, 3, and 4 lie along
the directions 11/, 22/, 33/, and 44’, respectively. Thus the function value increases at
the fastest rate in the direction 11’ at point 1, but not at point 2. Similarly, the function
value increases at the fastest rate in direction 22'(33’) at point 2 (3), but not at point
3 (4). In other words, the direction of steepest ascent generally varies from point to
point, and if we make infinitely small moves along the direction of steepest ascent, the
path will be a curved line like the curve 1-2-3-4 in Fig. 6.14.

Figure 6.14 Steepest ascent directions.
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Since the gradient vector represents the direction of steepest ascent, the negative
of the gradient vector denotes the direction of steepest descent. Thus any method that
makes use of the gradient vector can be expected to give the minimum point faster
than one that does not make use of the gradient vector. All the descent methods make
use of the gradient vector, either directly or indirectly, in finding the search directions.
Before considering the descent methods of minimization, we prove that the gradient
vector represents the direction of steepest ascent.

Theorem 6.3 The gradient vector represents the direction of steepest ascent.

Proof : Consider an arbitary point X in the n-dimensional space. Let f denote the value
of the objective function at the point X. Consider a neighboring point X + dX with

dX1
d)CQ
dX = . (6.57)
dx,
where dxi, dx,, ..., dx, represent the components of the vector dX. The magnitude
of the vector dX, ds, is given by
n
dXTdX = (ds)* = Z (dx;)? (6.58)

i=1

If f 4 df denotes the value of the objective function at X + dX, the change in f, df,
associated with dX can be expressed as

dfz

dx; =V fT dX (6.59)

l

If u denotes the unit vector along the direction dX and ds the length of dX, we can
write

dX =uds (6.60)

The rate of change of the function with respect to the step length ds is given by
Eq. (6.59) as

of dxi dX
Z fdxi _gerdX _gry (6.61)
0X; ds ds

The value of df/ds will be different for different directions and we are interested in
finding the particular step dX along which the value of df/ds will be maximum. This
will give the direction of steepest ascent.” By using the definition of the dot product,

"In general, if df/ds = V fTu> 0 along a vector dX, it is called a direction of ascent, and if df/ds < 0,
it is called a direction of descent.
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Eq. (6.61) can be rewritten as

Z—f =IVfIl lluflcos (6.62)
s

where ||V f|| and |[u]| denote the lengths of the vectors V f and u, respectively, and 6
indicates the angle between the vectors V f and u. It can be seen that df/ds will be
maximum when 6 = 0° and minimum when # = 180°. This indicates that the function
value increases at a maximum rate in the direction of the gradient (i.e., when u is
along V f).

Theorem 6.4 The maximum rate of change of f at any point X is equal to the mag-
nitude of the gradient vector at the same point.

Proof : The rate of change of the function f with respect to the step length s along a
direction u is given by Eq. (6.62). Since df/ds is maximum when § = 0° and u is a

unit vector, Eq. (6.62) gives
af
ds

=V S

max

which proves the theorem.

6.8.1 Evaluation of the Gradient

The evaluation of the gradient requires the computation of the partial derivatives df/dx;,
i =1,2,...,n. There are three situations where the evaluation of the gradient poses
certain problems:

1. The function is differentiable at all the points, but the calculation of the com-

ponents of the gradient, df/dx;, is either impractical or impossible.

2. The expressions for the partial derivatives df/dx; can be derived, but they
require large computational time for evaluation.

3. The gradient V f is not defined at all the points.

In the first case, we can use the forward finite-difference formula

OF | FX+ Axu) — fX)
8xl‘ Xn o Axi 7

i=1,2,....n (6.63)

to approximate the partial derivative df/dx; at X,,. If the function value at the base
point X,, is known, this formula requires one additional function evaluation to find
(0f/0x;)|xm- Thus it requires n additional function evaluations to evaluate the approxi-
mate gradient V f|x,,. For better results we can use the central finite difference formula
to find the approximate partial derivative df/9x;|x:

| S+ Axw) — fXy — Axiu;)
ax,- X o ZAX,' ’

m

i=1,2,...,n (6.64)
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This formula requires two additional function evaluations for each of the partial deriva-
tives. In Egs. (6.63) and (6.64), Ax; is a small scalar quantity and u; is a vector of order
n whose ith component has a value of 1, and all other components have a value of zero.
In practical computations, the value of Ax; has to be chosen with some care. If Ax; is
too small, the difference between the values of the function evaluated at (X,, + Ax;u;)
and (X;, — Ax;u;) may be very small and numerical round-off error may predominate.
On the other hand, if Ax; is too large, the truncation error may predominate in the
calculation of the gradient.

In the second case also, the use of finite-difference formulas is preferred whenever
the exact gradient evaluation requires more computational time than the one involved
in using Eq. (6.63) or (6.64).

In the third case, we cannot use the finite-difference formulas since the gradient
is not defined at all the points. For example, consider the function shown in Fig. 6.15.
If Eq. (6.64) is used to evaluate the derivative df/ds at X,,, we obtain a value of
ay for a step size Ax; and a value of oy for a step size Axp. Since, in reality, the
derivative does not exist at the point X,,, use of finite-difference formulas might lead
to a complete breakdown of the minimization process. In such cases the minimization
can be done only by one of the direct search techniques discussed earlier.

6.8.2 Rate of Change of a Function along a Direction

In most optimization techniques, we are interested in finding the rate of change of a
function with respect to a parameter A along a specified direction, S;, away from a
point X;. Any point in the specified direction away from the given point X; can be
expressed as X = X; + AS;. Our interest is to find the rate of change of the function
along the direction S; (characterized by the parameter A), that is,

a _ > L) (6.65)

Figure 6.15 Gradient not defined at x,,.
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where x; is the jth component of X. But

8xj

ad
a)\‘ = 8—)\'()(1']' + )\,Sij) = Sl‘j (666)

where x;; and s;; are the jth components of X; and S;, respectively. Hence
df & df
—=E —5;; = VfTS; 6.67
dr fot 8xj Sij f i ( )

If A* minimizes f in the direction S;, we have

ar

=VfLS, =0 6.68
a fly (6.68)

A=A*

at the point X; + A*S;.

6.9 STEEPEST DESCENT (CAUCHY) METHOD

The use of the negative of the gradient vector as a direction for minimization was
first made by Cauchy in 1847 [6.12]. In this method we start from an initial trial
point X; and iteratively move along the steepest descent directions until the optimum
point is found. The steepest descent method can be summarized by the following
steps:

1. Start with an arbitrary initial point X;. Set the iteration number as i = 1.
2. Find the search direction S; as
Si=-Vfi=-Vf(X)) (6.69)
3. Determine the optimal step length A* in the direction S; and set
Xit1 =Xi + 4S8 =X — AV (6.70)

4. Test the new point, X;, for optimality. If X, is optimum, stop the process.
Otherwise, go to step 5.

5. Set the new iteration number i =i + 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained minimization
technique since each one-dimensional search starts in the “best” direction. However,
owing to the fact that the steepest descent direction is a local property, the method is
not really effective in most problems.

Example 6.8 Minimize f(x1,x2) =x; —x2+ 2x12 + 2x1x2 + x22 starting from the
point X; = {8}.
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SOLUTION

Iteration 1

The gradient of f is given by

v af/dx; 14+ 4x; +2xo
“offoxa | | -1+ 20 + 212

Vhi=ViX) = {_i}

Therefore,

Si=-Vf= {‘}}

To find X, we need to find the optimal step length A}. For this, we minimize f(X; +
MS)) = f(=A, A) = )L% — 2A1 with respect to Aj. Since df/di; =0 at A} =1, we

obtain
—1 —1
X2=X]+)»TS1={8}+1{ 1}:{ 1}

As Vfr =VfiXy) = {:}} # {8} , X7 is not optimum.

Iteration 2
1
S2 = _VfZ = {1}

To minimize
fXo+21287) = f(=1+ A2, 1+ A2)

=53 21 —1

we set df/di, = 0. This gives A} = %, and hence

e =11 11 _[-08
X3=X2+AZS2=: 1}+§{1}={ 1.2}

Since the components of the gradient at X3, V f3 = {_8;}, are not zero, we proceed

to the next iteration.

Iteration 3

si=-vh= {703}



6.10 Conjugate Gradient (Fletcher—Reeves) Method 341

As
F(X5+2383) = £(—0.8 — 0.243, 1.2 + 0.243)
d
= 0.04A3 — 0.08%3 — 1.20, Ay A5 =1.0
dis
Therefore,

. 0.8 —02] [-1.0
X4=X3+A3S3={ 1.2}+1'0{ 0.2}2{ 1.4}

The gradient at X, is given by

—0.20
Vihi= :—0.20}
Since V fy # {8}, X4 is not optimum and hence we have to proceed to the next iteration.

71'0}, is found.

This process has to be continued until the optimum point, X* = { i's

Convergence Criteria: The following criteria can be used to terminate the iterative
process.

1. When the change in function value in two consecutive iterations is small:

Xiy1) — X
‘f( H—l) f( 1) <& (671)
FXi)
2. When the partial derivatives (components of the gradient) of f are small:
0
—f <&, i=12,...,n (6.72)
ax,-

3. When the change in the design vector in two consecutive iterations is small:

Xit1 — Xi| < &3 (6.73)

6.10 CONJUGATE GRADIENT (FLETCHER-REEVES) METHOD

The convergence characteristics of the steepest descent method can be improved greatly
by modifying it into a conjugate gradient method (which can be considered as a con-
jugate directions method involving the use of the gradient of the function). We saw
(in Section 6.6.) that any minimization method that makes use of the conjugate direc-
tions is quadratically convergent. This property of quadratic convergence is very useful
because it ensures that the method will minimize a quadratic function in n steps or
less. Since any general function can be approximated reasonably well by a quadratic
near the optimum point, any quadratically convergent method is expected to find the
optimum point in a finite number of iterations.
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We have seen that Powell’s conjugate direction method requires n single-variable
minimizations per iteration and sets up a new conjugate direction at the end of each
iteration. Thus it requires, in general, n? single-variable minimizations to find the mini-
mum of a quadratic function. On the other hand, if we can evaluate the gradients of the
objective function, we can set up a new conjugate direction after every one-dimensional
minimization, and hence we can achieve faster convergence. The construction of con-
jugate directions and development of the Fletcher—Reeves method are discussed in this
section.

6.10.1 Development of the Fletcher—Reeves Method

The Fletcher—Reeves method is developed by modifying the steepest descent method
to make it quadratically convergent. Starting from an arbitrary point X, the quadratic
function

fX) = IXTAIX +B'X + C (6.74)

can be minimized by searching along the search direction S; = —V f] (steepest descent
direction) using the step length (see Problem 6.40):

STV fi
M=—"1_— 6.75
' ST As, (073

The second search direction S; is found as a linear combination of S| and —V f5:
S: ==Vfi+ S (6.76)

where the constant 8, can be determined by making S| and S, conjugate with respect
to [A]. This leads to (see Problem 6.41):

CVHVAE O VHVA

= 6.77
VIS VIV fi 77

B =

This process can be continued to obtain the general formula for the ith search
direction as

Si =—=V/fi+BSi—1 (6.78)
where
VIV f,
pr= VS (6.79)
VZiViia

Thus the Fletcher—Reeves algorithm can be stated as follows.
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6.10.2 Fletcher—Reeves Method

The iterative procedure of Fletcher—Reeves method can be stated as follows:

1.
2.
3.

Start with an arbitrary initial point X;.
Set the first search direction S| = -V f(X;) = =V f.
Find the point X, according to the relation

X =X + )\.Tsl (6.80)

where A} is the optimal step length in the direction S;. Set i = 2 and go to the
next step.

4. Find V f; = V f(X]), and set
IV fil?
Si=-Vfi+ ———Si_ 6.81
i fl + |vfi—1|2 i—1 ( )
5. Compute the optimum step length A} in the direction S;, and find the new point
X1 =X +A7S; (6.82)
6. Test for the optimality of the point X;; ;. If X;; is optimum, stop the process.
Otherwise, set the value of i =i + 1 and go to step 4.
Remarks:

1. The Fletcher—Reeves method was originally proposed by Hestenes and Stiefel

[6.14] as a method for solving systems of linear equations derived from the
stationary conditions of a quadratic. Since the directions S; used in this method
are A-conjugate, the process should converge in n cycles or less for a quadratic
function. However, for ill-conditioned quadratics (whose contours are highly
eccentric and distorted), the method may require much more than n cycles for
convergence. The reason for this has been found to be the cumulative effect
of rounding errors. Since S; is given by Eq. (6.81), any error resulting from
the inaccuracies involved in the determination of A}, and from the round-off
error involved in accumulating the successive |V f;|>S;_;/|V fi_1|*> terms, is
carried forward through the vector S;. Thus the search directions S; will be
progressively contaminated by these errors. Hence it is necessary, in practice,
to restart the method periodically after every, say, m steps by taking the new
search direction as the steepest descent direction. That is, after every m steps,
Sim+1 1s set equal to —V f,, 11 instead of the usual form. Fletcher and Reeves
have recommended a value of m =n + 1, where n is the number of design
variables.

. Despite the limitations indicated above, the Fletcher—Reeves method is vastly

superior to the steepest descent method and the pattern search methods, but
it turns out to be rather less efficient than the Newton and the quasi-Newton
(variable metric) methods discussed in the latter sections.

Example 6.9 Minimize f(x,x;) =x; —x2+ 2xl2 + 2x1x + x% starting from the
point X; = {0}.
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SOLUTION

Iteration 1

Vf= -

:3f/3xl}

14+4x; +2x,
af/dxz

—1 4+ 2x1 4+ 2x2
Vﬁ=meo={_H

The search direction is taken as S} = —V f] = {_}} To find the optimal step length
A} along Si, we minimize f(X; + A;S;) with respect to A;. Here

FX1 +M8)) = f(=Ap, +A1) = AT — 24,

df
— =0 at AT =1
dxr, a M
Therefore,
0 -1 -1
Iteration 2

Since V> = Vf(X) = {_}}. Eq. (6.81) gives the next search direction as

IV fo]?
S;=-Vf+ =8
IV fil?
where
IVAIP=2 and |Vf[*=2
Therefore,

=G -
To find A3, we minimize
f X +2280) = f(=1,1+22)
=—1—(142%) +2—2(142%) + (1 +21,)?
=43 -2 —1

with respect to Ay. As df/dry; = 8r; —2 =0 at A5 = ;, we obtain

. “1) . 1fo] [t
X3=X2+k252:: 1}+Z{2}:{ 1.5}
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Thus the optimum point is reached in two iterations. Even if we do not know this point
to be optimum, we will not be able to move from this point in the next iteration. This
can be verified as follows.

Iteration 3
Now
0
V=VfXs) = {O} . IVAP =2, and VAP =0.
Thus

0
S3 ==V i+ (VAP/IVAIDS: = - {8} i (§> {8} B :8}

This shows that there is no search direction to reduce f further, and hence X3 is
optimum.

6.1 NEWTON’S METHOD

Newton’s method presented in Section 5.12.1 can be extended for the minimization of
multivariable functions. For this, consider the quadratic approximation of the function
f(X) at X = X using the Taylor’s series expansion

fX) = fFX)+ VX -X) + 1 X - X)TIX - X)) (6.83)

where [J;] = [J]|x; is the matrix of second partial derivatives (Hessian matrix) of f
evaluated at the point X;. By setting the partial derivatives of Eq. (6.83) equal to zero
for the minimum of f(X), we obtain

B X) _

0, j=12...,n (6.84)

8)(?]'

Equations (6.84) and (6.83) give
Vf=Vfi+[h]X-X;)=0 (6.85)

If [J;] is nonsingular, Egs. (6.85) can be solved to obtain an improved approximation
(X =Xi41) as

X =Xi —[H17" VS (6.86)

Since higher-order terms have been neglected in Eq. (6.83), Eq. (6.86) is to be used
iteratively to find the optimum solution X*.

The sequence of points X, X5, ..., X; 4| can be shown to converge to the actual
solution X* from any initial point X; sufficiently close to the solution X*, provided
that [J;] is nonsingular. It can be seen that Newton’s method uses the second partial
derivatives of the objective function (in the form of the matrix [J;]) and hence is a
second-order method.
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Example 6.10 Show that the Newton’s method finds the minimum of a quadratic
function in one iteration.

SOLUTION Let the quadratic function be given by
fX) = 3X"[AIX+B"X +C
The minimum of f(X) is given by

Vi =[AIX+B=0
or
X*=—[A]"'B

The iterative step of Eq. (6.86) gives
Xi+1 = X; — [A]7'([A]X; + B) (E1)
where X; is the starting point for the ith iteration. Thus Eq. (E;) gives the exact solution
Xy =X =—[A]"'B

Figure 6.16 illustrates this process.

Example 6.11 Minimize f(x1,x2) = x| — x> + 2x7 + 2x1x2 + x5 by taking the start-
ing point as X; = {8}.

SOLUTION To find X, according to Eq. (6.86), we require [J117!, where

32 f 2 f
J Bxlz 0x10x7 4 2
[/1] = oy 2 f =159
dx2dx;  9x3 X,
X
s =-[AI"'V

Figure 6.16 Minimization of a quadratic function in one step.
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Therefore,

_{8f/8x1} _{ 1+4x1+2x2} _{ 1}
B Loty T -t 2n 120 0 11

Equation (6.86) gives

L1 -1
X2=X1—[Jl]1g1={8}—|:_i ii| {_H={ é}
2 2

To see whether or not X, is the optimum point, we evaluate

{af/axl} : 1+4x1+2x2} {0}
g2 = = =
af/oxn X —142x; +2x, (—1.3/2) 0
As g» =0, X, is the optimum point. Thus the method has converged in one iteration
for this quadratic function.
If f(X) is a nonquadratic function, Newton’s method may sometimes diverge, and

it may converge to saddle points and relative maxima. This problem can be avoided
by modifying Eq. (6.86) as

X1 =X + A58, =X, — A7V (6.87)

where A is the minimizing step length in the direction S; = —~[J;17'V f;. The mod-
ification indicated by Eq. (6.87) has a number of advantages. First, it will find the
minimum in lesser number of steps compared to the original method. Second, it finds
the minimum point in all cases, whereas the original method may not converge in some
cases. Third, it usually avoids convergence to a saddle point or a maximum. With all
these advantages, this method appears to be the most powerful minimization method.
Despite these advantages, the method is not very useful in practice, due to the following
features of the method:

1. It requires the storing of the n x n matrix [J;].

2. It becomes very difficult and sometimes impossible to compute the elements of
the matrix [J;].

3. It requires the inversion of the matrix [J;] at each step.

4. Tt requires the evaluation of the quantity [J;]7'V f; at each step.

These features make the method impractical for problems involving a complicated
objective function with a large number of variables.
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6.12 MARQUARDT METHOD

The steepest descent method reduces the function value when the design vector X; is
away from the optimum point X*. The Newton method, on the other hand, converges
fast when the design vector X; is close to the optimum point X*. The Marquardt method
[6.15] attempts to take advantage of both the steepest descent and Newton methods.
This method modifies the diagonal elements of the Hessian matrix, [J;], as

[Ji] = [Ji]+ el1] (6.88)

where [/] is an identity matrix and «; is a positive constant that ensures the positive
definiteness of [ji] when [J;] is not positive definite. It can be noted that when «; is
sufficiently large (on the order of 10%), the term «;[/] dominates [J;] and the inverse
of the matrix [J~,~] becomes

N 1
T =5+l ~ [l = —I1 (6.89)

Thus if the search direction S; is computed as
Si=-1J1"'Vf; (6.90)

S; becomes a steepest descent direction for large values of ¢;. In the Marquardt method,
the value of «; is taken to be large at the beginning and then reduced to zero gradually
as the iterative process progresses. Thus as the value of «; decreases from a large value
to zero, the characteristics of the search method change from those of a steepest descent
method to those of the Newton method. The iterative process of a modified version of
Marquardt method can be described as follows.

1. Start with an arbitrary initial point X; and constants «; (on the order of
10%), ¢;(0 < ¢; < 1), ca(ca > 1), and € (on the order of 1072). Set the iteration
number as i = 1.

2. Compute the gradient of the function, V f; = V f(X;).

3. Test for optimality of the point X;. If |V fi|| = |V f X)) < &, X; is optimum
and hence stop the process. Otherwise, go to step 4.

4. Find the new vector X;;; as

X =X+ S =X, — [L11+ o117 VS (6.91)

5. Compare the values of f;y; and f;. If fi;1 < fi, go to, step 6. If f;11 > fi, go
to step 7.

6. Set o1 =10, i =i + 1, and go to step 2.

7. Set a; = cra; and go to step 4.

An advantage of this method is the absence of the step size A; along the search
direction S;. In fact, the algorithm above can be modified by introducing an optimal
step length in Eq. (6.91) as

Xit1 =X; + 7S =X, — A S+ a7V fi (6.92)
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where A7 is found using any of the one-dimensional search methods described in
Chapter 5.

Example 6.12 Minimize f (x|, x;) =x] —xp + 2x12 + 2x1x) + x% from the starting

point X; = {8} using Marquardt method with «; = 10%, ¢; =1, ¢, =2, and

=1
e =102

SOLUTION
Iteration 1 (i =1)
Here f1 = f(X;) = 0.0 and
af
0x1 1 +4x; 4+ 2x; 1
af —14+2x 420 0
0x2 J 0,0

Since |V f1]| = 1.4142 > &, we compute

f  9f
8x12 3)(1)62 4 2
Al = 2 2 - |:2 2]
] 2 f
8x1x2 8x22 (0,0)

Xy = X; — [/l + a7V fi

:0} 44100 2 17 { 1} ~0.9998]

0 2 2+10* =1/ | 1.0000

As fr = f(Xp) = —1.9997 x 107% < fi,wesetay = cjap = 2500, i = 2, and proceed
to the next iteration.

Iteration 2 (i =2)

The gradient vector corresponding to X, is given by V f, = {_?:gggg}, VA=
1.4141 > &, and hence we compute

X3 =Xp — [[L]+aalll]7'Vf

—0.9998 x 107* 2504 277" [ 0.9998
| 1.0000 x 10 _[ 22502} {—1.0000}

] —4.9958 x 1074
| 5.0000 x 1074

Since f3 = f(X3) = —0.9993 x 1073 < f», we set a3 = cjap = 625, i =3, and pro-
ceed to the next iteration. The iterative process is to be continued until the convergence
criterion, ||V fi|| < e, is satisfied.
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6.13

QUASI-NEWTON METHODS

The basic iterative process used in the Newton’s method is given by Eq. (6.86):
Xiv1 =X; =[]V f (X)) (6.93)

where the Hessian matrix [J;] is composed of the second partial derivatives of f
and varies with the design vector X; for a nonquadratic (general nonlinear) objective
function f. The basic idea behind the quasi-Newton or variable metric methods is to
approximate either [J;] by another matrix [A;] or [J;]~!' by another matrix [B;], using
only the first partial derivatives of f.If [J;]~! is approximated by [B;], Eq. (6.93) can
be expressed as

Xiv1 =Xi — A/ [BiIVf(Xi) (6.94)
where A7 can be considered as the optimal step length along the direction
Si = —[BilV f(X) (6.95)

It can be seen that the steepest descent direction method can be obtained as a special
case of Eq. (6.95) by setting [B;] = [/].

Computation of [B;]. To implement Eq. (6.94), an approximate inverse of the Hes-
sian matrix, [B;] = [A;]7', is to be computed. For this, we first expand the gradient of
f about an arbitrary reference point, Xy, using Taylor’s series as

Vf(X) = Vf(Xo) + [Jo](X — Xo) (6.96)

If we pick two points X; and X; | and use [A;] to approximate [Jy], Eq. (6.96) can
be rewritten as

Vfivr = Vf(Xo) + [Ai]Xiy1 — Xo) (6.97)
Vi =VfXo) + [Ai]X; — Xo) (6.98)

Subtracting Eq. (6.98) from (6.97) yields

[A;]d; = g; (6.99)

where
d =X -X (6.100)
g = Vfit1 = Vi (6.101)

The solution of Eq. (6.99) for d; can be written as
d; = [B;lg (6.102)

where [B;] = [A;]7! denotes an approximation to the inverse of the Hessian matrix,
[Jo]~". It can be seen that Eq. (6.102) represents a system of n equations in n> unknown
elements of the matrix [B;]. Thus for n > 1, the choice of [B;] is not unique and one
would like to choose [B;] that is closest to [Jo]~!, in some sense. Numerous techniques
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have been suggested in the literature for the computation of [ B;] as the iterative process
progresses (i.e., for the computation of [B; ;] once [B;] is known). A major concern
is that in addition to satisfying Eq. (6.102), the symmetry and positive definiteness of
the matrix [B;] is to be maintained; that is, if [B;] is symmetric and positive definite,
[B;+1] must remain symmetric and positive definite.

6.13.1 Rank 1 Updates
The general formula for updating the matrix [B;] can be written as
[Bit1] = [Bi] + [AB;] (6.103)

where [AB;] can be considered to be the update (or correction) matrix added to [B;].
Theoretically, the matrix [AB;] can have its rank as high as n. However, in practice,
most updates, [AB;], are only of rank 1 or 2. To derive a rank 1 update, we simply
choose a scaled outer product of a vector z for [AB;] as

[AB;] = czz' (6.104)

where the constant ¢ and the n-component vector z are to be determined. Equations
(6.103) and (6.104) lead to

[Bis1] = [Bi] + czz" (6.105)
By forcing Eq. (6.105) to satisfy the quasi-Newton condition, Eq. (6.102),
d; =[Bi11lg (6.106)
we obtain
d; = ([B;]+ czz')g; = [Bilg + cz(z" &) (6.107)

Since (z”g;) in Eq. (6.107) is a scalar, we can rewrite Eq. (6.107) as
d: — [B:1s;
e 21 (6.108)
' g
Thus a simple choice for z and ¢ would be

z=d; — [B;]g (6.109)
1
B zl'g;

¢ (6.110)

This leads to the unique rank 1 update formula for [B;]:

(d; — [Bilg)(d; — [Bilg)"
(d; — [Bi1g)Tg
This formula has been attributed to Broyden [6.16]. To implement Eq. (6.111), an initial

symmetric positive definite matrix is selected for [B] at the start of the algorithm, and
the next point X, is computed using Eq. (6.94). Then the new matrix [B,] is computed

[Bi+1]l = [Bil + [AB;i] = [Bi] +

6.111)
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using Eq. (6.111) and the new point X3 is determined from Eq. (6.94). This iterative
process is continued until convergence is achieved. If [B;] is symmetric, Eq. (6.111)
ensures that [B;4] is also symmetric. However, there is no guarantee that [B;i]
remains positive definite even if [ B;] is positive definite. This might lead to a breakdown
of the procedure, especially when used for the optimization of nonquadratic functions.
It can be verified easily that the columns of the matrix [A B;] given by Eq. (6.111) are
multiples of each other. Thus the updating matrix has only one independent column and
hence the rank of the matrix will be 1. This is the reason why Eq. (6.111) is considered
to be a rank 1 updating formula. Although the Broyden formula, Eq. (6.111), is not
robust, it has the property of quadratic convergence [6.17]. The rank 2 update formulas
given next guarantee both symmetry and positive definiteness of the matrix [B; ]
and are more robust in minimizing general nonlinear functions, hence are preferred in
practical applications.

6.13.2 Rank 2 Updates

In rank 2 updates we choose the update matrix [AB;] as the sum of two rank 1
updates as

[AB/] = ciz12] + 2222, 6.112)

where the constants ¢; and ¢, and the n-component vectors z; and z, are to be deter-
mined. Equations (6.103) and (6.112) lead to

[Bi11] = [B;] + c1212, + c2207) (6.113)
By forcing Eq. (6.113) to satisfy the quasi-Newton condition, Eq. (6.106), we obtain
d; = [Bilgi +c1z1(2] &) + c222(2,87) (6.114)

where (z?gi) and (zggi) can be identified as scalars. Although the vectors z; and z, in
Eq. (6.114) are not unique, the following choices can be made to satisfy Eq. (6.114):

7, = d,’ (6115)
2> = [B;lg; (6.116)
1
1= (6.117)
Z,8i
|
=== (6.118)
7,8

Thus the rank 2 update formula can be expressed as
d;d; B ([Bi1g)([Bilg)"
d’g ([Bilgi) g

This equation is known as the Davidon—Fletcher—Powell (DFP) formula [6.20, 6.21].
Since

[Biy1] = [Bi] +[AB;] = [Bi] + (6.119)

X =X, + )\;kS,' (6.120)
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where S; is the search direction, d; = X;;| — X; can be rewritten as

d; = 'S (6.121)

Thus Eq. (6.119) can be expressed as

1S ST [Bilgigl[Bi]
[Bit1] =[Bi]+ ——+ — : (6.122)
i STe; g’ [B;lg;

Remarks:

1.

2.

Equations (6.111) and (6.119) are known as inverse update formulas since these
equations approximate the inverse of the Hessian matrix of f.

It is possible to derive a family of direct update formulas in which approx-
imations to the Hessian matrix itself are considered. For this we express the
quasi-Newton condition as [see Eq. (6.99)]

g =[Aild; (6.123)

The procedure used in deriving Eqgs. (6.111) and (6.119) can be followed
by using [A;], d;, and g; in place of [B;], g;, and d;, respectively. This
leads to the rank 2 update formula (similar to Eq. (6.119), known as the
Broydon—Fletcher—Goldfarb—Shanno (BFGS) formula [6.22—6.25]:

gigl  ([Add)([A;1d)"

A=A g T e

(6.124)

In practical computations, Eq. (6.124) is rewritten more conveniently in terms
of [B;], as

d;d} g'[Bilg [Bilg:dT  digl[B;]
B; =[B]+—-|1+2 — L ! 6.125
[Bini] = [Bil+ 7 ( T ) e s (6.125)

i 1

. The DFP and the BFGS formulas belong to a family of rank 2 updates known

as Huang’s family of updates [6.18], which can be expressed for updating the
inverse of the Hessian matrix as

[Bilgg/ [Bi] T d;df
[Bit1] = pi ([Bi] -t 0yiy; | + = (6.126)
’ o’ [Blg: d’g
where
d; [Bilgi
yi = (g/ [Bilg))'? ( — 7> (6.127)
d/g gl [Bilg

and p; and 6; are constant parameters. It has been shown [6.18] that Eq. (6.126)
maintains the symmetry and positive definiteness of [B;] if [B;] is symmetric
and positive definite. Different choices of p; and 6; in Eq. (6.126) lead to
different algorithms. For example, when p; = 1 and 6; = 0, Eq. (6.126) gives
the DFP formula, Eq. (6.119). When p; = 1 and 6; = 1, Eq. (6.126) yields the
BFGS formula, Eq. (6.125).
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4. It has been shown that the BFGS method exhibits superlinear convergence near
X* [6.17].

5. Numerical experience indicates that the BFGS method is the best unconstrained
variable metric method and is less influenced by errors in finding A} compared
to the DFP method.

6. The methods discussed in this section are also known as secant methods since
Egs. (6.99) and (6.102) can be considered as secant equations (see Section 5.12).

The DFP and BFGS iterative methods are described in detail in the following sections.

6.14 DAVIDON-FLETCHER-POWELL METHOD

The iterative procedure of the Davidon—Fletcher—Powell (DFP) method can be
described as follows:

1. Start with an initial point X; and a n x n positive definite symmetric matrix
[B;] to approximate the inverse of the Hessian matrix of f. Usually, [Bi] is
taken as the identity matrix [/]. Set the iteration number as i = 1.

2. Compute the gradient of the function, V f;, at point X;, and set
S, =—[B:IVf; (6.128)
3. Find the optimal step length A7 in the direction S; and set
Xit1 =X; +A]S; (6.129)

4. Test the new point X;; for optimality. If X, is optimal, terminate the iterative
process. Otherwise, go to step 5.

5. Update the matrix [B;] using Eq. (6.119) as

[Bi+1] = [Bil + [M;] + [Ni] (6.130)
where
[M;] = A} 5,8/ 6.131)
l S,-Tgi
[N:i] = _([E?E(#[JB;&)T (6.132)
g = VX)) = VX)) =V fiy1 — VS (6.133)

6. Set the new iteration number as i =i 4 1, and go to step 2.

Note: The matrix [B;;], given by Eq. (6.130), remains positive definite only if A}
is found accurately. Thus if A7 is not found accurately in any iteration, the matrix [B;]
should not be updated. There are several alternatives in such a case. One possibility is to
compute a better value of A by using more number of refits in the one-dimensional min-
imization procedure (until the product SiT V fi+1 becomes sufficiently small). However,
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this involves more computational effort. Another possibility is to specify a maximum
number of refits in the one-dimensional minimization method and to skip the updating
of [B;] if A} could not be found accurately in the specified number of refits. The last
possibility is to continue updating the matrix [B;] using the approximate values of A*
found, but restart the whole procedure after certain number of iterations, that is, restart
with i =1 in step 2 of the method.

Example 6.13 Show that the DFP method is a conjugate gradient method.

SOLUTION Consider the quadratic function
fX) = IXTAIX+B™X + C (E1)

for which the gradient is given by

Vf=[AIX+B (E2)
Equations (6.133) and (E,) give
g = Vfiv1 — Vi = [AlXip1 — X)) (E3)
Since
Xist = X; + A7S; (E4)
Eq. (E3) becomes
g = A [AIS; (Es)
or
[A]S; = %gi (Es)

Premultiplication of Eq. (E¢) by [B;+1] leads to

1
[Bi+11[AIS; = F([Bi] +[M;]+ [NiDgi (E7)

1

Equations (6.131) and (Es) yield

%SiSiTgi
i S,T i

[(M;lg = A

=S (Es)

Equation (6.132) can be used to obtain
_ (IBilg) (g [Bi]"g)

[Nilgi = = —[Bilgi (E9)
o gl [Bilg o
since [B;] is symmetric. By substituting Eqs. (Eg) and (Eg) into Eq. (E7), we obtain
1
[Bi+11[A]S; = — ([Bilgi + A/S; — [Bilgi) = S; (E10)

i
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r

i+1[A]S; can be written as

The quantity S
SL[AIS: = —([Bit11V fis) "[ATS:
=~V B lAIS; = -V 1,8 =0 (Ei11)

since A} is the minimizing step in the direction S;. Equation (Ei;) proves that the
successive directions generated in the DFP method are [A]-conjugate and hence the
method is a conjugate gradient method.

Example 6.14 Minimize f (x|, x;) = 100(x12 —x2)* 4+ (1 —x))? taking X; = {:i} as

the starting point. Use cubic interpolation method for one-dimensional minimization.

SOLUTION  Since this method requires the gradient of f, we find that

v {af/axl} [400x,(F = x2) —2(1 — x1)
-~ laf/ox) —200(x? — x,)

Iteration 1

We take

[B)] = [(1) ?]

AtX; = {2}, VA= ViX) = {1ae) and fi = 3609. Therefore,

Si = ~[BIIV fi = {;‘igg}

By normalizing, we obtain

S — 1 4806] _ [0.970
= [(4806)2 + (1200)2]1/2 | 1200 ~— |0.244
To find A}, we minimize
FX1 4+ 2181) = f(—=240.9701;, —2 + 0.2441))
= 100(6 — 4.1242; +0.93813)% + (3 — 0.971)* (E))

with respect to 1. Equation (E;) gives

d
% =200(6 — 4.124%; + 0.93823)(1.8764; — 4.124) — 1.94(3 — 0.974,)
1

Since the solution of the equation df/dA; = 0 cannot be obtained in a simple manner,
we use the cubic interpolation method for finding A}.
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Cubic Interpolation Method (First Fitting)

Stage 1: As the search direction S; is normalized already, we go to stage 2.

Stage 2: To establish lower and upper bounds on the optimal step size A}, we have to
find two points A and B at which the slope df/dX; has different signs. We
take A = 0 and choose an initial step size of 7y = 0.25 to find B.

At =A=0:
fa=f(Oq=A=0)=3609
d
fa= ar = —4956.64
A | =a=0
At A =19 =0.25:
f =12535.62
d
ar = —3680.82
di
As df/dx; is negative, we accelerate the search by taking A, = 47y = 1.00.
At A; = 1.00:
f =1795.98
a5 = —1269.18
A
Since df/dA; is still negative, we take A; = 2.00.
At 1 = 2.00:
f=227.32
d
ar = —113.953
d

Although df/d) is still negative, it appears to have come close to zero and
hence we take the next value of A; as 2.50.
At A = 2.50:

f=24151
df
1

Since df/dx; is negative at A} = 2.0 and positive at A} = 2.5, we take A =
2.0 (instead of zero for faster convergence) and B = 2.5. Therefore,

A=20, f4=22732, f,=—113.95
B =25, fp=241.51, f,=174.68

= 174.684 = positive

Stage 3: To find the optimal step length ):’f using Eq. (5.54), we compute
_3(227.32 —241.51)

2.5-2.0
0 = [(24.41)% + (113.95)(174.68)]'/? = 143.2

—113.95 4 174.68 = —24.41
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Therefore,

- —113.95 —24.41 4 143.2
AF=20 25-20
! + —113.95+174.68—48.82( )

=22

Stage 4: To find whether 531‘ is close to A}, we test the value of df/dx.

—| =-0.818
Also, ~
fOq =A)) =216.1
Since df/dA; is not close to zero at A%, we use a refitting technique.
Second Fitting: Now we take A = XT since df/d) is negative at XT and B = 2.5.
Thus

A =22, fs=216.10, f, =-0.818
B =25, fp=24151, f,=174.68

With these values we find that
, _ 3@16.1 —241.51)
25-22
0 = [(80.238)% + (0.818)(174.68)]'/*> = 81.1
—0.818 — 80.238 + 81.1

AE=22 2.5—12.2)=2.201
! + —0.818 + 174.68 — 160.476( )

—2.818 +174.68 = —80.238

To test for convergence, we evaluate df/dA at ):’f. Since df/dM,\,:I\’f = —0.211, it can

be assumed to be sufficiently close to zero and hence we take A} ~ ):T = 2.201. This
gives

—240.970)1% 0.135
X, =X, +A7S; = o
= 1S = =

—2+0.24417 —1.463

Testing X, for convergence: To test whether the D-F-P method has converged,
we compute the gradient of f at Xj:

af /0x; 78.29
V= =
af /9x; —296.24
Xo
As the components of this vector are not close to zero, X, is not optimum and hence
the procedure has to be continued until the optimum point is found.

Example 6.15 Minimize f(xj,x2) =x; —x2 + 2x12 + 2x1x7 + x% from the starting
point X; = {{} using the DFP method with

[Bi] = [(1) (1)] e =0.01
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SOLUTION

Iteration 1 (i =1)
Here

1+4 2
Vf1=Vf(X1)={ + 4x; + xz}

—1 4+ 2x1 4+ 2x,

L)
—1-1
0,0
-1} )

To find the minimizing step length A} along S;, we minimize

and hence

S8 = f ({8} + {‘}}) = f(h ) = 2 -2

with respect to A;. Since df/di; =0 at AT = 1, we obtain

0 —1 —1
xoxein= [ 4=

Since VH =VfiXo) = {j} and ||V f5|| = 1.4142>¢, we proceed to update the
matrix [B;] by computing

w=ss-on=(3}-) -3
st = (=1 11{ o} =2
=Y =[]
e =g 1) 7o) = {73)
(Bilgn" = {_3}T= {-2 0}

g -y 3ol

SiST 1 1 -1
Mil=2=t=1(= =
=i =1 ()[4

N = N =
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-2

20

(BB BIR)T _{ 0}{ b [4 0} - [1 0}
g/ [Bilgi 4 4

[B2] = [B\] + [M1] + [N1] = [(1) (1)] +

N = N =

Iteration 2 (i =2)

The next search direction is determined as

R R

To find the minimizing step length A3 along S, we minimize

f(X2+)»252)=f({_i}+)‘2{(1)}) =f<: 1_+1Az}>

=—1—=(14+2)+2(=D>+2(=D(1 + r2) + (1 + 1)?

with respect to A,. Since df/diy =0 at A5 = %, we obtain

* -1 1 0 —1
X3=X2+’\2={ 1}+§{1}:{ 1.5}

This point can be identified to be optimum since

0
Vs = {0} and [[Vfsl[=0<e

6.15 BROYDEN-FLETCHER-GOLDFARB-SHANNO METHOD

As stated earlier, a major difference between the DFP and BFGS methods is that in
the BFGS method, the Hessian matrix is updated iteratively rather than the inverse of
the Hessian matrix. The BFGS method can be described by the following steps.

1. Start with an initial point X; and a n x n positive definite symmetric matrix [ B;]
as an initial estimate of the inverse of the Hessian matrix of f. In the absence
of additional information, [B1] is taken as the identity matrix [/]. Compute the
gradient vector V f = V f(X}) and set the iteration number as i = 1.

2. Compute the gradient of the function, V f;, at point X;, and set

Si = —[BilVf; (6.134)
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. Find the optimal step length A} in the direction S; and set

Xip1 =X + A'S; (6.135)

. Test the point X, for optimality. If ||V fi11|| < &, where ¢ is a small quantity,

take X* ~ X, and stop the process. Otherwise, go to step 5.

5. Update the Hessian matrix as
T[Bilg\ did] dig/[Bi] [Bilgd/
(Bii] = [B:] + (1 L 8 [T,]g,) dr ,g,T[ il ,]Tg, L (6.136)
d; g d; g d; g d; g
where
d =X —X; =A'S; (6.137)
g8 =Vfis1 = V/fi=V[iXi) - Vf(X) (6.138)
6. Set the new iteration number as i =i + 1 and go to step 2.
Remarks:
1. The BFGS method can be considered as a quasi-Newton, conjugate gradient,
and variable metric method.
2. Since the inverse of the Hessian matrix is approximated, the BFGS method can

be called an indirect update method.

. If the step lengths A} are found accurately, the matrix, [B;], retains its positive

definiteness as the value of i increases. However, in practical application, the
matrix [B;] might become indefinite or even singular if A are not found accu-
rately. As such, periodical resetting of the matrix [B;] to the identity matrix [/]
is desirable. However, numerical experience indicates that the BFGS method is
less influenced by errors in A* than is the DFP method.

. It has been shown that the BFGS method exhibits superlinear convergence near

X* [6.19].

Example 6.16 Minimize f(x;,x2) =x; —x2 + 2x12 + 2x1x7 + x% from the starting
point X; = {0} using the BFGS method with

10
[Bi] = |:0 1] e =0.01.
SOLUTION
Iteration 1 (i = 1)
Here
_ B 1+ 4x; + 2x; _ 1
Vf]—Vf(X])— {_1+2x1+2x2} _{_1}
0,0)
and hence

Si=—[BIVfi =— [(1) ﬂ {_H = {_i}



362 Nonlinear Programming II: Unconstrained Optimization Techniques

To find the minimizing step length A} along S;, we minimize

FXi+MS) = f ({g} + {_}}) = f(=h1,20) = A7 = 24

with respect to A;. Since df/di; =0 at A} = 1, we obtain

oxmne oY)

Since Vo =Vf(Xy) ={_}} and [Vfo]| = 1.4142 > &, we proceed to update the

matrix [B;] by computing

g =Vh-Vfi= {j} - {_i} - {_3}
a7
dldT={‘}}{—1 = [_i _i]

dlg = (-1 1}{‘3} =2

dig] = {_}}{—2 0) = [_§ 8]

gd" = {‘3}{—1 1) =

r_ [1o][2 -2

Equation (6.136) gives

(Bl = [(1) ﬂ +

1

+
1 -~

[SS] LSS I ST [O8)



Iteration 2 (i = 2)

The next search direction is determined as

1
2
1

S, =—[BlVfr=— |:

2

6.16 Test Functions

HIBIEH

To find the minimizing step length A3 along S,, we minimize

FXa+ A282) =f<{_H +,\2{g}> = f(—=1,142x) =423 — 24, — |

with respect to A,. Since df/dry, =0 at A =

=1
-1
1}+

This point can be identified to be optimum since

X3=X2+X§SQZ{

we obtain

b=

Vf3={g} and ||Vf3]|=0<¢

6.16 TEST FUNCTIONS
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The efficiency of an optimization algorithm is studied using a set of standard func-
tions. Several functions, involving different number of variables, representing a variety
of complexities have been used as test functions. Almost all the test functions pre-
sented in the literature are nonlinear least squares; that is, each function can be

represented as

m

2

FOn X, X)) =Y filxn xa, . x)
i=1

(6.139)

where n denotes the number of variables and m indicates the number of functions ( f;)
that define the least-squares problem. The purpose of testing the functions is to show
how well the algorithm works compared to other algorithms. Usually, each test function
is minimized from a standard starting point. The total number of function evaluations
required to find the optimum solution is usually taken as a measure of the efficiency of
the algorithm. References [6.29] to [6.32] present a comparative study of the various
unconstrained optimization techniques. Some of the commonly used test functions are

given below.

1. Rosenbrock’s parabolic valley [6.8]:

f(x1, x2) = 100(x; — x3)? + (1 — x1)?

—12
Xi :{ 1.0}’

fi = 24.0,

<[}

f*=0.0

(6.140)
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2. A quadratic function:

F(x1,x2) = (x1 4+ 2x2 — D + 2x1 + x2 — 5)° (6.141)

x=fof x4l

f1 =740, f*=0.0

3. Powell’s quartic function [6.7]:
fxr,x2,x3,x4) = (X1 4 10x2) + 5(x3 — x4)°
+ (x3 — 2x3)* + 10(x; — x4)* (6.142)
X ={xjxox3x); =38 -101}, XT={0000)

f1=2150, f*=0.0

4. Fletcher and Powell’s helical valley [6.21]:

fx1, x2, x3) = 100{[x3 — 106 (x1, x)1* + [/ x7 + x3 — 1]2} +x7 (6.143)

where
arctan 2 if x>0
X
2w0(xy, x2) = 1 N
7 + arctan 2 x1<0
X
-1 1
X, = 0y, X*=30
0 0

fi =25,0000, f*=0.0

5. A nonlinear function of three variables [6.7]:

1 Al
fx1,x0,x3) = pr—— + sin <§nx2x3>

2
+exp {— (xl j 5 2) } (6.144)
2

0 1
Xj=491;, X'={1
2 1

fi=15 "= fmax =30
6. Freudenstein and Roth function [6.27]:
ferx) = (=13 +x1 +[(5 = x2)x2 — 21x2)?
+{=29 +x1 + [(x2 + Dz — 14]x2)? (6.145)
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0.5 5 11.41...
X, = {_2 } , X*= :4} s Xthernate = {—0,8968.. }

fi=4005, f* =00, [l =48.9842. ..

7. Powell’s badly scaled function [6.28]:
F(x1, x2) = (10,000x1x5 — 1) + [exp(—x1) + exp(—x2) — 1.0001]> (6.146)

_ o «  J1.098...x 1073
X‘—{1}’ X _{9.106... }

fi=1.1354, f*=0.0
8. Brown’s badly scaled function [6.29]:
Fxr,x) = (xp — 1092 + (x2 —2 x 10792 + (xyx2 — 2)° (6.147)

1 «_ J10°
X'—H’ X‘{leoﬁ}

fi~102,  f*=0.0
9. Beale’s function [6.29]:
@ x) =115 —x(1—x)P +1225 - x1(1 — x))P
+[2.625 — x; (1 — x3)]? (6.148)
s={i} x=[i
f1 =14203125, f*=0.0
10. Wood’s function [6.30]:
f 1, x2,x3,x4) = [100r2 — xD + (1 — x1)% + 90(xs — x3)°
+ (1 —x3)> 4+ 10(x2 + x4 —2)> +0.1(x3 — x4)  (6.149)

-3 1
X, = 1 , X+ = i
-1 1

fi =19192.0, f*=0.0

6.17 MATLAB SOLUTION OF UNCONSTRAINED OPTIMIZATION
PROBLEMS

The solution of multivariable unconstrained minimization problems using the MATLAB
function fminunc is illustrated in this section.

Example 6.17 Find the minimum of the Rosenbrock’s parabolic valley function, given
by Eq. (6.140), starting from initial point X; = {—1.2 1.0}T.
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SOLUTION

Step 1: Write an M-file obj fun.m for the objective function.

function f= objfun (x)
f= 100* (x(2)-x(1) *x(1))"2+(1-x(1))"2;

Step 2: Invoke unconstrained optimization program (write this in new MATLAB file).

clc

clear all

warning off

x0 = [-1.2,1.0]; % Starting guess

fprintf ('The values of function value at starting
pointn') ;

f=objfun (x0)

options = optimset ('LargeScale', 'off');

[x, fval] = fminunc (Qobjfun,x0,options)

This produces the solution or ouput as follows:

The values of function value at starting point
f=
24.2000
Optimization terminated: relative infinity-norm of gradi-
ent less than options.TolFun.

X=
1.0000 1.0000
fval=
2.8336e-011
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REVIEW QUESTIONS

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15

State the necessary and sufficient conditions for the unconstrained minimum of a function.
Give three reasons why the study of unconstrained minimization methods is important.
What is the major difference between zeroth-, first-, and second-order methods?

What are the characteristics of a direct search method?

What is a descent method?

Define each term:

(a) Pattern directions

(b) Conjugate directions

(¢) Simplex

(d) Gradient of a function

(e) Hessian matrix of a function

State the iterative approach used in unconstrained optimization.
What is quadratic convergence?

What is the difference between linear and superlinear convergence?
Define the condition number of a square matrix.

Why is the scaling of variables important?

What is the difference between random jumping and random walk methods?

Under what conditions are the processes of reflection, expansion, and contraction used in
the simplex method?

When is the grid search method preferred in minimizing an unconstrained function?

Why is a quadratically convergent method considered to be superior for the minimization
of a nonlinear function?



6.16
6.17
6.18
6.19

6.20

6.21

6.22
6.23

6.24
6.25
6.26

6.27
6.28
6.29
6.30
6.31

6.32
6.33

Review Questions 369

Why is Powell’s method called a pattern search method?
What are the roles of univariate and pattern moves in the Powell’s method?
What is univariate method?

Indicate a situation where a central difference formula is not as accurate as a forward
difference formula.

Why is a central difference formula more expensive than a forward or backward difference
formula in finding the gradient of a function?

What is the role of one-dimensional minimization methods in solving an unconstrained
minimization problem?

State possible convergence criteria that can be used in direct search methods.

Why is the steepest descent method not efficient in practice, although the directions used
are the best directions?

What are rank 1 and rank 2 updates?
How are the search directions generated in the Fletcher—Reeves method?

Give examples of methods that require n%, n, and 1 one-dimensional minimizations for
minimizing a quadratic in n variables.

What is the reason for possible divergence of Newton’s method?

Why is a conjugate directions method preferred in solving a general nonlinear problem?
What is the difference between Newton and quasi-Newton methods?

What is the basic difference between DFP and BFGS methods?

Why are the search directions reset to the steepest descent directions periodically in the
DFP method?

What is a metric? Why is the DFP method considered as a variable metric method?
Answer true or false:

(a) A conjugate gradient method can be called a conjugate directions method.

(b) A conjugate directions method can be called a conjugate gradient method.

(c) In the DFP method, the Hessian matrix is sequentially updated directly.

(d) In the BFGS method, the inverse of the Hessian matrix is sequentially updated.
(e) The Newton method requires the inversion of an n X n matrix in each iteration.
(f) The DFP method requires the inversion of an n x n matrix in each iteration.
(g) The steepest descent directions are the best possible directions.

(h) The central difference formula always gives a more accurate value of the gradient
than does the forward or backward difference formula.

(i) Powell’s method is a conjugate directions method.
(j) The univariate method is a conjugate directions method.
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PROBLEMS

6.1

6.2

6.3

A bar is subjected to an axial load, Py, as shown in Fig. 6.17. By using a one-finite-element
model, the axial displacement, u(x), can be expressed as [6.1]

u
u(@) = (Ni(x) Na(x)) [M‘}
2
where N;(x) are called the shape functions:
X X
Ni(x)=1- 7 N2 (x) = 7

and u; and u, are the end displacements of the bar. The deflection of the bar at point
Q can be found by minimizing the potential energy of the bar (f), which can be

expressed as
1! u'\?
== | EA(—) dx— P
f 2/0 <8x) x — Poua

where E is Young’s modulus and A is the cross-sectional area of the bar. Formulate the
optimization problem in terms of the variables u; and u, for the case Pyl/EA = 1.

The natural frequencies of the tapered cantilever beam (w) shown in Fig. 6.18, based on
the Rayleigh-Ritz method, can be found by minimizing the function [6.34]:

Eh3 C% + C% n Cc1C2
32\ 107" s
L‘2 L‘2 201()2
L4 22
P (30 *280 " 105 )

with respect to ¢; and ¢, where f = w?, E is Young’s modulus, and p is the density.
Plot the graph of 3 fpl®/Eh? in (ci, ¢2) space and identify the values of w; and ws.

fler,e) =

The Rayleigh’s quotient corresponding to the three-degree-of-freedom spring—mass sys-
tem shown in Fig. 6.19 is given by [6.34]

RX) — XT[KIX
T XTIMIX
where
2 -1 0 100 X
[Kl=k|—-1 2 —-1|, M]=]|010|, X=1{x
0 -1 1 001 X3

It is known that the fundamental natural frequency of vibration of the system can be
found by minimizing R(X). Derive the expression of R(X) in terms of x, x3, and x3 and
suggest a suitable method for minimizing the function R(X).

1 —-——»--—--——-—;»c———-»u(x) --g—»u —» Py
2

[~ l ’!

Figure 6.17 Bar subjected to an axial load.
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Figure 6.18 Tapered cantilever beam.

Figure 6.19 Three-degree-of-freedom spring—mass system.
6.4 The steady-state temperatures at points 1 and 2 of the one-dimensional fin (x; and x;)
shown in Fig. 6.20 correspond to the minimum of the function [6.1]:

f(x1, x2) = 0.6382x7 + 0.3191x7 — 0.2809x; x>
— 67.906x] — 14.290x,

Plot the function f in the (x;, xp) space and identify the steady-state temperatures of
points 1 and 2 of the fin.
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6.5

6.6

2 cm dia. k=70W/cm --°C

/

140°C ¢ 10x] 2 9xo

I

-+— 5cm —— > |+—5cm ———>

To = 40°C
Figure 6.20 Straight fin.

Figure 6.21 shows two bodies, A and B, connected by four linear springs. The springs are
at their natural positions when there is no force applied to the bodies. The displacements
x1 and x, of the bodies under any applied force can be found by minimizing the potential
energy of the system. Find the displacements of the bodies when forces of 10001b and
20001b are applied to bodies A and B, respectively, using Newton’s method. Use the
starting vector, X| = {8}. Hint:

Potential energy of the system = strain energy of springs — potential of applied loads

where the strain energy of a spring of stiffness k and end displacements x; and x; is
given by %k(xz — x1)? and the potential of the applied force, F;, is given by x; F;.

The potential energy of the two-bar truss shown in Fig. 6.22 under the applied load P is
given by

EA(1\* , EA[(h\*, _
fx1,x) = — % xi+— | —) x5 — Px; cos & — Px; sin 0
N ) N N

where E is Young’s modulus, A the cross-sectional area of each member, / the span of
the truss, s the length of each member, % the depth of the truss, 0 the angle at which load
is applied, x; the horizontal displacement of free node, and x; the vertical displacement
of the free node.

(a) Simplify the expression of f for the data E = 207 x 10° Pa, A = 107> m?,/ = 1.5 m,
h=4m, P=10,000 N, and 6 = 30°.

200 Ib/in. B 100 Ib/in.

—AMAMA—

— 2000 Ib.

A

300 Ib/in. 1000 Ib.

400 Ib/in.

SONNNNNNNNNN
NNNNNYNNNNNN

J7777 77777777777 7777777777777 77777777777

Figure 6.21 Two bodies connected by springs.
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Figure 6.22 Two-bar truss.

(b) Find the steepest descent direction, S, of f at the trial vector X; = {8}.

(c) Derive the one-dimensional minimization problem, f(1), at X; along the direction
S:.

(d) Find the optimal step length A* using the calculus method and find the new design
vector Xo.

Three carts, interconnected by springs, are subjected to the loads P;, P», and P3 as shown
in Fig. 6.23. The displacements of the carts can be found by minimizing the potential
energy of the system (f):

FX) = IXT[K]X — XTP

where
ki +ka+ks —ka —ks
[K1=| —ks4 ky 4 k4 + ks —ke
—ks —ke k3 + ks + ke + k7 + ks
P, X1

P= P2 and X = X2

P; X3
Derive the function f(x1, x2, x3) for the following data: k; = 5000 N/m , k, = 1500 N/m,
k3 = 2000 N/m, ks = 1000 N/m, ks = 2500 N/m, k¢ = 500 N/m, k7 = 3000 N/m, kg =

3500 N/m, P; = 1000 N, P, =2000 N, and P; = 3000 N. Complete one iteration of
Newton’s method and find the equilibrium configuration of the carts. Use X; = {0 0 0}".

Plot the contours of the following function over the region (=5 < x; <5, -3 <x; <6)
and identify the optimum point:

Fxn,x2) = (x1 +2x2 — 7% + (2x1 + x5 — 5)?
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x3
| X9 . I X2 [——» .
ko 41\/\N\NV k6 WWY

—>P3
VWV VWV kg

Cart 1 ks — L5 ~cCart2 Cart 3

TT7T77 7777777 777777777777 7777777777777777777777777777777.

k1

|
) Y Y N N N N N N NN N N N N N

SOONNSNNSNNNNNNNANY

Figure 6.23 Three carts interconnected by springs.

6.9 Plot the contours of the following function in the two dimensional (x;, x2) space over the
region (—4 < x; <4, —3 < x; < 6) and identify the optimum point:

@ x) =200 —xD>+ (1 —x1)°
6.10 Consider the problem

S (x1, x2) = 100(x2 —x12)2 +(1=x)2

Plot the contours of f over the region (—4 < x; <4, -3 < x; < 6) and identify the
optimum point.

6.11 It is required to find the solution of a system of linear algebraic equations given by
[A]JX = b, where [A] is a known n x n symmetric positive-definite matrix and b is an
n-component vector of known constants. Develop a scheme for solving the problem as
an unconstrained minimization problem.

6.12 Solve the following equations using the steepest descent method (two iterations only)
with the starting point, X; = {0 0 0}:

2x1+x0=4, x14+2x+x3=8, x»+3x3=11

6.13 An electric power of 100 MW generated at a hydroelectric power plant is to be transmitted
400 km to a stepdown transformer for distribution at 11 kV. The power dissipated due to
the resistance of conductors is i2¢™!, where i is the line current in amperes and c is the
conductance in mhos. The resistance loss, based on the cost of power delivered, can be
expressed as 0.15i%¢™! dollars. The power transmitted (k) is related to the transmission
line voltage at the power plant (e) by the relation k = +/3ei, where e is in kilovolts. The
cost of conductors is given by 2¢ millions of dollars, and the investment in equipment
needed to accommodate the voltage e is given by 500e dollars. Find the values of e and

¢ to minimize the total cost of transmission using Newton’s method (one iteration only).

6.14 Find a suitable transformation of variables to reduce the condition number of the Hessian
matrix of the following function to one:

f=2x12—|—16x22—2x1x2—x1 —6x; — 5
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6.19

6.20

6.21

6.22

6.23

6.24
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Find a suitable transformation or scaling of variables to reduce the condition number of
the Hessian matrix of the following function to one:

f=4x} 4+3x} — 5x1x, — 8x; + 10

Determine whether the following vectors serve as conjugate directions for minimizing the
function f = 2x7 + 16x3 — 2x1x2 — X1 — 6x — 5.

sl sy
-1 1
s (] sef)

Consider the problem:
Minimize f = x; — x3 + 2x7 4 2x1x3 + x5

Find the solution of this problem in the range —10 < x; < 10, i = 1, 2, using the random
jumping method. Use a maximum of 10,000 function evaluations.

Consider the problem:
Minimize f = 6xl2 — 6x1x2 + 2x§ —x1 —2x3

Find the minimum of this function in the range —5 < x; <5, i = 1, 2, using the random
walk method with direction exploitation.

Find the condition number of each matrix.

1 2
(@) [4]= [1.0001 2]
39 1.6
®) 18]1= [6.8 2.9}
Perform two iterations of the Newton’s method to minimize the function
f(x1,x2) = 100(x2 — xD)* + (1 — x1)?

from the starting point {_}:(2)}.

Perform two iterations of univariate method to minimize the function given in Prob-
lem 6.20 from the stated starting vector.

Perform four iterations of Powell’s method to minimize the function given in Problem
6.20 from the stated starting point.

Perform two iterations of the steepest descent method to minimize the function given in
Problem 6.20 from the stated starting point.

Perform two iterations of the Fletcher—Reeves method to minimize the function given in
Problem 6.20 from the stated starting point.

Perform two iterations of the DFP method to minimize the function given in Problem
6.20 from the stated starting vector.

Perform two iterations of the BFGS method to minimize the function given in Problem
6.20 from the indicated starting point.
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6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

Perform two iterations of the Marquardt’s method to minimize the function given in
Problem 6.20 from the stated starting point.

Prove that the search directions used in the Fletcher—Reeves method are [A]-conjugate
while minimizing the function

fx1, x2) = xf 4 4x3

Generate a regular simplex of size 4 in a two-dimensional space using each base point:

o[ ol ol

Find the coordinates of the vertices of a simplex in a three-dimensional space such that
the distance between vertices is 0.3 and one vertex is given by (2, —1, —8).

Generate a regular simplex of size 3 in a three-dimensional space using each base point.

0 4 1
@0 ()3 (©)-2
0 2 3

Find a vector S, that is conjugate to the vector

with respect to the matrix:
123
[A]l=|2 56
369

Compare the gradients of the function f(X) = 100(x; — )clz)2 +(1—x)?*at X = {82}
given by the following methods:

(a) Analytical differentiation

(b) Central difference method

(¢) Forward difference method

(d) Backward difference method

Use a perturbation of 0.005 for x; and x; in the finite-difference methods.

It is required to evaluate the gradient of the function
f(x1, x2) = 100(xa — x1)? + (1 — x1)?

at point X = {8:2} using a finite-difference scheme. Determine the step size Ax to be
used to limit the error in any of the components, df/dx;, to 1 % of the exact value, in
the following methods:

(a) Central difference method

(b) Forward difference method

(c) Backward difference method
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6.37

6.38

6.39

6.40

6.41
6.42

6.43

6.44

Problems 377

Consider the minimization of the function

1

'f=x12+x§—|—2

Perform one iteration of Newton’s method from the starting point X; = {g} using
Eq. (6.86). How much improvement is achieved with X,?

Consider the problem:
Minimize f = 2(x; — x7)> + (1 — x1)?

If a base simplex is defined by the vertices

S

find a sequence of four improved vectors using reflection, expansion, and/or contraction.

Consider the problem:
Minimize f = (x| + 2x2 — 7)> + 2x; + x5 — 5)°

If a base simplex is defined by the vertices

S S AR &

find a sequence of four improved vectors using reflection, expansion, and/or contraction.

Consider the problem:
f=100(xz — x>+ (1 — xp)?

Find the solution of the problem using grid search with a step size Ax; = 0.1 in the range
_35)(,‘ <3 i=1,2.

Show that the property of quadratic convergence of conjugate directions is independent
of the order in which the one-dimensional minimizations are performed by considering
the minimization of

f= 6)cl2 + 2x22 — 6x1xp — X1 — 2x2

using the conjugate directions S; = {é} and S; = {(1)} and the starting point X; = {8}.

Show that the optimal step length A that minimizes f(X) along the search direction
S; = —V f; is given by Eq. (6.75).

Show that f, in Eq. (6.76) is given by Eq. (6.77).

Minimize f = 2xl2 + x% from the starting point (1, 2) using the univariate method (two
iterations only).

Minimize f = 2)612 +x% by using the steepest descent method with the starting point
(1,2) (two iterations only).

Minimize f =x12—|—3x§ —i—6x32 by the Newton’s method using the starting point as
2,-1,1).
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6.45

6.46

6.47

6.48

6.49
6.50

6.51

6.52

6.53

Minimize f = 4xl2 + 3x§ — Sxyxp — 8x starting from point (0, 0) using Powell’s method.
Perform four iterations.

Minimize f(xi,x2) = xf — 2x12x2 + x12 + x% + 2x; 4+ 1 by the simplex method. Perform
two steps of reflection, expansion, and/or contraction.

Solve the following system of equations using Newton’s method of unconstrained mini-
mization with the starting point

0
X; =10
0
2x1 —xo4+x3=—1, x1+2x =0, 3x1+x+2x3=3

It is desired to solve the following set of equations using an unconstrained optimization
method:

24+yP=2, 10x2—10y—5x+1=0

Formulate the corresponding problem and complete two iterations of optimization using
the DFP method starting from X; = {8}

Solve Problem 6.48 using the BFGS method (two iterations only).

The following nonlinear equations are to be solved using an unconstrained optimization
method:

2xy =3, x2—y=2

Complete two one-dimensional minimization steps using the univariate method starting
from the origin.

Consider the two equations
T3 —10x—y=1, 8> —lly+x=1

Formulate the problem as an unconstrained optimization problem and complete two steps
of the Fletcher—Reeves method starting from the origin.

Solve the equations 5x; + 3x, = 1 and 4x; — 7x, = 76 using the BFGS method with the
starting point (0, 0).

Indicate the number of one-dimensional steps required for the minimization of the function
f= xl2 + x22 — 2x1 —4x2 + 5 according to each scheme:

(a) Steepest descent method

(b) Fletcher—Reeves method

(¢c) DFP method

(d) Newton’s method

(e) Powell’s method

(f) Random search method

(g) BFGS method

(h) Univariate method
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6.56

6.57

6.58

6.59

6.60

6.61

6.62

6.63

6.64

6.65

6.66

6.67

Problems 379

Same as Problem 6.53 for the following function:

f=0—x)H*+1d-x)?

Verify whether the following search directions are [A]-conjugate while minimizing the
function

f=x —x2+2X12+2)C1XQ+x22

—1 1
(a) Sl=[ 1}, Sz={0}
—1 0
(b) 512{ 1}, Sz={]}

Solve the equations x; +2x; +3x3 =14, x; —xp +x3 =1, and 3x; —2x; +x3 =2
using Marquardt’s method of unconstrained minimization. Use the starting point
X; = {0,0,0}T.

Apply the simplex method to minimize the function f given in Problem 6.20. Use the
point (—1.2, 1.0) as the base point to generate an initial regular simplex of size 2 and go
through three steps of reflection, expansion, and/or contraction.

Write a computer program to implement Powell’s method using the golden section method
of one-dimensional search.

Write a computer program to implement the Davidon—Fletcher—Powell method using the
cubic interpolation method of one-dimensional search. Use a finite-difference scheme to
evaluate the gradient of the objective function.

Write a computer program to implement the BFGS method using the cubic interpolation
method of one-dimensional minimization. Use a finite-difference scheme to evaluate the
gradient of the objective function.

Write a computer program to implement the steepest descent method of unconstrained
minimization with the direct root method of one-dimensional search.

Write a computer program to implement the Marquardt method coupled with the direct
root method of one-dimensional search.

Find the minimum of the quadratic function given by Eq. (6.141) starting from the solution
X = {0, 0}T using MATLAB.

Find the minimum of the Powell’s quatic function given by Eq. (6.142) starting from the
solution X; = {3, —1, 0, 1}T using MATLAB.

Find the minimum of the Fletcher and Powell’s helical valley function given by Eg.
(6.143) starting from the solution X; = {—1, 0, 0T using MATLAB.

Find the minimum of the nonlinear function given by Eq. (6.144) starting from the solution
X; = {0, 1, 2)T using MATLAB.

Find the minimum of the Wood’s function given by Eq. (6.149) starting from the solution
X; = {-3, -1, -3, —1}T using MATLAB.



Nonlinear Programming III:
Constrained Optimization
Techniques

7.1 INTRODUCTION

This chapter deals with techniques that are applicable to the solution of the constrained
optimization problem:

Find X which minimizes f(X)

subject to
giX)<0, j=12,....m

X)=0, k=1,2,....p (7.1)

There are many techniques available for the solution of a constrained nonlinear pro-
gramming problem. All the methods can be classified into two broad categories: direct
methods and indirect methods, as shown in Table 7.1. In the direct methods, the con-
straints are handled in an explicit manner, whereas in most of the indirect methods, the
constrained problem is solved as a sequence of unconstrained minimization problems.
We discuss in this chapter all the methods indicated in Table 7.1.

7.2 CHARACTERISTICS OF A CONSTRAINED PROBLEM

In the presence of constraints, an optimization problem may have the following features
[7.1, 7.51]:

1. The constraints may have no effect on the optimum point; that is, the constrained
minimum is the same as the unconstrained minimum as shown in Fig. 7.1. In
this case the minimum point X* can be found by making use of the necessary
and sufficient conditions

Vflxe =0 (7.2)
*f iy .
Jx+ = = positive definite (7.3)
8)6 i 8xj X*
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Table 7.1 Constrained Optimization Techniques

Direct methods

Indirect methods

Random search methods

Heuristic search methods
Complex method

Objective and constraint approximation
methods
Sequential linear programming method

Transformation of variables technique
Sequential unconstrained minimization
techniques
Interior penalty function method
Exterior penalty function method
Augmented Lagrange multiplier method

Sequential quadratic programming method
Methods of feasible directions

Zoutendijk’s method

Rosen’s gradient projection method
Generalized reduced gradient method

Figure 7.1 Constrained and unconstrained minima are the same (linear constraints).

However, to use these conditions, one must be certain that the constraints are not
going to have any effect on the minimum. For simple optimization problems like
the one shown in Fig. 7.1, it may be possible to determine beforehand whether
or not the constraints have an influence on the minimum point. However, in
most practical problems, even if we have a situation as shown in Fig. 7.1, it will
be extremely difficult to identify it. Thus one has to proceed with the general
assumption that the constraints have some influence on the optimum point.

2. The optimum (unique) solution occurs on a constraint boundary as shown in
Fig. 7.2. In this case the Kuhn—Tucker necessary conditions indicate that the
negative of the gradient must be expressible as a positive linear combination of
the gradients of the active constraints.
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/—g,:O

x2

-Vf=1iVg, +>0

> X

Figure 7.2 Constrained minimum occurring on a nonlinear constraint.

3. If the objective function has two or more unconstrained local minima, the con-
strained problem may have multiple minima as shown in Fig. 7.3.

4. In some cases, even if the objective function has a single unconstrained
minimum, the constraints may introduce multiple local minima as shown in
Fig. 7.4.

A constrained optimization technique must be able to locate the minimum in all the
situations outlined above.

Figure 7.3 Relative minima introduced by objective function.
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Figure 7.4 Relative minima introduced by constraints.

Direct Methods

7.3 RANDOM SEARCH METHODS

The random search methods described for unconstrained minimization (Section 6.2)
can be used, with minor modifications, to solve a constrained optimization problem.
The basic procedure can be described by the following steps:

1. Generate a trial design vector using one random number for each design variable.

2. Verify whether the constraints are satisfied at the trial design vector. Usually,
the equality constraints are considered satisfied whenever their magnitudes lie
within a specified tolerance. If any constraint is violated, continue generating
new trial vectors until a trial vector that satisfies all the constraints is found.

3. If all the constraints are satisfied, retain the current trial vector as the best
design if it gives a reduced objective function value compared to the previous
best available design. Otherwise, discard the current feasible trial vector and
proceed to step 1 to generate a new trial design vector.

4. The best design available at the end of generating a specified maximum number
of trial design vectors is taken as the solution of the constrained optimization
problem.

It can be seen that several modifications can be made to the basic procedure indicated
above. For example, after finding a feasible trial design vector, a feasible direction can
be generated (using random numbers) and a one-dimensional search can be conducted
along the feasible direction to find an improved feasible design vector.
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Another procedure involves constructing an unconstrained function, F(X), by
adding penalty for violating any constraint as (as described in Section 7.12):

m p
FX) = fX)+a ) [GiX) +b )Y [HX)]P (7.4)
j=1 k=1
where
[G;(X)]* = [max(0, g;(X))]? (7.5)
[H,(X)]* = hi(X) (7.6)

indicate the squares of violations of inequality and equality constraints, respectively,
and a and b are constants. Equation (7.4) indicates that while minimizing the objective
function f(X), a positive penalty is added whenever a constraint is violated, the penalty
being proportional to the square of the amount of violation. The values of the constants
a and b can be adjusted to change the contributions of the penalty terms relative to the
magnitude of the objective function.

Note that the random search methods are not efficient compared to the other meth-
ods described in this chapter. However, they are very simple to program and usually
are reliable in finding a nearly optimal solution with a sufficiently large number of
trial vectors. Also, these methods can find near global optimal solution even when the
feasible region is nonconvex.

74 COMPLEX METHOD

In 1965, Box extended the simplex method of unconstrained minimization (discussed
in Section 6.7) to solve constrained minimization problems of the type [7.2]:

Minimize f(X) (7.7a)

subject to
g;X) =<0, j=1,2,....m (7.7b)
D <x<x™ i=1,2,....n (7.7¢)

In general, the satisfaction of the side constraints (lower and upper bounds on the
variables x;) may not correspond to the satisfaction of the constraints g;(X) < 0. This
method cannot handle nonlinear equality constraints. The formation of a sequence of
geometric figures each having k =n + 1 vertices in an n-dimensional space (called
the simplex) is the basic idea in the simplex method. In the complex method also,
a sequence of geometric figures each having k > n + 1 vertices is formed to find the
constrained minimum point. The method assumes that an initial feasible point X; (which
satisfies all the m constraints) is available.

Iterative Procedure

1. Find k > n + 1 points, each of which satisfies all m constraints. In actual prac-
tice, we start with only one feasible point X;, and the remaining k — 1 points
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are found one at a time by the use of random numbers generated in the range
Oto 1, as
@W_x, i=1,2...,n, j=23,....k (18

xij = +rijx
where x; ; is the ith component of the point X;, and r; ; is a random number
lying in the interval (0, 1). It is to be noted that the points X;, X3, ..., X
generated according to Eq. (7.8) satisfy the side constraints, Eqs. (7.7¢) but
may not satisfy the constraints given by Eqs. (7.7b).

As soon as a new point X is generated (j =2, 3, ..., k), we find whether
it satisfies all the constraints, Eqs. (7.7b). If X; violates any of the constraints
stated in Eqgs. (7.7b), the trial point X; is moved halfway toward the centroid
of the remaining, already accepted points (where the given initial point X is
included). The centroid X of already accepted points is given by

12
X, = 1 > OX (7.9)
=1

If the trial point X; so found still violates some of the constraints, Egs. (7.7b),
the process of moving halfway in toward the centroid X is continued until
a feasible point X; is found. Ultimately, we will be able to find a feasible
point X; by this procedure provided that the feasible region is convex. By
proceeding in this way, we will ultimately be able to find the required feasible
points Xo, X3, ..., Xk.

. The objective function is evaluated at each of the k points (vertices). If the
vertex X, corresponds to the largest function value, the process of reflection is
used to find a new point X, as

X, = (1 + )Xo — X, (7.10)

where o > 1 (to start with) and X is the centroid of all vertices except Xj,:

onLZx, (7.11)

. Since the problem is a constrained one, the point X, has to be tested for feasi-
bility. If the point X, is feasible and f(X,) < f(X}), the point X}, is replaced
by X,, and we go to step 2. If f(X;) > f(X},), a new trial point X, is found
by reducing the value of « in Eq. (7.10) by a factor of 2 and is tested for
the satisfaction of the relation f(X,) < f(Xp). If f(X,) > f(Xp), the proce-
dure of finding a new point X, with a reduced value of « is repeated again.
This procedure is repeated, if necessary, until the value of o becomes smaller
than a prescribed small quantity e, say, 107°. If an improved point X,, with
f(X,) < f(X}p), cannot be obtained even with that small value of «, the point
X, is discarded and the entire procedure of reflection is restarted by using the
point X, (which has the second-highest function value) instead of Xj,.
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4.

If at any stage, the reflected point X, (found in step 3) violates any of the
constraints [Egs. (7.7b)], it is moved halfway in toward the centroid until it
becomes feasible, that is,

X new = 5 (Xo + X,) (7.12)

This method will progress toward the optimum point as long as the complex
has not collapsed into its centroid.

. Each time the worst point X, of the current complex is replaced by a new

point, the complex gets modified and we have to test for the convergence of the
process. We assume convergence of the process whenever the following two
conditions are satisfied:

(a) The complex shrinks to a specified small size (i.e., the distance between
any two vertices among X1, X», ..., X becomes smaller than a prescribed
small quantity, €.

(b) The standard deviation of the function value becomes sufficiently small
(i.e., when

12

k
|
%2 [fX)— fXDP} <& (7.13)
Jj=1

where X is the centroid of all the k vertices of the current complex, and
&, >0 is a specified small number).

Discussion.  This method does not require the derivatives of f(X) and g;(X) to find
the minimum point, and hence it is computationally very simple. The method is very
simple from programming point of view and does not require a large computer storage.

1

2.

=2

A value of 1.3 for the initial value of « in Eq. (7.10) has been found to be
satisfactory by Box.

Box recommended a value of k >~ 2n (although a lesser value can be chosen
if n is greater than, say, 5). If k is not sufficiently large, the complex tends to
collapse and flatten along the first constraint boundary encountered.

. From the procedure above, it can be observed that the complex rolls over and

over, normally expanding. However, if a boundary is encountered, the complex
contracts and flattens itself. It can then roll along this constraint boundary and
leave it if the contours change. The complex can also accommodate more than
one boundary and can turn corners.

. If the feasible region is nonconvex, there is no guarantee that the centroid of all

feasible points is also feasible. If the centroid is not feasible, we cannot apply
the procedure above to find the new points X,.

. The method becomes inefficient rapidly as the number of variables increases.
. It cannot be used to solve problems having equality constraints.
. This method requires an initial point X; that is feasible. This is not a major

restriction. If an initial feasible point is not readily available, the method
described in Section 7.13 can be used to find a feasible point X.



7.5 Sequential Linear Programming 387

7.5 SEQUENTIAL LINEAR PROGRAMMING

In the sequential linear programming (SLP) method, the solution of the original nonlin-
ear programming problem is found by solving a series of linear programming problems.
Each LP problem is generated by approximating the nonlinear objective and constraint
functions using first-order Taylor series expansions about the current design vector, X;.
The resulting LP problem is solved using the simplex method to find the new design
vector X; 1. If X;4; does not satisfy the stated convergence criteria, the problem is
relinearized about the point X;;; and the procedure is continued until the optimum
solution X* is found.

If the problem is a convex programming problem, the linearized constraints always
lie entirely outside the feasible region. Hence the optimum solution of the approximating
LP problem, which lies at a vertex of the new feasible region, will lie outside the
original feasible region. However, by relinearizing the problem about the new point
and repeating the process, we can achieve convergence to the solution of the original
problem in few iterations. The SLP method, also known as the cutting plane method,
was originally presented by Cheney and Goldstein [7.3] and Kelly [7.4].

Algorithm.  The SLP algorithm can be stated as follows:

1. Start with an initial point X; and set the iteration number as i = 1. The point
X; need not be feasible.

2. Linearize the objective and constraint functions about the point X; as

X~ fX)+ VX)X -X)) (7.14)
giX)~ g;(X) + Vg, X" (X - X)) (7.15)
he(X) = he(X;) + Vi (X)T(X — X)) (7.16)

3. Formulate the approximating linear programming problem as’
Minimize f(X;) + VT (X — X))

subject to
g XD+ Vg, X)X -X) <0, j=1,2,....,m

(X)) + Vi X)T(X =X:) =0, k=1,2,....p (7.17)

4. Solve the approximating LP problem to obtain the solution vector X; .
5. Evaluate the original constraints at X;; that is, find

giXiy), Jj=12,....m and hXiy1), k=1,2,...,p

"Notice that the LP problem stated in Eq. (7.17) may sometimes have an unbounded solution. This can be
avoided by formulating the first approximating LP problem by considering only the following constraints:

lifxifu,’, i=1,2,..., n (7.18)
In Eq. (7.18), [; and u; represent the lower and upper bounds on x;, respectively. The values of /; and

u; depend on the problem under consideration, and their values have to be chosen such that the optimum
solution of the original problem does not fall outside the range indicated by Eq. (7.18).
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If gjXij41) <e for j=1,2,...,m, and |hX;y1)| <e, k=1,2,...,p,
where ¢ is a prescribed small positive tolerance, all the original constraints can
be assumed to have been satisfied. Hence stop the procedure by taking

Xopt = XH—I

If g;(X;41) > ¢ for some j, or |h(X;41)| > ¢ for some k, find the most violated
constraint, for example, as

g Xit1) = mjaX[gj Xit1)] (7.19)

Relinearize the constraint gz (X) < 0 about the point X; | as
8r(X) ~ gr(Xit1) + VerXiy) (X = Xi41) <0 (7.20)

and add this as the (1 4 1)th inequality constraint to the previous LP problem.

6. Set the new iteration number as i =i + 1, the total number of constraints in
the new approximating LP problem as m + 1 inequalities and p equalities, and
go to step 4.

The sequential linear programming method has several advantages:

1. It is an efficient technique for solving convex programming problems with
nearly linear objective and constraint functions.

2. Each of the approximating problems will be a LP problem and hence can be
solved quite efficiently. Moreover, any two consecutive approximating LP prob-
lems differ by only one constraint, and hence the dual simplex method can be
used to solve the sequence of approximating LP problems much more effi-
ciently."

3. The method can easily be extended to solve integer programming problems. In
this case, one integer LP problem has to be solved in each stage.

Geometric Interpretation of the Method. The SLP method can be illustrated with
the help of a one-variable problem:

Minimize f(x) = cjx

subject to
gx) =0 (7.21)

where ¢ is a constant and g(x) is a nonlinear function of x. Let the feasible region and
the contour of the objective function be as shown in Fig. 7.5. To avoid any possibility
of unbounded solution, let us first take the constraints on x as ¢ < x < d, where ¢ and
d represent the lower and upper bounds on x. With these constraints, we formulate the
LP problem:

Minimize f(x) = cjx

"The dual simplex method was discussed in Section 4.3.
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f decreases

flx) =c1x

Figure 7.5 Graphical representation of the problem stated by Eq. (7.21).

subject to
c<x<d (7.22)

The optimum solution of this approximating LP problem can be seen to be x* = c.
Next, we linearize the constraint g(x) about point ¢ and add it to the previous constraint
set. Thus the new LP problem becomes

Minimize f(x) = c1x (7.23a)
subject to
c<x=d (7.23b)
dg
g(e) + d—(c)(x —-c)=<0 (7.23¢)
X

The feasible region of x, according to the constraints (7.23b) and (7.23c), is given by
e <x <d (Fig. 7.6). The optimum solution of the approximating LP problem given
by Egs. (7.23) can be seen to be x* = e. Next, we linearize the constraint g(x) <0
about the current solution x* = e and add it to the previous constraint set to obtain the
next approximating LP problem as

Minimize f(x) = cjx (7.24a)

subject to
c<x=d (7.24D)



390 Nonlinear Programming III: Constrained Optimization Techniques

A

Linearization of g(x) about
the point x = ¢:

g0) + ;_z% () (x—c)

) glx)=0
g(x) <0

0 > x
flx) = cix

A

Figure 7.6 Linearization of constraint about c.

g(e) + d—g(c)(x -0 =<0 (7.24¢)
dx

dg
gle)+ —()x—e) <0 (7.24d)
dx

The permissible range of x, according to the constraints (7.24b), (7.24c), and (7.24d),
can be seen to be f < x < d from Fig. 7.7. The optimum solution of the LP problem
of Egs. (7.24) can be obtained as x* = f.

We then linearize g(x) < 0 about the present point x* = f and add it to the
previous constraint set [Eqs. (7.24)] to define a new approximating LP problem. This
procedure has to be continued until the optimum solution is found to the desired level of
accuracy. As can be seen from Figs. 7.6 and 7.7, the optimum of all the approximating
LP problems (e.g., points c, e, f, ...) lie outside the feasible region and converge toward
the true optimum point, x = a. The process is assumed to have converged whenever
the solution of an approximating problem satisfies the original constraint within some
specified tolerance level as

g(x)) <e

where ¢ is a small positive number and x;’ is the optimum solution of the kth approx-
imating LP problem. It can be seen that the lines (hyperplanes in a general problem)
defined by g(x{) 4+ dg/dx(x})(x — x{) cut off a portion of the existing feasible region.
Hence this method is called the cutting plane method.
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Linearization of g(x) about
the point x = ¢:
dg

glc) +(E (c) (x —¢c)

Linearization of g(x) about
the point x = e:

gle) +‘§§ (e) .(x - e)

e
flx) =c1x \
N

Figure 7.7 Linearization of constraint about e.

Example 7.1
Minimize f(x,x2) = x1 — X

subject to
g1(x1,x2) =3xf = 2x1x02+x3 —1<0

using the cutting plane method. Take the convergence limit in step 5 as ¢ = 0.02.

Note: This example was originally given by Kelly [7.4]. Since the constraint
boundary represents an ellipse, the problem is a convex programming problem. From
graphical representation, the optimum solution of the problem can be identified as
x;=0,x5=1,and fin = —1.

SOLUTION

Steps 1, 2, 3: Although we can start the solution from any initial point X;, to avoid
the possible unbounded solution, we first take the bounds on x; and x;
as —2 < x; <2 and —2 < x, < 2 and solve the following LP problem:

Minimize f = x; — x;
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Step 4:

Step 5:

Step 6:
Step 4:

subject to
—2<x1 =2

—2<x;<2 (Ep
The solution of this problem can be obtained as
-2 .
X = 5 with f(X) = —4
Since we have solved one LP problem, we can take

-2
Xipn =Xy = { 2}

Since g1(X;) = 23 > ¢, we linearize g (X) about point X, as

g1 (X) ~ g1(X2) + Vg (Xo)"(X = Xp) <0 (Ea)
As
d
g1(X) =23, S| = (6 — 2x)lx, = —16

axl X,

0g1

P = (—2x1 +2x2)[x, =8

8x2 X,

Eq. (E») becomes
g1(X) =~ —16x; +8x, —25 <0

By adding this constraint to the previous LP problem, the new LP prob-
lem becomes
Minimize f = x; — x

subject to
—2<x1=2
—2<x =<2 (E3)
—16x; +8x, —25 <0
Set the iteration number as i = 2 and go to step 4.

Solve the approximating LP problem stated in Eqgs. (E3) and obtain the
solution

—0.5625
Xs = { 2.0

} with f3 = f(X3) = —2.5625

This procedure is continued until the specified convergence criterion,
g1(X;) < ¢, in step 5 is satisfied. The computational results are summa-
rized in Table 7.2.
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Table 7.2 Results for Example 7.1

Solution of the

Iteration New linearized approximating LP
number, constraint problem
i considered Xi+1 fXirD) a1 Xiv)
1 —2 <x; <2and (=2.0,2.0) —4.00000  23.00000
—2<x <2
2 —16.0x; + 8.0x, —25.0<0 (—0.56250,2.00000) —2.56250 6.19922
3 —7.375x1 + 5.125x; (0.27870, 2.00000) —1.72193 2.11978
—8.19922 <0
4 —2.33157x; + 3.44386x; (—0.52970, 0.83759) —1.36730 1.43067
—4.11958 <0
5 —4.85341x; + 2.73459x; (—0.05314,1.16024) —1.21338 0.47793
—3.43067 <0
6 —2.63930x; + 2.42675x; (0.42655, 1.48490) —1.05845 0.48419
—2.47792 <0
7 —0.41071x; + 2.11690x; (0.17058, 1.20660) —1.03603 0.13154
—2.48420<0
8 —1.38975x1 + 2.07205x, (0.01829, 1.04098) —1.02269 0.04656
—2.13155 <0
9 —1.97223x; + 2.04538x; (—0.16626, 0.84027) —1.00653 0.06838
—2.04657 <0
10 —2.67809x; + 2.01305x; (—0.07348,0.92972)  —1.00321 0.01723
—2.06838 <0

7.6 BASIC APPROACH IN THE METHODS OF FEASIBLE
DIRECTIONS

In the methods of feasible directions, basically we choose a starting point satisfying all
the constraints and move to a better point according to the iterative scheme

Xit1 =X; +2S; (7.25)

where X; is the starting point for the ith iteration, S; the direction of movement, A
the distance of movement (step length), and X;;; the final point obtained at the end
of the ith iteration. The value of A is always chosen so that X;, lies in the feasible
region. The search direction S; is found such that (1) a small move in that direction
violates no constraint, and (2) the value of the objective function can be reduced in
that direction. The new point X, is taken as the starting point for the next iteration
and the entire procedure is repeated several times until a point is obtained such that
no direction satisfying both properties 1 and 2 can be found. In general, such a point
denotes the constrained local minimum of the problem. This local minimum need not
be a global one unless the problem is a convex programming problem. A direction
satisfying property 1 is called feasible while a direction satisfying both properties 1
and 2 is called a usable feasible direction. This is the reason that these methods are
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known as methods of feasible directions. There are many ways of choosing usable
feasible directions, and hence there are many different methods of feasible directions.
As seen in Chapter 2, a direction S is feasible at a point X; if it satisfies the relation

d
—8j(Xi + 280 = STVeg;(X;) <0 (7.26)

where the equality sign holds true only if a constraint is linear or strictly concave,
as shown in Fig. 2.8. A vector S will be a usable feasible direction if it satisfies the
relations

d

ﬁf(x,- +AS)|p—0 =STVF(Xi) <0 (7.27)
d
—8j(Xi + 280 = STVg;(X;) <0 (7.28)

It is possible to reduce the value of the objective function at least by a small amount
by taking a step length A >0 along such a direction.

The detailed iterative procedure of the methods of feasible directions will be con-
sidered in terms of two well-known methods: Zoutendijk’s method of feasible directions
and Rosen’s gradient projection method.

7.7 ZOUTENDIJK’S METHOD OF FEASIBLE DIRECTIONS

In Zoutendijk’s method of feasible directions, the usable feasible direction is taken as
the negative of the gradient direction if the initial point of the iteration lies in the
interior (not on the boundary) of the feasible region. However, if the initial point
lies on the boundary of the feasible region, some constraints will be active and the
usable feasible direction is found so as to satisfy Eqs. (7.27) and (7.28). The iterative
procedure of Zoutendijk’s method can be stated as follows (only inequality constraints
are considered in Eq. (7.1), for simplicity.

Algorithm
1. Start with an initial feasible point X; and small numbers ¢}, &, and &3 to test
the convergence of the method. Evaluate f(X;) and g;(Xy), j =1,2,...,m.
Set the iteration number as i = 1.

2. If g;(X;) <0, j=1,2,...,m (ie., X; is an interior feasible point), set the
current search direction as

Si=-VfX) (7.29)

Normalize S; in a suitable manner and go to step 5. If at least one g;(X;) =0,
go to step 3.
3. Find a usable feasible direction S by solving the direction-finding problem:

Minimize — « (7.30a)



7.7 Zoutendijk’s Method of Feasible Directions 395

subject to
S'Veg;(Xi) +60;a <0, j=1,2,....p (7.30b)
S'Vf+a<0 (7.30¢)
—l<s;<1, i=12...,n (7.30d)

where s; is the ith component of S, the first p constraints have been assumed
to be active at the point X; (the constraints can always be renumbered to satisfy
this requirement), and the values of all 6; can be taken as unity. Here @ can be
taken as an additional design variable.

4. If the value of o™ found in step 3 is very nearly equal to zero, that is, if «* < ¢,
terminate the computation by taking X, >~ X;. If a* > €1, go to step 5 by taking
Si =S.

5. Find a suitable step length A; along the direction S; and obtain a new point
Xit+1 as

Xir1 =X; +4;8; (7.31)
The methods of finding the step length A; will be considered later.

6. Evaluate the objective function f(X;1).
7. Test for the convergence of the method. If

fX) = fXig1) _
fX) -

terminate the iteration by taking X, >~ X; 1. Otherwise, go to step 8.

g2 and |IX; — Xl < &3 (7.32)

8. Set the new iteration number as i =i + 1, and repeat from step 2 onward.

There are several points to be considered in applying this algorithm. These are
related to (1) finding an appropriate usable feasible direction (S), (2) finding a suitable
step size along the direction S, and (3) speeding up the convergence of the process.
All these aspects are discussed below.

7.7.1 Direction-Finding Problem

If the point X; lies in the interior of the feasible region [i.e., g;(X;) <0 for j =
1,2, ...,m], the usable feasible direction is taken as

Si=-VfX) (7.33)

The problem becomes complicated if one or more of the constraints are critically
satisfied at X;, that is, when some of the g;(X;) = 0. One simple way to find a usable
feasible direction at a point X; at which some of the constraints are active is to generate
a random vector and verify whether it satisfies Eqs. (7.27) and (7.28). This approach
is a crude one but is very simple and easy to program. The relations to be checked for
each random vector are also simple, and hence it will not require much computer time.
However, a more systematic procedure is generally adopted to find a usable feasible
direction in practice. Since there will be, in general, several directions that satisfy
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Egs. (7.27) and (7.28), one would naturally be tempted to choose the “best” possible
usable feasible direction at X;.

Thus we seek to find a feasible direction that, in addition to decreasing the value
of f, also points away from the boundaries of the active nonlinear constraints. Such a
direction can be found by solving the following optimization problem. Given the point
X;, find the vector S and the scalar « that maximize « subject to the constraints

S™Vg;(X)+60<0, jelJ (7.34)
STViXi)+a<0 (7.35)

where J represents the set of active constraints and S is normalized by one of the
following relations:

STs=>"s7=1 (7.36)

i=l1
—1<s;<1, i=12,...,n (7.37)
S'VIX) <1 (7.38)

In this problem, ¢; are arbitrary positive scalar constants, and for simplicity, we can
take all 6; = 1. Any solution of this problem with & > 0 is a usable feasible direction.
The maximum value of o gives the best direction (S) that makes the value of STV f;
negative and the values of STVg ;(X;) as negative as possible simultaneously. In other
words, the maximum value of o makes the direction S steer away from the active
nonlinear constraint boundaries. It can easily be seen that by giving different values for
different 6, we can give more importance to certain constraint boundaries compared to
others. Equations (7.36) to (7.38) represent the normalization of the vector S so as to
ensure that the maximum of « will be a finite quantity. If the normalization condition
is not included, the maximum of o may be made to approach co without violating the
constraints [Eqgs. (7.34) and (7.35)].

Notice that the objective function «, and the constraint equations (7.34) and (7.35)
are linear in terms of the variables sy, 57, ..., s,, . The normalization constraint will
also be linear if we use either Eq. (7.37) or (7.38). However, if we use Eq. (7.36)
for normalization, it will be a quadratic function. Thus the direction-finding problem
can be posed as a linear programming problem by using either Eq. (7.37) or (7.38)
for normalization. Even otherwise, the problem will be a LP problem except for one
quadratic constraint. It was shown by Zoutendijk [7.5] that this problem can be han-
dled by a modified version of linear programming. Thus the direction-finding problem
can be solved with reasonable efficiency. We use Eq. (7.37) in our presentation. The
direction-finding problem can be stated more explicitly as

Minimize — «
subject to
981 g1 g

1
- S TN — 4+ 6ia<0
S1 axl + 52 8x2 + + S 8.Xn + 01 <
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0 0 0
1252 458 45,582 e <0
dx1 dx> 0x,
gy gy gy
— — 4+ 0,0 <0 7.39
181+28x2+ +Snax”+ pot = ( )
) )
Sl—f+S2—f+~ + Su f +a <0
31 3)C2 n
s1—1<0
s —1<0
s, —1 <0
—1—5<0
—1—5<0
—1-s5,<0

where p is the number of active constraints and the partial derivatives dg;/9dx;, 9g1/9x2,
..., 08p/0x,,0f/dx1,...,0f/0x, have been evaluated at point X;. Since the com-
ponents of the search direction, s;, i = 1 to n, can take any value between —1 and 1,
we define new variables ; as t; = s; + 1, i = 1 to n, so that the variables will always
be nonnegative. With this change of variables, the problem above can be restated as
a standard linear programming problem as follows:

Find (t1, 12, ..., 1,, «, Vi, V2, v y,,+n+1) which
minimizes — «
subject to
981 081 0g1 g
h—+4+bh—+- - +t,—+6 =
Vg Ty, o g F Ot ;axi
082 02 0g2 "\ 08>
h—+tH—+--+t,—+90 =
18x1+28x2+ +n8xn+ 2% + 32 i;axi
n
8p agp agp 8317
t—L& 1ty —= o4 —== 40 = 7.40
ax. T g T g T+, Zaxi (7.40)

i=1
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of af of = of
h—+h—+ -+t — +ta+ = —
laxl 23x2 lax,, Yp+l ; 0x;
h+yp2=2
o+ yp43 =2

Ih + Yp4nt+1 = 2
>0

>0

t, >0
a>0

where yi, ¥2,..., Yp4ns1 are the nonnegative slack variables. The simplex method
discussed in Chapter 3 can be used to solve the direction-finding problem stated in
Egs. (7.40). This problem can also be solved by more sophisticated methods that treat
the upper bounds on #; in a special manner instead of treating them as constraints
[7.6]. If the solution of the direction-finding problem gives a value of a* >0, f(X)
can be improved by moving along the usable feasible direction

*
S1 5 —1
2 l‘;—l
S: =
Sn [;—]

If, however, o* = 0, it can be shown that the Kuhn—Tucker optimality conditions are
satisfied at X; and hence point X; can be taken as the optimal solution.

7.7.2 Determination of Step Length

After finding a usable feasible direction S; at any point X;, we have to determine a
suitable step length A; to obtain the next point X; 1 as

X1 =X + 48 (7.41)

There are several ways of computing the step length. One of the methods is to determine
an optimal step length (X;) that minimizes f(X; 4+ AS;) such that the new point X
given by Eq. (7.41) lies in the feasible region. Another method is to choose the step
length (;) by trial and error so that it satisfies the relations

X +48) < fFX)
giXi +2;8) <0, j=12,....m

(7.42)
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Method 1.  The optimal step length, X;, can be found by any of the one-dimensional
minimization methods described in Chapter 5. The only drawback with these methods
is that the constraints will not be considered while finding A;. Thus the new point
Xi+1 = X; 4+ A;S; may lie either in the interior of the feasible region (Fig. 7.8a), or on
the boundary of the feasible region (Fig. 7.8b), or in the infeasible region (Fig. 7.8c).

If the point X;;; lies in the interior of the feasible region, there are no active
constraints and hence we proceed to the next iteration by setting the new usable feasible
direction as S;;1 = =V f(X;41) (i.e., we go to step 2 of the algorithm). On the other
hand, if X;;; lies on the boundary of the feasible region, we generate a new usable
feasible direction S = S;;; by solving a new direction-finding problem (i.e., we go to
step 3 of the algorithm). One practical difficulty has to be noted at this stage. To detect
that point X;; is lying on the constraint boundary, we have to find whether one or
more g;(X;1) are zero. Since the computations are done numerically, will we say that

Direction in
which the Di o
A function value A lhrechtion in
X decreases \fN ich
unction value

decreases

X

Y
Y

Figure 7.8 Effect of taking optimal step length.
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the constraint g; is active if g;(X;41) = 1072, 1073, 1078, and so on? We immediately
notice that a small margin ¢ has to be specified to detect an active constraint. Thus we
can accept a point X to be lying on the constraint boundary if |g;(X)| < & where ¢ is
a prescribed small number. If point X;; lies in the infeasible region, the step length
has to be reduced (corrected) so that the resulting point lies in the feasible region only.
It is to be noted that an initial trial step size (g7) has to be specified to initiate the
one-dimensional minimization process.

Method 2. Even if we do not want to find the optimal step length, some sort of
a trial-and-error method has to be adopted to find the step length A; so as to satisfy
the relations (7.42). One possible method is to choose an arbitrary step length ¢ and
compute the values of

f=fXi+eS) and g =g;(X;+eS)

Depending on the values of f and g;, we may need to adjust the value of & until we
improve the objective function value without violating the constraints.

Initial Trial Step Length. 1t can be seen that in whatever way we want to find the
step size A;, we need to specify an initial trial step length €. The value of ¢ can be
chosen in several ways. Some of the possibilities are given below.

1. The average of the final step lengths A; obtained in the last few iterations can
be used as the initial trial step length ¢ for the next step. Although this method
is often satisfactory, it has a number of disadvantages:

(a) This method cannot be adopted for the first iteration.

(b) This method cannot take care of the rate of variation of f(X) in different
directions.

(c) This method is quite insensitive to rapid changes in the step length that take
place generally as the optimum point is approached.

2. At each stage, an initial step length ¢ is calculated so as to reduce the objective
function value by a given percentage. For doing this, we can approximate the
behavior of the function f(A) to be linear in A. Thus if

fX)=fA=0 =1 (7.43)
Adf vy v ey —<Tos — ¢
dk(X’)_ dk(Xz+KSl) A=0_S Vii=1h (7.44)

are known to us, the linear approximation of f(X) is given by

fQ) = fi+ fir

To obtain a reduction of 6% in the objective function value compared to | fi],
the step length A = ¢ is given by

1)
fi+ fle=fi— m|fl|
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that is,

e o Il (7.45)
100 £

It is to be noted that the value of ¢ will always be positive since f| given in
Eq. (7.44) is always negative. This method yields good results if the percentage
reduction (§) is restricted to small values on the order of 1 to 5.

7.7.3 Termination Criteria

In steps 4 and 5 of the algorithm, the optimization procedure is assumed to have
converged whenever the maximum value of «a(«*) becomes approximately zero and
the results of the current iteration satisfy the relations stated in Eq. (7.32). In addition,
one can always test the Kuhn—Tucker necessary conditions before terminating the
procedure.

However, we can show that if the Kuhn—Tucker conditions are satisfied, the value
of «* will become zero. The Kuhn—Tucker conditions are given by

p
Vf+) xjVgi=0 (7.46)
j=1

Aj>0, =1,2,...,p (7.47)
where the first p constraints are assumed to be the active constraints. Equation (7.46)
gives
P
S'Vf=-> 1,8"Vg;>0 (7.48)
j=I

if S is a usable feasible direction. Thus if the Kuhn—Tucker conditions are satisfied at
a point X;, we will not be able to find any search direction S that satisfies the strict
inequalities in the relations

S'Vg; <0, j=1,2,....p
STvi<o (7.49)

However, these relations can be satisfied with strict equality sign by taking the trivial
solution S = 0, which means that the value of «* in the direction-finding problem,
Egs. (7.39), is zero. Some modifications and accelerating techniques have been sug-
gested to improve the convergence of the algorithm presented in this section and the
details can be found in Refs. [7.7] and [7.8].

Example 7.2
Minimize f(x, x2) = x12 + x% —4xy —4x, + 8

subject to
gi(x, x2) =x1+2x—4<0

with the starting point X; = {8}. Take ; = 0.001, &, = 0.001, and &3 = 0.01.
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SOLUTION
Step I: AtX; = {o}:
fXy) =8 and g(X;)=-4
Iteration 1
Step 2: Since g;(X;) < 0, we take the search direction as

Step 5:

Step 6:
Step 7:

af/9x 4
Sl=—Vf(X1)=—{a 3 } =:4}
flax2)x,
This can be normalized to obtain S; = {i}
To find the new point X;, we have to find a suitable step length along S;. For
this, we choose to minimize f(X; + AS;) with respect to A. Here

FXi+A8) = fFO+1,0+1) =202 —81+38

ﬂ =0 at A1=2
dr
Thus the new point is given by X, = {g} and g1(X3) = 2. As the constraint is
violated, the step size has to be corrected.
As g} = gilx=0 = —4 and g{ = gi],=> = 2, linear interpolation gives the
new step length as

4
This gives gi|,_; = 0 and hence X, = {i}
3

fX) =35
Here

g_8

9 8
8

= =—>&
9

fXy) = f(Xp)
fXy)

IXi = Xol| = [(0— $*+ (00— D'/ =1.887>¢,

and hence the convergence criteria are not satisfied.

Iteration 2

Step 2:
Step 3:

As g1 = 0 at X, we proceed to find a usable feasible direction.
The direction-finding problem can be stated as [Egs. (7.40)]:

Minimize f = —«



Step 4:
Step 5:
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subject to
h+2n4+a+y =3
—%tl—;—‘tz-i-a-l-yz:—%
n+y;=2
h+ys=2
>0
>0
a>0

where y; to y4 are the nonnegative slack variables. Since an initial basic feasible
solution is not readily available, we introduce an artificial variable ys > 0 into
the second constraint equation. By adding the infeasibility form w = ys, the
LP problem can be solved to obtain the solution:

* * _ 3 * _ 4 « __ 17 * ok ok
H=2 L= «=p Y= YN=¥n=y;=0
* 4
_fmin:_a:_m

As a* > 0, the usable feasible direction is given by

S S -1 1.0
s -1 |-07
Since o* > g1, we go to the next step.

We have to move along the direction S; = {_(1):(7)} from the point X, = {
To find the minimizing step length, we minimize

1)

FXo+1Sy) = £(1.333 + 4, 1.333 — 0.71)
= 1.49)> — 0.4 + 0.889

As df/dr =298 — 0.4 =0 at A = 0.134, the new point is given by

1.333 10]  [1.467
X3 =X +18; = {1.333} +0.134 {—0.7} = {1.239}

At this point, the constraint is satisfied since g;(X3) = —0.055. Since point X3
lies in the interior of the feasible domain, we go to step 2.

The procedure is continued until the optimum point X* = {}g} and fiin = 0.8
are obtained.
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7.8 ROSEN’S GRADIENT PROJECTION METHOD

The gradient projection method of Rosen [7.9, 7.10] does not require the solution of an
auxiliary linear optimization problem to find the usable feasible direction. It uses the
projection of the negative of the objective function gradient onto the constraints that
are currently active. Although the method has been described by Rosen for a general
nonlinear programming problem, its effectiveness is confined primarily to problems in
which the constraints are all linear. Consider a problem with linear constraints:

Minimize f(X)

subject to
n
gi(X) =Y ajxi—b; <0, j=12,....m (7.50)
i=1
Let the indices of the active constraints at any point be ji, j2, ..., j,. The gradients of

the active constraints are given by
a]j
@ L :
VegiX)=1 ., J=Jujzedp (7.51)
Apj

By defining a matrix N of order n x p as

N=[Vg;iVgjr...Vgjpl (7.52)
the direction-finding problem for obtaining a usable feasible direction S can be posed
as follows.

Find S which minimizes S*V fX) (7.53)

subject to
NS =0 (1.54)
S'S-1=0 (7.55)

where Eq. (7.55) denotes the normalization of the vector S. To solve this
equality-constrained problem, we construct the Lagrangian function as

LS, A B) =S"VFX)+AINTS + (STS — 1) (7.56)
where
Al
A2
A= .

Ap
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is the vector of Lagrange multipliers associated with Egs. (7.54) and B is the Lagrange
multiplier associated with Eq. (7.55). The necessary conditions for the minimum are
given by

oL

£=Vf(X)+NX+2ﬂS=0 (7.57)

L
0L _N's—o (7.58)

o

oL
— =8"S-1=0 7.59
Y. (7.59)

Equation (7.57) gives |

S=——(V NA 7.60
2/3( f+N») (7.60)

Substitution of Eq. (7.60) into Eq. (7.58) gives
1
N'S = —ﬁ(NTVf +NTNL) =0 (7.61)

If S is normalized according to Eq. (7.59), B will not be zero, and hence Eq. (7.61)
gives

N'Vf+NNA=0 (7.62)
from which A can be found as

r=—-N'N)"INTv s (7.63)

This equation, when substituted in Eq. (7.60), gives
1 1

_ _ T —1IngT _
S = 2,3(1 NNTN) "INV £ = 2ﬂPVf (7.64)

where
P=1—NN'N)"'NT (7.65)

is called the projection matrix. Disregarding the scaling constant 2§, we can say that
the matrix P projects the vector —V f(X) onto the intersection of all the hyperplanes
perpendicular to the vectors

Vgio J=J1J2sadp

We assume that the constraints g;(X) are independent so that the columns of the
matrix N will be linearly independent, and hence NTN will be nonsingular and can be
inverted. The vector S can be normalized [without having to know the value of g in
Eq. (7.64)] as

PV f

S=- 7.66
PV £l (7:60)
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If X; is the starting point for the ith iteration (at which g;i, gj2, ..., gj, are critically
satisfied), we find S; from Eq. (7.66) as
P,V (X
Si = —¢ (7.67)
1PV f(Xi)l

where P; indicates the projection matrix P evaluated at the point X;. If S; # 0, we start
from X; and move along the direction S; to find a new point X;;; according to the
familiar relation

X1 =X; + A (7.68)

where A; is the step length along the search direction S;. The computational details for
calculating X; will be considered later. However, if S; = 0, we have from Eqs. (7.64)
and (7.63),

~VfX;))=NA=1Vgji+r2Vgpn+--+1i,Vgj (7.69)
where
r=—-NTN)"INTV £ (X)) (7.70)

Equation (7.69) denotes that the negative of the gradient of the objective function is
given by a linear combination of the gradients of the active constraints at X;. Further, if
all A;, given by Eq. (7.63), are nonnegative, the Kuhn—Tucker conditions [Eqs. (7.46)
and (7.47) will be satisfied and hence the procedure can be terminated.

However, if some A; are negative and S; =0, Eq. (7.69) indicates that some
constraint normals Vg; make an obtuse angle with —V f at X;. This also means
that the constraints g;, for which A; are negative, are active at X; but should not be
considered in finding a new search direction S that will be both feasible and usable. (If
we consider all of them, the search direction S comes out to be zero.) This is illustrated
in Fig. 7.9, where the constraint normal Vg;(X;) should not be considered in finding
a usable feasible direction S at point X;.

In actual practice we do not discard all the active constraints for which A; are
negative in forming the matrix N. Rather, we delete only one active constraint that
corresponds to the most negative value of A ;. That is, the new N matrix is taken as

Niew =[Vgj1 Vgjo -+ Vgig—1 V&ig+1 Vgjg2 -+ Vgjpl (7.71)

where Vg, is dropped from N by assuming that 2, is most negative among A ; obtained
from Eq. (7.63). The new projection matrix is formed, by dropping the constraint

gqu as
_ T —1NT
Pnew - (I - Nnew(NneWNnew) Nnew) (7.72)
and the new search direction (S;)pew as
PnewV (Xl)
(Si)new = f (7.73)

P VS X0
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Figure 7.9 Situation when S; = 0 and some A ; are negative.

and this vector will be a nonzero vector in view of the new computations we have
made. The new approximation X;;; is found as usual by using Eq. (7.68). At the
new point X;;, a new constraint may become active (in Fig. 7.9, the constraint g3
becomes active at the new point X;;;). In such a case, the new active constraint

has to be added to the set of active constraints to find the new projection matrix
at Xjq1.

We shall now consider the computational details for computing the step length A;
in Eq. (7.68).

7.8.1 Determination of Step Length

The step length 2; in Eq. (7.68) may be taken as the minimizing step length A7 along
the direction S;, that is,

X +24;8) = m}jn FXi +28S)) (7.74)
However, this minimizing step length A7 may give the point

X1 =X + k;-kSi
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that lies outside the feasible region. Hence the following procedure is generally adopted
to find a suitable step length A;. Since the constraints g;(X) are linear, we have

gj(M) =g;Xi +A8)) = Zaij(xi +Asi) — b;

i=1

n n
= E ajjxi — bj + A E aijsi
i=1 i=1

n
=gj(Xi)+)tZa,'jS,', j=1L2....m (7.75)
i=1
where
X1 S1
X2 2
Xi=1. and S; =
Xp Sn

This equation shows that g;(A) will also be a linear function of A. Thus if a particular
constraint, say the kth, is not active at X;, it can be made to become active at the point
X; + AS; by taking a step length A; where

n

geO) = ge(Xi) + Ak Y aixsi =0
i=1

= — gr(Xy) (7.76)

er'l:l aikSi
Since the kth constraint is not active at X;, the value of g;(X;) will be negative and
hence the sign of A; will be same as that of the quantity (Z?:l aiksi). From Egs. (7.75)
we have

that is,

dgi -
— = ;aiksi (7.77)
1=

and hence the sign of A; depends on the rate of change of g; with respect to A. If
this rate of change is negative, we will be moving away from the kth constraint in the
positive direction of A. However, if the rate of change (dg,/d}) is positive, we will be
violating the constraint g; if we take any step length A larger than A. Thus to avoid
violation of any constraint, we have to take the step length (1j7) as

Ay = min (Ax) (7.78)
A >0 and k
is any integer among
Ito m other than
J1:J2550p

In some cases, the function f (1) may have its minimum along the line S; in
between L =0 and A = Ay. Such a situation can be detected by calculating the
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value of

af T
— =S'Vf( t A=A
I V) a M

If the minimum value of A, A7, lies in between A =0 and A = Ay, the quantity
df/dAi(dy) will be positive. In such a case we can find the minimizing step length A*
by interpolation or by using any of the techniques discussed in Chapter 5.

An important point to be noted is that if the step length is given by X; (not by
AY), at least one more constraint will be active at X; | than at X;. These additional
constraints will have to be considered in generating the projection matrix at X;;j. On
the other hand, if the step length is given by A%, no new constraint will be active at
X 11, and hence the projection matrix at X;,| involves only those constraints that were
active at X;.

Algorithm.  The procedure involved in the application of the gradient projection
method can be described by the following steps:

1. Start with an initial point X;. The point X; has to be feasible, that is,
giX) =<0, j=12,....m

2. Set the iteration number as i = 1.
3. If X; is an interior feasible point [i.e., if g;(X;) <O for j =1,2,...,m], set
the direction of search as S; = —V f(X;), normalize the search direction as

SVSX)
LIV
and go to step 5. However, if g;(X;) =0 for j = ji, j2, ..., jp, g0 to step 4.
4. Calculate the projection matrix P; as
P, =I-N,(N}N,)"'N}
where

N, =[Vg1X)Vgjr(Xi) ... Vg;p(Xi)]
and find the normalized search direction S; as
_ “PiV/XD)
1PV fF Xl

5. Test whether or not S; = 0. If S; # 0, go to step 6. If S; =0, compute the
vector A at X; as

i

A=-(N)N,) "NV f(X;)

If all the components of the vector A are nonnegative, take Xqp = X; and stop
the iterative procedure. If some of the components of A are negative, find the
component A, that has the most negative value and form the new matrix N, as

N, =1[Vgj1 Vgjo -+ Vgjg—1 Vgjg+1 -+ Vgjpl
and go to step 3.
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6. If S; # 0, find the maximum step length A, that is permissible without violating
any of the constraints as Ay, = min(Ag), A > 0 and & is any integer among 1 to
m other than ji, jo, ..., j,. Also find the value of df/dA(Ay) = Sl.TVf(Xi +
AuSi). It df/dr(hp) is zero or negative, take the step length as A; = Ay. On
the other hand, if df/dA (L)) is positive, find the minimizing step length A}
either by interpolation or by any of the methods discussed in Chapter 5, and
take A; = A},

7. Find the new approximation to the minimum as

Xi+1 =Xi + 1S,

If A; = Ay orif Ay < LAY, some new constraints (one or more) become active
at X;;1 and hence generate the new matrix N, to include the gradients of all
active constraints evaluated at X; . Set the new iteration number as i =i + 1,
and go to step 4. If A; = A7 and A} < Ay, no new constraint will be active at
X;+1 and hence the matrix N, remains unaltered. Set the new value of i as
i =i+ 1, and go to step 3.

Example 7.3
Minimize f(x, xp) = xl2 + x22 —2x1 — 4xy

subject to
gi(x1,x) =x;+4x, —5=<0

g2(x1,x2) =2x1 +3x,—-6<0
g(x1,x) =—x1 <0

g4(x1,x2) = —x2 <0

starting from the point X; = {}8}

SOLUTION
Iteration i =1

Step 3: Since g;(X;) =0 for j =1, we have p =1 and j; = 1.
Step 4: As N; = [Vg(X))] = [ﬂ, the projection matrix is given by

o 1] aJfrrai)] o
-5 ]

The search direction S; is given by

=[5 -

P,

[0 Slee

_ [-0.4707
=1 o.1177

3
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S e
X

The normalized search direction can be obtained as

as

Si

_ 1 —-0.4707] _ [-0.9701
T [(—0.4707)2 4 (0.1177)2]1/2 | 0.1177 — | 0.2425

Step 5: Since S| # 0, we go step 6.
Step 6: To find the step length 1,;, we set

X:{xl}le—l-ks
X2

_ {1.0 — 0.9701k}

1.0 4- 0.2425A
For j =2:

g (X) = (2.0 — 1.9402%) + (3.0 +0.72751) — 6.0 =0 at A=A,

= —0.8245
For j = 3:
83X) =—(1.0-09701x) =0 at A =2x3=1.03

For j = 4:

e(X) = —(1.0+0.24250) =0 at A =iy = —4.124

Therefore,
Ay =A3=1.03
Also,
FX) = f(0) = (1.0 — 0.97011)% + (1.0 + 0.24252)>
—2(1.0 — 0.97011) — 4(1.0 + 0.24251)
= 0.99981% — 0.4850% — 4.0
Z—J; = 1.99961 — 0.4850
df

d—A(AM) = 1.9996(1.03) — 0.4850 = 1.5746

As df/di(iy) >0, we compute the minimizing step length A] by setting
df/dx’ = 0. This gives
. 0.4850
A= A% =

- = 0.2425
1™ 1.9996
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Step 7: We obtain the new point X, as

1.0

1.0

Xp=Xi+ M8 = { 0.2425[ = |1.0588

}+0.2425 {—0.9701} _ :0.7647}

Since A1 = A} and A} < Ay, no new constraint has become active at X, and
hence the matrix N; remains unaltered.

Iteration i = 2

Step 3: Since g1(X;) =0, we set p =1, j; = 1 and go to step 4.

Step 4:
1
N[

116 —4

P2=ﬁ[—4 1}
_f2x—2]  _ [1.5294—-2.0] _ [-0.4706
AfX2) = {2x2 —4}X2 - {2.1176—4.0} - {—1.8824}

1 [16 —4]{0.4706] _ 0.0
Sp=-PViX) =33 [— 4 1] {1.8824} = {0.0}

Step 5: Since S, = 0, we compute the vector A at X, as
A= -(NN)!'NIVF(Xp)

1 —0.4706
= 5[l 4] {_1.8824} =0.4707 >0

The nonnegative value of A indicates that we have reached the optimum point
and hence that

0.7647) .
Xopt = Xp = {1.0588} with fop = —4.059

7.9 GENERALIZED REDUCED GRADIENT METHOD

The generalized reduced gradient (GRG) method is an extension of the reduced gradi-
ent method that was presented originally for solving problems with linear constraints
only [7.11]. To see the details of the GRG method, consider the nonlinear programming

problem:
Minimize f(X) (7.79)

subject to
h;jX) <0, j=12,...,m (7.80)
LX)=0, k=1,2,...,1 (7.81)

P <xi<x®™ i=1,2,....n (7.82)

i i
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By adding a nonnegative slack variable to each of the inequality constraints in
Eq. (7.80), the problem can be stated as

Minimize f(X) (7.83)

subject to
hiX) +x,45=0, j=12,...,m (7.84)
hX)=0, k=12,...,1 (7.85)
P <x<x®, i=1,2,....n (7.86)
Xorj =0, j=1,2,....m (7.87)
with n + m variables (xp, X2, ..., Xu, Xp41s - - - » Xutm ). The problem can be rewritten

in a general form as:

Minimize f(X) (7.88)

subject to
giX)=0, j=12,....,m+I (7.89)

O]

P <<

i ’

i=1,2,....n4+m (7.90)

where the lower and upper bounds on the slack variable, x;, are taken as O and a large
number (infinity), respectively i =n+ 1,n+2,...,n+ m).

The GRG method is based on the idea of elimination of variables using the equality
constraints (see Section 2.4.1). Thus theoretically, one variable can be reduced from
the set x; (i =1,2,...,n+m) for each of the m + [ equality constraints given by
Egs. (7.84) and (7.85). It is convenient to divide the n 4+ m design variables arbitrarily
into two sets as

Y
X = Z} (7.91)
V1

Y2
Y= . = design or independent variables (7.92)

Yn—1
<1

22
7 = . = state or dependent variables (7.93)

Zm+l

and where the design variables are completely independent and the state variables
are dependent on the design variables used to satisfy the constraints g;(X) =0, j =
1,2,...,m-+1.
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Consider the first variations of the objective and constraint functions:

i=1 7! i=1

n—I m+l
dfX)=>y" %dyi +y 8—§dz,- = Vi fdY + V, f dZ. (7.94)

or
dg =[C1dY + [D]dZ (7.95)

where

af
ay1
af

Vy f = 3.y2 (7.96)

af

0Yn—1
af

971
of
Vof =1 92 (7.97)

of
0Zm+1
dg1 g1 7]
v OYn—1
[C]= : : (7.98)
08m+i 08m+i
v Yn—1
[ 981 981 ]
021 0Zm+1

[D] = : : (7.99)

0gm+1 08m+1
| dz1 0Zm+1
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dy,

dy>
dyY = . (7.100)

Ay,

dzy

dzp
dZ = ) (7.101)

dZm—H

Assuming that the constraints are originally satisfied at the vector X, (g(X) = 0), any
change in the vector dX must correspond to dg = 0 to maintain feasibility at X + dX.
Equation (7.95) can be solved to express dZ as

dZ = —[D]7'[CldY (7.102)

The change in the objective function due to the change in X is given by Eq. (7.94),
which can be expressed, using Eq. (7.102), as

df(X) = (Vy.f = V7 fIDI"'[CDdY (7.103)
or
df .
H(X) = Gg (7.104)
where
Gr=Vyf — (DI '[C)'Vzf (7.105)

is called the generalized reduced gradient. Geometrically, the reduced gradient
can be described as a projection of the original n-dimensional gradient onto the
(n — m)-dimensional feasible region described by the design variables.

We know that a necessary condition for the existence of a minimum of an uncon-
strained function is that the components of the gradient vanish. Similarly, a constrained
function assumes its minimum value when the appropriate components of the reduced
gradient are zero. This condition can be verified to be same as the Kuhn—Tucker con-
ditions to be satisfied at a relative minimum. In fact, the reduced gradient Gy can be
used to generate a search direction S to reduce the value of the constrained objective
function similar to the gradient V f that can be used to generate a search direction S
for an unconstrained function. A suitable step length X is to be chosen to minimize
the value of f along the search direction S. For any specific value of A, the dependent
variable vector Z is updated using Eq. (7.102). Noting that Eq. (7.102) is based on
using a linear approximation to the original nonlinear problem, we find that the con-
straints may not be exactly equal to zero at A, that is, dg # 0. Hence when Y is held



416 Nonlinear Programming III: Constrained Optimization Techniques
fixed, in order to have
g X)+dgiX)=0, i=1,2,....,m—+I (7.106)
we must have
g(X) +dgX) =0 (7.107)
Using Eq. (7.95) for dg in Eq. (7.107), we obtain
dZ = [D]"'(—g(X) — [C]dY) (7.108)
The value of dZ given by Eq. (7.108) is used to update the value of Z as
Zypase = Leurrent +dZ (7.109)

The constraints evaluated at the updated vector X, and the procedure [of finding dZ
using Eq. (7.108)] is repeated until dZ is sufficiently small. Note that Eq. (7.108) can
be considered as Newton’s method of solving simultaneous equations for dZ.

Algorithm
1. Specify the design and state variables. Start with an initial trial vector X. Identify
the design and state variables (Y and Z) for the problem using the following
guidelines.

(a) The state variables are to be selected to avoid singularity of the matrix, [D].

(b) Since the state variables are adjusted during the iterative process to maintain
feasibility, any component of X that is equal to its lower or upper bound
initially is to be designated a design variable.

(c) Since the slack variables appear as linear terms in the (originally inequality)
constraints, they should be designated as state variables. However, if the
initial value of any state variable is zero (its lower bound value), it should
be designated a design variable.

2. Compute the generalized reduced gradient. The GRG is determined using
Eq. (7.105). The derivatives involved in Eq. (7.105) can be evaluated
numerically, if necessary.

3. Test for convergence. If all the components of the GRG are close to zero, the
method can be considered to have converged and the current vector X can be
taken as the optimum solution of the problem. For this, the following test can
be used:

IIGrll < €

where ¢ is a small number. If this relation is not satisfied, we go to step 4.

4. Determine the search direction. The GRG can be used similar to a gra-
dient of an unconstrained objective function to generate a suitable search
direction, S. The techniques such as steepest descent, Fletcher—Reeves,
Davidon—Fletcher—Powell, or Broydon—Fletcher—Goldfarb—Shanno methods
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can be used for this purpose. For example, if a steepest descent method is
used, the vector S is determined as

S = —Gg (7.110)

. Find the minimum along the search direction. Although any of the one
-dimensional minimization procedures discussed in Chapter 5 can be used
to find a local minimum of f along the search direction S, the following
procedure can be used conveniently.

()

(b)

(©)

Find an estimate for A as the distance to the nearest side constraint. When
design variables are considered, we have

) _
Y (yl)old if 5; >0

r=1 Si (7.111)
Yi' = (¥i)old
N

ifSi <0

where s; is the ith component of S. Similarly, when state variables are
considered, we have, from Eq. (7.102),

dZ = —[D]"'[C]dY (7.112)

Using dY = AS, Eq. (7.112) gives the search direction for the variables
Z as

T =—[D]"'[C]S (7.113)
Thus @
Z; _I(Zi)old 150
! (7.114)
O
Z; (Zi)old i1 <0

I

where ¢; is the ith component of T.

The minimum value of A given by Eq. (7.111), A;, makes some design
variable attain its lower or upper bound. Similarly, the minimum value of
A given by Eq. (7.114), A,, will make some state variable attain its lower
or upper bound. The smaller of A; or A, can be used as an upper bound
on the value of A for initializing a suitable one-dimensional minimization
procedure. The quadratic interpolation method can be used conveniently for
finding the optimal step length A*.

Find the new vector Xew:

You +dY Youq + A*S
Xoon = = (7.115)
2oy +dZ Zog + 1T
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If the vector X,ew corresponding to A* is found infeasible, then Yy, is held
constant and Z,, is modified using Eq. (7.108) with dZ = Zpew — Zoig-
Finally, when convergence is achieved with Eq. (7.108), we find that

Youu + AY
Xpew = (7.116)
Zoy + AZ

and go to step 1.

Example 7.4
Minimize f(x1, X2, x3) = (x1 — x2)> 4+ (x2 — x3)*

subject to
aX) =x(14+x)+x5-3=0

-3<x; <3, i=1273

using the GRG method.

SOLUTION

Step 1: We choose arbitrarily the independent and dependent variables as

Y:{yl} = {xl}, 7 = {z1} = {x3}

» X2

Let the starting vector be
—-2.6
X = 2
2

with /(X)) = 21.16.
Step 2: Compute the GRG at X;. Noting that

of

— =2(x1 — x2)
3)61

af

= =2(x1 — x2) + 42 — x3)°
8x2

af

= —4(xs — x3)°
8)63

981 2

el g

3)61 + 2

g1

i 2

By = 2102

0

8)63



Step 3:

Step 4:

Step 5:
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we find, at X,
of
Vof = dxy _ 2(—2.6 —2) (=92
YV=Var [ T | -2(26-2+42-2° 7| 92
8x2 X,
3
Vzf = a—f = {—4(x2 —x3)’}x, =0
X3 Xl
[C] = [? &] =[5 —10.4]
X1 8)62 X,

X3

B
[D] = [ai‘} = [32]
X
D' =[g]. [DI"'[C]= 5[5 —10.4] =[0.15625 —0.325]
Gr=Vyf — DI [CII"V2f
_ =921 ] 0.15625 ©0) = -9.2
- 9.2 —0.325 - 9.2
Since the components of Gy are not zero, the point X; is not optimum, and

hence we go to step 4.
We use the steepest descent method and take the search direction as

9.2
S=-Gr= {—9.2}

We find the optimal step length along S.

(a) Considering the design variables, we use Eq. (7.111) to obtain For y; = x1:

3—(-2.6
A= # = 0.6087
9.2
For y, = x3:
-3-Q2
e 5@ sazs
-9.2

Thus the smaller value gives A; = 0.5435. Equation (7.113) gives

T = —(D]"'[C]S = —(0.15625 —0.325) :_gi} — _4.4275

and hence Eq. (7.114) leads to
-3-2
—4.4275

Forz; =x3: 2 = =1.1293

Thus A, = 1.1293.
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(b) The upper bound on A is given by the smaller of A; and X,, which is equal

(©)

to 0.5435. By expressing

_JY+2AS
X= {Z + AT}
we obtain
X1 —2.6 9.2 —2.6+9.2)1
X=3x¢ = 2 +A114-92 = 2—92A
X3 2 —4.4275 2 — 44275\
and hence

F) = fX) = (=2.6 +9.21 — 2+ 9.24)?
+ (2 =921 — 2+ 4.42752)*
= 518.78061* 4 338.561% — 169.281 + 21.16
df/dx =0 gives
2075.12254% + 677.121 — 169.28 = 0

from which we find the root as A* &~ 0.22. Since A* is less than the upper
bound value 0.5435, we use A*.

The new vector Xpew is given by

Youq+dY
Xnew -

2oy +dZ

—2.6 +0.22(9.2) —0.576
Yo + A*S

= = 24 0.22(—9.2) = —-0.024
Zog + 1T

2 4 0.22(—4.4275) 1.02595
with
2.024
dY = {_2.024} , dZ = {-0.97405}

Now, we need to check whether this vector is feasible. Since
21 Xpew) = (—0.576)[1 + (—0.024)2] + (1.02595)4 —3=-24684#£0

the vector X,y is infeasible. Hence we hold Y.y constant and modify
7.y, using Newton’s method [Eq. (7.108)] as

dZ = [D]"'[-g(X) — [C]dY]
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Since

[D] = [%} = [4x3] = [4(1.02595)*] = [4.319551]
<1

21(X) = {—2.4684)
[381 381}
[C]l=|—— | ={[2(=0.576 + 0.024)][—2(—0.576 + 0.024)
dy1 0y2
+4(—0.024 — 1.02595)3]}
— [—1.104 —3.5258]

dZ |:2.4684 — {—1.104 —3.5258}

= 4319551
2.024
X {_2_024}] — {—0.5633)
we have Znew = Zoa + dZ = {2 — 0.5633} = {1.4367}. The current Xpew
becomes
You+dY —0.576
Xpow = =1-0.024
Zoy +dZ 1.4367

The constraint becomes
g1 = (—0.576)(1—(—0.024)%) + (1.4367)* —3 = 0.6842 £ 0

Since this Xy is infeasible, we need to apply Newton’s method
[Eq. (7.108)] at the current X,y . In the present case, instead of repeating
Newton'’s iteration, we can find the value of Zey = {X3}new by satisfying
the constraint as

21 (X) = (—0.576)[1 + (—0.024)*] +x§ —3=0
or x3=(2.4237)"% = 1.2477

This gives
—0.576
Xpew = § —0.024 and
1.2477

FXnew) = (—0.576 + 0.024)% + (—0.024 — 1.2477)* = 2.9201

Next we go to step 1.

Step 1: We do not have to change the set of independent and dependent variables and
hence we go to the next step.



422  Nonlinear Programming III: Constrained Optimization Techniques

Step 2: 'We compute the GRG at the current X using Eq. (7.105). Since

af
oo Jom | _ 2(—0.576 + 0.024)
VI 08 [T 1-2(-0.576 4 0.024) + 4(—0.024 — 1.2477)°
8
_[—1.104
=1-7.1225
) )
Vr = V2LV IO a o024 — 124770 = (8.2265)
021 0x3
SR
(€] = | 281 2811 _ (1 4 (—0.024)%)  2(—0.576)(—0.024)]
_8X1 8)(2_
= [1.000576 0.027648]
98] _ uu3 31 _
[D] = | 570 | = (431 = [41.2477)°] = [7.7694]
L 0X3
[D]7'[C] = [1.000576 0.027648] = [0.128784 0.003558]

7.7694
Gr = Vyf —[[DI"'[CNN"Vzf

~1.104 0.128784 ~2.1634
- {—7.1225} - {0.003558} (8.2265) = {—7.1518}

Since Gg # 0, we need to proceed to the next step.

Note: It can be seen that the value of the objective function reduced from an initial
value of 21.16 to 2.9201 in one iteration.

7.10 SEQUENTIAL QUADRATIC PROGRAMMING

The sequential quadratic programming is one of the most recently developed and per-
haps one of the best methods of optimization. The method has a theoretical basis that
is related to (1) the solution of a set of nonlinear equations using Newton’s method,
and (2) the derivation of simultaneous nonlinear equations using Kuhn—Tucker con-
ditions to the Lagrangian of the constrained optimization problem. In this section we
present both the derivation of the equations and the solution procedure of the sequential
quadratic programming approach.

7.10.1 Derivation

Consider a nonlinear optimization problem with only equality constraints:

Find X which minimizes f(X)

subject to
hX)=0, k=1,2,...,p (7.117)
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The extension to include inequality constraints will be considered at a later stage. The
Lagrange function, L(X, A), corresponding to the problem of Eq. (7.117) is given by

p
L=f0+ ) ehe(X) (7.118)
k=1

where Aj is the Lagrange multiplier for the kth equality constraint. The Kuhn—Tucker
necessary conditions can be stated as

P
VL=0 or Vf+Y 4Vh=0 or Vf+[A]'A=0 (7.119)
k=1

hX)=0, k=1,2,...,p (7.120)
where [A] is an n X p matrix whose kth column denotes the gradient of the function
hi. Equations (7.119) and (7.120) represent a set of n 4+ p nonlinear equations in
n 4+ p unknowns (x;,i =1,...,n and A;,k=1,..., p). These nonlinear equations

can be solved using Newton’s method. For convenience, we rewrite Eqs. (7.119) and
(7.120) as

F(Y)=0 (7.121)

I .22
(n+p)x1 (n+p)x1 (n+p)x1

According to Newton’s method, the solution of Eqgs. (7.121) can be found iteratively
as (see Section 6.11)

where

Y1 =Y +AY, (7.123)
with
[VFI]AY; = —F(Y)) (7.124)

where Y; is the solution at the start of jth iteration and AY; is the change in Y;
necessary to generate the improved solution, Y1, and [VF]; = [VF(Y )] is the (n +
p) X (n + p) Jacobian matrix of the nonlinear equations whose ith column denotes the
gradient of the function F;(Y) with respect to the vector Y. By substituting Eqs. (7.121)
and (7.122) into Eq. (7.124), we obtain

|:[V2L] [H]i| :AX} {VL}
=— (7.125)

[H]T [0] ;AL h |
AX; =X —X; (7.126)

AN =X —A; (7.127)
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where [V2L],x, denotes the Hessian matrix of the Lagrange function. The first set of
equations in (7.125) can be written separately as

[V2L];AX; + [H];ALj = —VL; (7.128)
Using Eq. (7.127) for AX; and Eq. (7.119) for VL;, Eq. (7.128) can be expressed as
[VZL]jAXj—I-[H]j(XH] —X,-):—ij—[H]JT.xj (7.129)

which can be simplified to obtain
[V2L];AX; + [H)jAj1 = =V f; (7.130)

Equation (7.130) and the second set of equations in (7.125) can now be combined as

[VZL] [H]]| [AX; Vi
T =— (7.131)

[HI" (O] |; [Aj+1 h;
Equations (7.131) can be solved to find the change in the design vector AX; and
the new values of the Lagrange multipliers, A ;1. The iterative process indicated by

Eq. (7.131) can be continued until convergence is achieved.
Now consider the following quadratic programming problem:

Find AX that minimizes the quadratic objective function
0 = VfTAX + 1AXT[V2L]AX
subject to the linear equality constraints (7.132)

hy + VR{AX =0, k=1,2,....,p or h+[H]'"AX=0

The lagrange function, L, corresponding to the problem of Eq. (7.132) is given by

~ )4
L=VfIAX+ 1AXT[VZLIAX + Y (i + VAT AX) (7.133)
k=1

where Aj is the Lagrange multiplier associated with the kth equality constraint.
The Kuhn—Tucker necessary conditions can be stated as

Vf+[VILIAX + [HIA =0 (7.134)
hy +VhIAX =0, k=1,2,...,p (7.135)

Equations (7.134) and (7.135) can be identified to be same as Eq. (7.131) in matrix
form. This shows that the original problem of Eq. (7.117) can be solved iteratively
by solving the quadratic programming problem defined by Eq. (7.132). In fact, when
inequality constraints are added to the original problem, the quadratic programming
problem of Eq. (7.132) becomes

Find X which minimizes Q = V fTAX + 1 AXT[V2L]AX
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subject to
gi+VgiAX <0, j=12....m

hy +VRIAX =0, k=1,2,...,p (7.136)

with the Lagrange function given by

m p
L=fX+ 2giX) + Y dnpahi(X) (7.137)
j=1 k=1

Since the minimum of the augmented Lagrange function is involved, the sequential
quadratic programming method is also known as the projected Lagrangian method .

7.10.2 Solution Procedure

As in the case of Newton’s method of unconstrained minimization, the solution vector
AX in Eq. (7.136) is treated as the search direction, S, and the quadratic programming
subproblem (in terms of the design vector S) is restated as:

Find S which minimizes Q(S) = V £(X)'S + 1ST[H]S

subject to
BigiX)+Vg;,X)'S<0, j=12,....,m

BhiX) + Vhe(X)TS=0, k=1,2,....p (7.138)

where [H] is a positive definite matrix that is taken initially as the identity matrix
and is updated in subsequent iterations so as to converge to the Hessian matrix of the
Lagrange function of Eq. (7.137), and B; and B are constants used to ensure that the
linearized constraints do not cut off the feasible space completely. Typical values of
these constants are given by

R P 370 s X
B~09; B;= B i g% 20 (7.139)

The subproblem of Eq. (7.138) is a quadratic programming problem and hence the
method described in Section 4.8 can be used for its solution. Alternatively, the problem
can be solved by any of the methods described in this chapter since the gradients of the
function involved can be evaluated easily. Since the Lagrange multipliers associated
with the solution of the problem, Eq. (7.138), are needed, they can be evaluated using
Eq. (7.263). Once the search direction, S, is found by solving the problem in Eq. (7.138),
the design vector is updated as

Xj+1 =Xj + o*S (7.140)

where o* is the optimal step length along the direction S found by minimizing the
function (using an exterior penalty function approach):

m P
¢ =FO0+ Y Ajmax[0, g;ON + D huslhr (X)) (7.141)

j=1 k=1
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with
Ail, 7=1,2,...,m+ p in first iteration
;= %l . TP ol (7.142)
max{|2;|, 5(A;, [A;])}in subsequent iterations

and X; = A of the previous iteration. The one-dimensional step length «* can be found
by any of the methods discussed in Chapter 5.

Once X is found from Eq. (7.140), for the next iteration the Hessian matrix [H |
is updated to improve the quadratic approximation in Eq. (7.138). Usually, a modified
BFGS formula, given below, is used for this purpose [7.12]:

[H P PT[H;]  yy”

[Hi+1] =[H] — PT(H, P, PTP, (7.143)

Pi=Xi11 —X; (7.144)

y =0Q; + (1 —0)[H;]P; (7.145)

Qi = Vi LXis1, hig1) — Vi L(Xi, 1) (7.146)
1.0 if PTQ; > 0.2PT[H;1P;

where L is given by Eq. (7.137) and the constants 0.2 and 0.8 in Eq. (7.147) can be
changed, based on numerical experience.

Example 7.5 Find the solution of the problem (see Problem 1.31):

Minimize f(X) = 0.1x; + 0.05773x, (E))
subject to
a0 =7+ 2% 01 <0 (E2)
&X)=6—x; <0 (E3)
$X)=7—-x,<0 (E4)

using the sequential quadratic programming technique.

SOLUTION Let the starting point be X; = (11.8765, 7.0)T with g;(X;) = g3(X;) =
0, g2(X}) = —5.8765, and f(X;) = 1.5917. The gradients of the objective and con-
straint functions at X, are given by

—0.6
2
0.1 X —0.004254
VS (X1)={0.05773}’ VaXn =914 Z:—0.007069}
x22 X,
—1 0
VeX) =1 g1 V&X)=4y_,
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We assume the matrix [H]] to be the identity matrix and hence the objective function
of Eq. (7.138) becomes

Q(S) = 0.1s; +0.05773s; + 0.557 + 0.5s3 (Es)

Equation (7.139) gives 1 = 3 = 0 since g = g3 = 0 and B, = 1.0 since g» < 0, and
hence the constraints of Eq. (7.138) can be expressed as

1 = —0.004254s; — 0.007069s, < 0 (Eg)
G = —5.8765—s5; <0 (E7)
g3=—-5=<0 (Esg)

We solve this quadratic programming problem [Eqgs. (Es) to (Eg)] directly with the use
of the Kuhn—Tucker conditions. The Kuhn—Tucker conditions are given by

2—f+;x,,-aa;§f 0 (Es)

Q—}—i:}»-a;éj =0 (E10)

052 i T 95,

1jg;=0, j=12.3 (E1)
g; <0, j=1273 (E12)
A, >0, j=12.3 (E13)

Equations (Eg) and (Ejp) can be expressed, in this case, as
0.1 +s1 —0.0042541; — Ay =0 (E1a)
0.05773 4+ s, — 0.0070691; — A3 =0 (E15)

By considering all possibilities of active constraints, we find that the optimum solution
of the quadratic programming problem [Eqgs. (Es) to (Eg)] is given by

sp=—0.04791, 3 =0.02883, A} =12.2450, A;=0, A3;=0
The new design vector, X, can be expressed as

X=X, +aS = {11.8765 — 0.04791a}

7.0 4+ 0.02883«
where « can be found by minimizing the function ¢ in Eq. (7.141):

¢ =0.1(11.8765 — 0.04791«) + 0.05773(7.0 + 0.02883«)
0.6 0.3464 1)

+12.2450 + -
11.8765 — 0.04791c 7.0 + 0.02883«
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By using quadratic interpolation technique (unrestricted search method can also be used
for simplicity), we find that ¢ attains its minimum value of 1.48 at «* = 64.93, which
corresponds to the new design vector

8.7657
X = :8.8719}

with f(X;) = 1.38874 and g;(X;) = +0.0074932 (violated slightly). Next we update
the matrix [H] using Eq. (7.143) with

- 0.6 0.3464
L = 0.1x; + 0.05773x, + 12.2450 (— + — 0.1)

X1 X2
aL
- aL 7.3470
v.i=120 i 2L oo .
oL 0x1 X
3)62
aL 4.2417
and — = 0.05773 — 5
3XQ X5
—3.1108
Pi=X-X= : 1.8719}
- - 0.00438 0.04791 —0.04353
Q= ViLXo) = VxL K1) = {0.00384} - {—0.02883} - { 0.03267}

P{[H]P; = 13.1811, P[Q; =0.19656
This indicates that P]Q; < 0.2P][H,]P;, and hence 6 is computed using Eq. (7.147) as

(0.8)(13.1811)

= = 0.81211
13.1811 — 0.19656

0.54914

Hence
0.2887 0.4283]

[H2] = [0.4283 0.7422

We can now start another iteration by defining a new quadratic programming problem
using Eq. (7.138) and continue the procedure until the optimum solution is found.
Note that the objective function reduced from a value of 1.5917 to 1.38874 in one
iteration when X changed from X; to Xj.

Indirect Methods

7.11 TRANSFORMATION TECHNIQUES

If the constraints g;(X) are explicit functions of the variables x; and have certain simple
forms, it may be possible to make a transformation of the independent variables such
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that the constraints are satisfied automatically [7.13]. Thus it may be possible to convert
a constrained optimization problem into an unconstrained one by making a change of
variables. Some typical transformations are indicated below:

1. If lower and upper bounds on x; are specified as
li <xi <u (7.148)
these can be satisfied by transforming the variable x; as
xi =1 + (uj — 1;)sin®y; (7.149)

where y; is the new variable, which can take any value.
2. If a variable x; is restricted to lie in the interval (0, 1), we can use the transfor-
mation:
x; = sin’ Vi, X = cos’ Vi
e y?

Xpi=——— Oor Xx;= (7.150)
evt 4 et 1+ yi2

3. If the variable x; is constrained to take only positive values, the transformation
can be

x; = abs(y;), x; = )’52 or x;=ée" (7.151)

4. If the variable is restricted to take values lying only in between —1 and 1, the
transformation can be
2yi
1+ y,-2

X; =siny;, x; =cosy;, Or Xx;= (7.152)

Note the following aspects of transformation techniques:

1. The constraints g;(X) have to be very simple functions of x;.

2. For certain constraints it may not be possible to find the necessary transfor-
mation.

3. If it is not possible to eliminate all the constraints by making a change of
variables, it may be better not to use the transformation at all. The partial
transformation may sometimes produce a distorted objective function which
might be more difficult to minimize than the original function.

To illustrate the method of transformation of variables, we consider the following
problem.

Example 7.6 Find the dimensions of a rectangular prism-type box that has the largest
volume when the sum of its length, width, and height is limited to a maximum value
of 60in. and its length is restricted to a maximum value of 36in.

SOLUTION Let x;, xp, and x3 denote the length, width, and height of the box,
respectively. The problem can be stated as follows:

Maximize f(xy, X3, X3) = X1X2X3 (Ep)
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subject to
X1+ x2+x3 <60 (E2)
x; =306 (E3)
x>0, =123 (E4)

By introducing new variables as
YI=X1, y2=X2, y3=x;+x2+x3 (Es)

or
X1 =Yy, Xo=DY, X3=Yy3—Y—WN (Ee)

the constraints of Egs. (E;) to (E4) can be restated as
0<y1 =36, 0=<y <60, 0<y;=<60 (E7)

where the upper bound, for example, on y, is obtained by setting x; = x3 =0 in
Eq. (E»). The constraints of Eq. (E7) will be satisfied automatically if we define new
variables z;, i = 1,2, 3, as

yi =36sin’z;, yy =60sin’zy, y3 = 60sin’ z3 (Eg)
Thus the problem can be stated as an unconstrained problem as follows:

Maximize f(z1, 22, 23)
=123 = y1 — »2) (o)

= 2160 sin’ z; sin” z2(60 sin” z3 — 36 sin> z; — 60 sin’ 25)

The necessary conditions of optimality yield the relations

a

B_f = 259,200 sin z; cos z sin” z»(sin® z3 — g sin®z; —sin®z2) = 0 (Eq10)
Z1

a

B_f = 518,400 sin2Z1 sin z; COS Zg(% sin® 73 — 13—0 sinzzl — sin® 22) =0 Eqr)
22

af . .2 ) . .

PP 259,200 sin” z; sin” z, sinzz coszz3 = 0 (E12)
3

Equation (E;) gives the nontrivial solution as cos z3 =0 or sin’ z3 = 1. Hence
Egs. (Ejo) and (E;;) yield sin’z; = g and sin® zp = % Thus the optimum solution is
given by x{ = 20 in., x5 = 20 in., x5 = 20 in., and the maximum volume = 8000 in®.

7.12 BASIC APPROACH OF THE PENALTY FUNCTION METHOD

Penalty function methods transform the basic optimization problem into alternative
formulations such that numerical solutions are sought by solving a sequence of
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unconstrained minimization problems. Let the basic optimization problem, with
inequality constraints, be of the form:

Find X which minimizes f(X)
subject to
g;iX) <0, j=12,....m (7.153)

This problem is converted into an unconstrained minimization problem by constructing
a function of the form

¢ =¢X.r) = fX) +7 Y Gilgj(X)] (7.154)

j=1

where G is some function of the constraint g;, and ry is a positive constant known
as the penalty parameter. The significance of the second term on the right side of
Eq. (7.154), called the penalty term, will be seen in Sections 7.13 and 7.15. If the
unconstrained minimization of the ¢ function is repeated for a sequence of values of
the penalty parameter ri(k = 1,2, ...), the solution may be brought to converge to
that of the original problem stated in Eq. (7.153). This is the reason why the penalty
function methods are also known as sequential unconstrained minimization techniques
(SUMTs).

The penalty function formulations for inequality constrained problems can be
divided into two categories: interior and exterior methods. In the interior formulations,
some popularly used forms of G; are given by

1
G =— 7.155
=T X (7.153)

G =log[—g;(X)] (7.156)

Some commonly used forms of the function G in the case of exterior penalty function
formulations are

G; = max[0, g;(X)] (7.157)
G; = {max[0, g;(X)1}? (7.158)

In the interior methods, the unconstrained minima of ¢ all lie in the feasible region
and converge to the solution of Eq. (7.153) as r; is varied in a particular manner. In
the exterior methods, the unconstrained minima of ¢ all lie in the infeasible region
and converge to the desired solution from the outside as ry is changed in a specified
manner. The convergence of the unconstrained minima of ¢y is illustrated in Fig. 7.10
for the simple problem

Find X = {x;} which minimizes f(X) = ax,
subject to (7.159)
g1 X)=B8-x1=<0
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o, f ¢ f
A
T < Tk 41
Tk > T+ 1
¢(r3) g
¥
¢(r2) /(X) = ax)
/
. A
o(ry) x & ~ Optimum X*
$2 Optimum X* \
1
— x
0 X] = ﬂ ! 0 xX) = /j i
G; (g} = (max [0,g,(X)1}2 G; {g;(X)} = ~1/g;(X)
(a) (b)

Figure 7.10 Penalty function methods: (a) exterior method; (b) interior method.

It can be seen from Fig. 7.10a that the unconstrained minima of ¢ (X, r;) converge
to the optimum point X* as the parameter ry is increased sequentially. On the other
hand, the interior method shown in Fig. 7.10b gives convergence as the parameter ry
is decreased sequentially.

There are several reasons for the appeal of the penalty function formulations. One
main reason, which can be observed from Fig. 7.10, is that the sequential nature of
the method allows a gradual or sequential approach to criticality of the constraints. In
addition, the sequential process permits a graded approximation to be used in analysis
of the system. This means that if the evaluation of f and g; [and hence ¢ (X, ry)]
for any specified design vector X is computationally very difficult, we can use coarse
approximations during the early stages of optimization (when the unconstrained minima
of ¢ are far away from the optimum) and finer or more detailed analysis approximation
during the final stages of optimization. Another reason is that the algorithms for the
unconstrained minimization of rather arbitrary functions are well studied and generally
are quite reliable. The algorithms of the interior and the exterior penalty function
methods are given in Sections 7.13 and 7.15.

7.13 INTERIOR PENALTY FUNCTION METHOD

As indicated in Section 7.12, in the interior penalty function methods, a new function
(¢ function) is constructed by augmenting a penalty term to the objective function. The
penalty term is chosen such that its value will be small at points away from the con-
straint boundaries and will tend to infinity as the constraint boundaries are approached.
Hence the value of the ¢ function also “blows up” as the constraint boundaries are
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approached. This behavior can also be seen from Fig. 7.10b. Thus once the uncon-
strained minimization of ¢ (X, ry) is started from any feasible point X, the subsequent
points generated will always lie within the feasible domain since the constraint bound-
aries act as barriers during the minimization process. This is why the interior penalty
function methods are also known as barrier methods. The ¢ function defined originally
by Carroll [7.14] is

1
g;X)

X, ) = fX)—ri Y

j=

m
(7.160)
1
It can be seen that the value of the function ¢ will always be greater than f since g;(X)
is negative for all feasible points X. If any constraint g;(X) is satisfied critically (with
equality sign), the value of ¢ tends to infinity. It is to be noted that the penalty term in
Eq. (7.160) is not defined if X is infeasible. This introduces serious shortcoming while
using the Eq. (7.160). Since this equation does not allow any constraint to be violated,
it requires a feasible starting point for the search toward the optimum point. However,
in many engineering problems, it may not be very difficult to find a point satisfying
all the constraints, g;(X) < 0, at the expense of large values of the objective function,
S (X). If there is any difficulty in finding a feasible starting point, the method described
in the latter part of this section can be used to find a feasible point. Since the initial
point as well as each of the subsequent points generated in this method lies inside the
acceptable region of the design space, the method is classified as an interior penalty
function formulation. Since the constraint boundaries act as barriers, the method is also
known as a barrier method. The iteration procedure of this method can be summarized
as follows.

Iterative Process
1. Start with an initial feasible point X satisfying all the constraints with strict
inequality sign, that is, g;(X;) < O for j =1,2,...,m, and an initial value of
ry>0. Set k = 1.

2. Minimize ¢ (X, ry) by using any of the unconstrained minimization methods
and obtain the solution X}.

3. Test whether X} is the optimum solution of the original problem. If X7 is found
to be optimum, terminate the process. Otherwise, go to the next step.

4. Find the value of the next penalty parameter, r;, as
Tkl = Crg

where ¢ < 1.
5. Set the new value of k = k + 1, take the new starting point as X; = X}, and
go to step 2.

Although the algorithm is straightforward, there are a number of points to be considered
in implementing the method:

1. The starting feasible point X| may not be readily available in some cases.

2. A suitable value of the initial penalty parameter (r;) has to be found.

3. A proper value has to be selected for the multiplication factor, c.
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4. Suitable convergence criteria have to be chosen to identify the optimum point.

5. The constraints have to be normalized so that each one of them vary between
—1 and O only.

All these aspects are discussed in the following paragraphs.

Starting Feasible Point X;.  In most engineering problems, it will not be very difficult
to find an initial point X satisfying all the constraints, g;(X;) < 0. As an example,
consider the problem of minimum weight design of a beam whose deflection under a
given loading condition has to remain less than or equal to a specified value. In this
case one can always choose the cross section of the beam to be very large initially so
that the constraint remains satisfied. The only problem is that the weight of the beam
(objective) corresponding to this initial design will be very large. Thus in most of the
practical problems, we will be able to find a feasible starting point at the expense of a
large value of the objective function. However, there may be some situations where the
feasible design points could not be found so easily. In such cases, the required feasible
starting points can be found by using the interior penalty function method itself as
follows:

1. Choose an arbitrary point X; and evaluate the constraints g;(X) at the point
X. Since the point X is arbitrary, it may not satisfy all the constraints with
strict inequality sign. If  out of a total of m constraints are violated, renumber
the constraints such that the last » constraints will become the violated ones,
that is,

gj(X1)<0, j=12,....m—r
giX) >0, j=m—-r+1lm—r+2,....m (7.161)

2. Identify the constraint that is violated most at the point X, that is, find the
integer k such that

gr(X1) = max([g;(Xy)]
forj=m—r+1lm—r+2,...,m (7.162)
3. Now formulate a new optimization problem as
Find X which minimizes g;(X)
subject to
giX) <0, j=12,....m~—r
giX)—gX)) <0, j=m—-—r+lm—-r+2,...,

k—1,k+1,....,m (7.163)

4. Solve the optimization problem formulated in step 3 by taking the point X; as
a feasible starting point using the interior penalty function method. Note that
this optimization method can be terminated whenever the value of the objective
function g (X) drops below zero. Thus the solution obtained X, will satisfy at
least one more constraint than did the original point Xj.
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5. If all the constraints are not satisfied at the point X, set the new starting point
as X; = Xy, and renumber the constraints such that the last r constraints will
be the unsatisfied ones (this value of » will be different from the previous value),
and go to step 2.

This procedure is repeated until all the constraints are satisfied and a point X; =
Xy is obtained for which g;(Xy) <0, j =1,2,...,m.

If the constraints are consistent, it should be possible to obtain, by applying the
procedure, a point X that satisfies all the constraints. However, there may exist situa-
tions in which the solution of the problem formulated in step 3 gives the unconstrained
or constrained local minimum of gz (X) that is positive. In such cases one has to start
afresh with a new point X; from step 1 onward.

Initial Value of the Penalty Parameter (r;). Since the unconstrained minimization
of ¢ (X, ry) is to be carried out for a decreasing sequence of ry, it might appear that by
choosing a very small value of r|, we can avoid an excessive number of minimizations
of the function ¢. But from a computational point of view, it will be easier to minimize
the unconstrained function ¢ (X, ry) if r¢ is large. This can be seen qualitatively from
Fig. 7.10b. As the value of r; becomes smaller, the value of the function ¢ changes
more rapidly in the vicinity of the minimum ¢;. Since it is easier to find the minimum of
a function whose graph is smoother, the unconstrained minimization of ¢ will be easier
if ry is large. However, the minimum of ¢, X}, will be farther away from the desired
minimum X* if r; is large. Thus it requires an excessive number of unconstrained
minimizations of ¢ (X, ry) (for several values of r;) to reach the point X* if r; is
selected to be very large. Thus a moderate value has to be choosen for the initial
penalty parameter (r1). In practice, a value of r that gives the value of ¢ (X, )
approximately equal to 1.1 to 2.0 times the value of f(X;) has been found to be quite
satisfactory in achieving quick convergence of the process. Thus for any initial feasible
starting point X, the value of r| can be taken as

J X
=20 1/g;(Xy)

r1~0.1t 1.0 (7.164)

Subsequent Values of the Penalty Parameter.  Once the initial value of r; is chosen,
the subsequent values of ;4 have to be chosen such that

Fe+1 < Tk (7.165)
For convenience, the values of r; are chosen according to the relation

Fk+1 = Crg (7166)
where ¢ < 1. The value of ¢ can be taken as 0.1, 0.2, or 0.5.
Convergence Criteria.  Since the unconstrained minimization of ¢ (X, r;) has to be
carried out for a decreasing sequence of values ry, it is necessary to use proper con-
vergence criteria to identify the optimum point and to avoid an unnecessarily large

number of unconstrained minimizations. The process can be terminated whenever the
following conditions are satisfied.
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1. The relative difference between the values of the objective function obtained
at the end of any two consecutive unconstrained minimizations falls below a
small number &, that is,

fXD - fXeD| _
F&X) B

2. The difference between the optimum points X and X} _, becomes very small.
This can be judged in several ways. Some of them are given below:

&1 (7.167)

[(AX);| < &2 (7.168)

where AX = Xj — X7_,, and (AX); is the ith component of the vector AX.
max |[(AX);] < &3 (7.169)
|AX] = [(AX)T + (AX)3 + -+ -+ (AX)2]Y? < gy (7.170)

Note that the values of ] to &4 have to be chosen depending on the character-
istics of the problem at hand.

Normalization of Constraints. A structural optimization problem, for example, might
be having constraints on the deflection (§) and the stress (o) as

gl(X) =6(X) — Omax <0 (7.171)
22X) =0 (X) — Omax <0 (7.172)

where the maximum allowable values are given by p.x = 0.5in. and o =
20,000 psi. If a design vector X, gives the values of g; and g, as —0.2 and —10,000,
the contribution of g; will be much larger than that of g, (by an order of 10%)
in the formulation of the ¢ function given by Eq. (7.160). This will badly affect
the convergence rate during the minimization of ¢ function. Thus it is advisable to
normalize the constraints so that they vary between —1 and O as far as possible. For
the constraints shown in Eqs. (7.171) and (7.172), the normalization can be done as

X)  §(X

gl(X) = g{;( ) _ 5( ) _1<0 (7.173)
X X

g = 2P X (7.174)
Omax Omax

If the constraints are not normalized as shown in Egs. (7.173) and (7.174), the problem
can still be solved effectively by defining different penalty parameters for different
constraints as

¢X,rp) = f(X) — kZ (7.175)

gj (X)

where Ry, Ry, ..., R, are selected such that the contributions of different g;(X) to the
¢ function will be approximately the same at the initial point X;. When the uncon-
strained minimization of ¢ (X, ry) is carried for a decreasing sequence of values of
r, the values of Ry, R,, ..., R,, will not be altered; however, they are expected to be
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effective in reducing the disparities between the contributions of the various constraints
to the ¢ function.

Example 7.7
Minimize f(x;,x2) = $(x; + D>+ x;

subject to
gi(x1,x) =—x1+1<0

g(x1,x2) =—x, <0

SOLUTION To illustrate the interior penalty function method, we use the calculus
method for solving the unconstrained minimization problem in this case. Hence there
is no need to have an initial feasible point X;. The ¢ function is

pX.r) = 20+ P+ S
,r) = —(x Xp—r|———— —
3 ! 2 —x1 +1 X2

To find the unconstrained minimum of ¢, we use the necessary conditions:
¢ 2 r . 2 2
8—x1=(X1+1) —mzo, thatlS, ()Cl—l) =r
B
9 1oL 20 thatis, B=r
8x2 x2

These equations give
) ="+ DV ) =

Dmin(r) = _%[(rl/2 + DY2 413 42012

1
C/n=0/PPH 1
To obtain the solution of the original problem, we know that

Smin = M @pin (r)
r—0
x{ = lim x{(r)
r—0
x5 = lim x3(r)
r—0
The values of f, x{, and x} corresponding to a decreasing sequence of values of r are
shown in Table 7.3.
Example 7.8
Minimize f(X) = x} — 6x? 4 11x; 4 x3

subject to
2, .2 2
X +x3;—x5<0

2 2 2
4—xi—x3—x3 <0
x3—5<0

—x; <0, i=1,23
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Table 7.3 Results for Example 7.7

Value of r xf(r) = @2+ 1l x3(ry=r'? Grmin (1) f )
1000 5.71164 31.62278 376.2636 132.4003
100 3.31662 10.00000 89.9772 36.8109
10 2.04017 3.16228 25.3048 12.5286
1 1.41421 1.00000 9.1046 5.6904
0.1 1.14727 0.31623 4.6117 3.6164
0.01 1.04881 0.10000 3.2716 2.9667
0.001 1.01569 0.03162 2.8569 2.7615
0.0001 1.00499 0.01000 2.7267 2.6967
0.00001 1.00158 0.00316 2.6856 2.6762
0.000001 1.00050 0.00100 2.6727 2.6697

Exact solution 0 1 0 8/3 8/3

SOLUTION  The interior penalty function method, coupled with the Davidon—Fletcher
—Powell method of unconstrained minimization and cubic interpolation method of
one-dimensional search, is used to solve this problem. The necessary data are assumed
as follows:

0.1
Starting feasible point, X; = { 0.1
3.0

rr=1.0, f(X;)=4.041, ¢Xy,r)=25.1849
The optimum solution of this problem is known to be [7.15]

0
X={v2}., =2
NG

The results of numerical optimization are summarized in Table 7.4.

Convergence Proof. The following theorem proves the convergence of the interior
penalty function method.

Theorem 7.1 If the function

m 1
$X,r) = fX) —ri )y (7.176)
j=1

— £;(X)

is minimized for a decreasing sequence of values of ry, the unconstrained minima X}
converge to the optimal solution of the constrained problem stated in Eq. (7.153) as
ri, — 0.



7.13 Interior Penalty Function Method 439

Table 7.4 Results for Example 7.8

Number of
iterations taken
for minimizing

Starting point
for minimizing

k  Value of ry bk Ok Optimum X} o e
0.1 70.37898]
1 1.0 x 10° 0.1 9 1.67965 10.36219 5.70766
3.0 | 2.34617 |
[[0.37898] 70.10088]
2 1.0 x 107! 1.67965 7 1.41945 4.12440 2.73267
| 2.34617 | | 1.68302 |
[70.10088] 70.03066 ]
3 1.0 x 1072 1.41945 5 1.41411 225437 1.83012
| 1.68302 | | 1.49842 |
70.03066] 70.009576 ]
4 10 x 1073 1.41411 3 1.41419 1.67805 1.54560
| 1.49842 | | 1.44081 |
70.009576 ] 70.003020]
5 1.0x107* 1.41419 7 1.41421 1.49745 1.45579
| 1.44081 | | 142263 |
70.003020] [70.0009530]
6 10x107° 1.41421 3 1.41421 1.44052 1.42735
| 1.42263 | | 1.41687 |
70.00095307] [70.0003013]
7 1.0 x 107° 1.41421 3 1.41421 1.42253  1.41837
| 1.41687 | | 1.41505
70.00030137] 70.000095357]
8 1.0 x 1077 1.41421 3 1.41421 1.41684 1.41553
| 1.41505 | | 1.41448 |
[70.00009535] [70.00003019]
9 10x 108 1.41421 5 1.41421 141505 1.41463
| 1.41448 | | 141430 |
70.00003019] 0.000009567
10 1.0 x 107° 1.41421 4 1.41421 1.41448 1.41435
| 1.41430 1.41424
70.000009567 ] 0.00003011
11 1.0 x 10719 [ 1.41421 3 1.41421 1.41430 1.41426
| 141424 | 1.41422
[0.000003011] [0.9562 x 10767
12 1.0 x 1071 1.41421 3 1.41421 141424 1.41423
| 141422 | 141422 |
0.9562 x 10~° 70.3248 x 1077
13 1.0x 10712 1.41421 4 1.41421 141422 1.41422
1.41422 141421 |
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Proof : If X* is the optimum solution of the constrained problem, we have to prove
that

r}ciglo[minfﬁ(X, ol =¢Xg, ) = f(XY) (7.177)

Since f(X) is continous and f(X*) < f(X) for all feasible points X, we can choose
feasible point X such that

fX) < f(X*) + % (7.178)

for any value of ¢ > (0. Next select a suitable value of k, say K, such that

€ . 1
= {%/m}n [_gj(X)]} .

From the definition of the ¢ function, we have

FX*) <ming (X, rp) = ¢ (X}, re) (7.180)

where X} is the unconstrained minimum of ¢ (X, r). Further,
¢ (X5, ) < ¢ Xk, i) (7.181)

since X; minimizes ¢ (X, r;) and any X other than X} leads to a value of ¢ greater
than or equal to gb(XZ, r¢). Further, by choosing r; < rx, we obtain

¢ Xk, rx) = f(Xy) —rk Z

;(X
>fX%) —r i !
— e -
K =1 8 (XK)
> (X}, k) (7.182)
as Xj is the unconstrained minimum of ¢ (X, r¢). Thus
FX*) <oXg, ) < ¢X, 1) < (X, k) (7.183)
But
¢ (Xy.rx) < pX.rx) = f(X) —rg Z (X) (7.184)
8j
Combining the inequalities (7.183) and (7.184), we have
FX? <opXi ) < f(X) (X) (7.185)
Inequality (7.179) gives
r Z £ (7.186)
—rg z )
18 (X) =2
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By using inequalities (7.178) and (7.186), inequality (7.185) becomes
e €
XN <oXim) < fXH)+ §+ 5= fX) +e

or
dXp, ) — fXH) <e (7.187)

Given any ¢ > 0 (however small it may be), it is possible to choose a value of k so as
to satisfy the inequality (7.187). Hence as k — oco(ry — 0), we have

lim ¢ (X}, ro) = f(X*)
rg—0
This completes the proof of the theorem.

Additional Results. From the proof above, it follows that as ry — 0,

klim FXp) = f(X (7.188)
—00
SN
li — =0 7.189
Koo'k Zg,(X) (7.189)
It can also be shown that if r, o, . . . is a strictly decreasing sequence of positive values,
the sequence f(X}), f(X3), ... will also be strictly decreasing. For this, consider two

consecutive parameters, say, r; and ry41, with
0< Fr+1 < Tk (7.190)

Then we have

< FXD) = res Z (7.191)

1
f(Xk+1) rk+1Z j(X j(X)

+1)

since Xy | alone minimizes ¢ (X, r11). Similarly,

i SN | 1
FXp) —re ,Z X < FXp) — rkzg](x » (7.192)

Divide Eq. (7.191) by ri41, Eq. (7.192) by rt, and add the resulting inequalities to
obtain

1 “ 1 S|
Tk+1 f( k+l) j(X +1) + f( k) j(X )

m m 1

| 1 1
— (X — + — (X — _ 7.193
<rk+1 X0 ]z:; giXy) F &) ; g (Xi, ) ( )
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Canceling the common terms from both sides, we can write the inequality (7.193) as

" 1 1 N 1 1
X | — =) <fX) | — —— (7.194)
Tk+1 Tk Tk+1 Ik
since
| | —
Tk+1 Tk TkTk+1
we obtain
FX) < fFXPD) (7.196)

7.14 CONVEX PROGRAMMING PROBLEM

In Section 7.13 we saw that the sequential minimization of

m

$X, ) = fX)—ri Y

j=l1

. ;>0 (7.197)
g;X) ‘

for a decreasing sequence of values of r; gives the minima X}. As k — oo, these points
X7 converge to the minimum of the constrained problem:

Minimize f(X)
subject to (7.198)
giX)<0, j=12,....m

To ensure the existence of a global minimum of ¢ (X, r;) for every positive value
of ry, ¢ has to be strictly convex function of X. The following theorem gives the
sufficient conditions for the ¢ function to be strictly convex. If ¢ is convex, for every
ry > 0 there exists a unique minimum of ¢ (X, ry).

Theorem 7.2 If f(X) and g;(X) are convex and at least one of f(X) and g;(X) is
strictly convex, the function ¢ (X, r¢) defined by Eq. (7.197) will be a strictly convex
function of X.

Proof : This theorem can be proved in two steps. In the first step we prove that if a
function g;(X) is convex, 1/g;(X) will be concave. In the second step, we prove that
a positive combination of convex functions is convex, and strictly convex if at least
one of the functions is strictly convex.

Thus Theorem A.3 of Appendix A guarantees that the sequential minimization of
¢ (X, r) for a decreasing sequence of values of r; leads to the global minimum of the
original constrained problem. When the convexity conditions are not satisfied, or when
the functions are so complex that we do not know beforehand whether the convexity
conditions are satisfied, it will not be possible to prove that the minimum found by the
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SUMT method is a global one. In such cases one has to satisfy with a local minimum
only. However, one can always reapply the SUMT method from different feasible
starting points and try to find a better local minimum point if the problem has several
local minima. Of course, this procedure requires more computational effort.

7.15 EXTERIOR PENALTY FUNCTION METHOD

In the exterior penalty function method, the ¢ function is generally taken as

X, re) = FX) + 7 Y (g; (X)) (7.199)

j=1

where ry is a positive penalty parameter, the exponent ¢ is a nonnegative constant, and
the bracket function (g;(X)) is defined as

(8 (X)) = max(g;(X), 0)

_ . (constraint is violated) (7.200)
0 if g;(X) <0

(constraint is satisfied)

It can be seen from Eq. (7.199) that the effect of the second term on the right side is to
increase ¢ (X, ry) in proportion to the gth power of the amount by which the constraints
are violated. Thus there will be a penalty for violating the constraints, and the amount of
penalty will increase at a faster rate than will the amount of violation of a constraint (for
g > 1). This is the reason why the formulation is called the penalty function method.
Usually, the function ¢ (X, r) possesses a minimum as a function of X in the infeasible
region. The unconstrained minima X} converge to the optimal solution of the original
problem as k — oo and r;y — oc. Thus the unconstrained minima approach the feasible
domain gradually, and as k — oo, the X} eventually lies in the feasible region. Let us
consider Eq. (7.199) for various values of g.

1. ¢ = 0. Here the ¢ function is given by

pX.r) = fFX)+r Y (g;(X))°

j=1
FX)+mr if all g;(X)>0

_ (7.201)
FX) if all g;(X) <0

This function is discontinuous on the boundary of the acceptable region as
shown in Fig. 7.11 and hence it would be very difficult to minimize this function.

2. 0 < g < 1. Here the ¢ function will be continuous, but the penalty for violating
a constraint may be too small. Also, the derivatives of the function are discon-
tinuous along the boundary. Thus it will be difficult to minimize the ¢ function.
Typical contours of the ¢ function are shown in Fig. 7.12.
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) ;»»

¢ f

fX) +ryp, 1 &
)/5?;/( A> Section A-A
“ fX) = axy
4

—

0 x1 x]

(a) (b)

Figure 7.11 A ¢ function discontinuous for g = 0.

o f
A y
fX) = ax;
¢
/
B
Section A-A
— X > X
0 x=p
(a) (b)

Figure 7.12 Derivatives of a ¢ function discontinuous for 0 < g < 1.

3. ¢ = 1. In this case, under certain restrictions, it has been shown by Zangwill
[7.16] that there exists an ry so large that the minimum of ¢ (X, ry) is exactly
the constrained minimum of the original problem for all r, > ro. However, the
contours of the ¢ function look similar to those shown in Fig. 7.12 and possess
discontinuous first derivatives along the boundary. Hence despite the conve-
nience of choosing a single r; that yields the constrained minimum in one
unconstrained minimization, the method is not very attractive from computa-
tional point of view.
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o f %2
/]
fX) = ax;
¢ /
y Section on A - A
— X] x]
0 x = p
(a) (b)
Figure 7.13 A ¢ function for g > 1.
4. g > 1. The ¢ function will have continuous first derivatives in this case as shown
in Fig. 7.13. These derivatives are given by
dp  of - _19g;X)
— = (X)) —=——= 7.202
e =t ;mg,( N (7.202)

Generally, the value of g is chosen as 2 in practical computation. We assume a
value of ¢ > 1 in subsequent discussion of this method.

Algorithm. The exterior penalty function method can be stated by the following

steps:

1.
2.

3.

4.

Start from any design X; and a suitable value of ry. Set k = 1.
Find the vector Xj that minimizes the function

m
dX.r) = FX) +re > (g;(X))
j=1
Test whether the point X} satisfies all the constraints. If X7 is feasible, it is the
desired optimum and hence terminate the procedure. Otherwise, go to step 4.
Choose the next value of the penalty parameter that satisfies the relation

Tk41 > Tk

and set the new value of k as original k£ plus 1 and go to step 2. Usually,
the value of r¢y; is chosen according to the relation ry4 = crg, where ¢ is a
constant greater than 1.
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Example 7.9
Minimize f(x1,x2) = $(x1 + D+ x,

subject to
gilx1,x2) =1-x <0
g2(x1,x2) = —x2 <0
SOLUTION To illustrate the exterior penalty function method, we solve the uncon-

strained minimization problem by using differential calculus method. As such, it is not
necessary to have an initial trial point X;. The ¢ function is

(X1, r) = (1 + D + x2 4 rlmax(0, 1 — x1)]* + r[max(0, —x2)]?

The necessary conditions for the unconstrained minimum of ¢ (X, r) are

0 2 _
— = (x; + 1)> = 2r[max(0, 1 —x;)] =0
8)(1

d¢
—~ =1 —2r[max(0, —x3)] = 0
8x2

These equations can be written as

min[(x; +1)%, (1 + 1)* = 2r(1 —x)] =0 (E1)
min[1, 1+ 2rx,] =0 (E»)
In Eq. (E)), if (x; + 1)> =0, x; = —1 (this violates the first constraint), and if

i+ D=2k —x) =0, x1=—-1—r+Vr2+4r

In Eq. (E;), the only possibility is that 1 + 2rx, = 0 and hence x, = —1/2r. Thus the
solution of the unconstrained minimization problem is given by

A\ 12
XT(r)=—1—r+r<1+;) (E3)

1
x5 (r) = —5= (E4)

2r
From this, the solution of the original constrained problem can be obtained as
xf=lim x{(r)=1, xJ= lim xj(r)=0
rF—>00 r—0o0
frin = M pmin(r) = 3
r—00

The convergence of the method, as r increases gradually, can be seen from Table 7.5.
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Table 7.5 Results for Example 7.9

Value of r xy x5 Bmin () Smin (1)
0.001 —0.93775 —500.00000 —249.9962 —500.0000
0.01 —0.80975 —50.00000 —24.9650 —49.9977
0.1 —0.45969 —5.00000 —2.2344 —4.9474
1 0.23607 —0.50000 0.9631 0.1295
10 0.83216 —0.05000 2.3068 2.0001
100 0.98039 —0.00500 2.6249 2.5840
1,000 0.99800 —0.00050 2.6624 2.6582
10,000 0.99963 —0.00005 2.6655 2.6652

00 1 0 % %

Convergence Proof. To prove the convergence of the algorithm given above, we
assume that f and g;, j =1,2,...,m, are continuous and that an optimum solution
exists for the given problem. The following results are useful in proving the convergence
of the exterior penalty function method.

Theorem 7.3 If

¢X,r) = fX) +rGlgX)] = fX) +ri Y (g;(X))

j=1
the following relations will be valid for any 0 < ry < rpyq:

1‘ ¢(X*’ rk) 5 ¢(XZ+]’ rk+l)'
2. fXP) = fFXG )
3. GlgXpP] = GleX;, DI

Proof: The proof is similar to that of Theorem 7.1.

Theorem 7.4 If the function ¢ (X, r¢) given by Eq. (7.199) is minimized for an increas-
ing sequence of values of ry, the unconstrained minima Xj converge to the optimum
solution (X*) of the constrained problem as ry — 00.

Proof : The proof is similar to that of Theorem 7.1 (see Problem 7.46).

7.16 EXTRAPOLATION TECHNIQUES IN THE INTERIOR
PENALTY FUNCTION METHOD

In the interior penalty function method, the ¢ function is minimized sequentially for
a decreasing sequence of values r; >rp > --->r; to find the unconstrained minima
X7, X3, ..., X}, respectively. Let the values of the objective function corresponding to
X1, X5, ..., X} be f, f5, ..., fi7, respectively. It has been proved that the sequence
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X7, X3, ..., X} converges to the minimum point X*, and the sequence f}", f5", ..., f
to the minimum value f* of the original constrained problem stated in Eq. (7.153) as
rr. — 0. After carrying out a certain number of unconstrained minimizations of ¢, the
results obtained thus far can be used to estimate the minimum of the original constrained
problem by a method known as the extrapolation technique. The extrapolations of the
design vector and the objective function are considered in this section.

7.16.1 Extrapolation of the Design Vector X

Since different vectors X}, i =1,2,...,k, are obtained as unconstrained minima of
¢ (X, r;) for different r;, i = 1,2, ..., k, the unconstrained minimum ¢ (X, r) for any

value of r, X*(r), can be approximated by a polynomial in r as
k-1
X*(r) — ZAJ(}")j = AO + l"A] =+ r2A2 + -4 rk_lAk—l (7203)
j=0

where A ; are n-component vectors. By substituting the known conditions
X'r=r)=X}, i=12,...,k (7.204)

in Eq. (7.203), we can determine the vectors A;, j =0, 1,2,..., k — 1 uniquely. Then
X*(r), given by Eq. (7.203), will be a good approximation for the unconstrained min-
imum of ¢ (X, r) in the interval (0, r;). By setting » = 0 in Eq. (7.203), we can obtain
an estimate to the true minimum, X*, as

X* = X*(r = 0) = Ag (7.205)

It is to be noted that it is not necessary to approximate X*(r) by a (k — 1) st-order
polynomial in r. In fact, any polynomial of order 1 < p < k — 1 can be used to approx-
imate X*(r). In such a case we need only p + 1 points out of X7, X3, ..., X} to define
the polynomial completely.

As a simplest case, let us consider approximating X*(r) by a first-order polynomial
(linear equation) in r as

X*(r) = Ao +rA (7.206)

To evaluate the vectors Ay and A, we need the data of two unconstrained minima. If
the extrapolation is being done at the end of the kth unconstrained minimization, we
generally use the latest information to find the constant vectors Ay and A;. Let X} _,
and X} be the unconstrained minima corresponding to r_; and ry, respectively. Since
re = cry—1 (c < 1), Eq. (7.206) gives

X*(r=rre1) = Ao+ 1A =X,

(7.207)
X*(r = r¢) = Ao + cri 1Ay = X}
These equations give
Xy — X7
Ag = —k k—1
I-e (7.208)
X: =Xk '
O k

re—1(1—c)



7.16  Extrapolation Techniques in the Interior Penalty Function Method 449

From Egs. (7.206) and (7.208), the extrapolated value of the true minimum can be
obtained as

* *
X; —cX;_,

X*r=0)=Ap =
1—c¢

(7.209)

The extrapolation technique [Eq. (7.203)] has several advantages:

1. It can be used to find a good estimate to the optimum of the original problem
with the help of Eq. (7.205).

2. It can be used to provide an additional convergence criterion to terminate the
minimization process. The point obtained at the end of the kth iteration, XJ,
can be taken as the true minimum if the relation

Xi —X*(r=0)| <e (7.210)

is satisfied, where € is the vector of prescribed small quantities.

3. This method can also be used to estimate the next minimum of the ¢ function
after a number of minimizations have been completed. This estimate’ can be
used as a starting point for the (k + 1)st minimization of the ¢ function. The
estimate of the (k + 1)st minimum, based on the information collected from the
previous k minima, is given by Eq. (7.203) as

X = X5 = reqr = rich)
= Ao+ (DAL + (VA -+ A (DT 21
If Egs. (7.206) and (7.208) are used, this estimate becomes
Xir1 = X*(r = ri1) = Ag + ri1Ay

=1+ 0X] — X}, (7.212)

Discussion. It has been proved that under certain conditions, the difference between
the true minimum X* and the estimate X*(r = 0) = Ay will be of the order r{‘ [7.17].
Thus as r; - 0,A¢ — X*. Moreover, if r; < 1, the estimates of X* obtained by
using k minima will be better than those using (k — 1) minima, and so on. Hence as
more minima are achieved, the estimate of X* or Xy, presumably gets better. This
estimate can be used as the starting point for the (k + 1)st minimization of the ¢
function. This accelerates the entire process by substantially reducing the effort needed
to minimize the successive ¢ functions. However, the computer storage requirements
and accuracy considerations (such as numerical round-off errors that become important
for higher-order estimates) limit the order of polynomial in Eq. (7.203). It has been
found in practice that extrapolations with the help of even quadratic and cubic equations
in r generally yield good estimates for Xy | and X*. Note that the extrapolated points
given by any of Eqgs. (7.205), (7.209), (7.211), and (7.212) may sometimes violate the
constraints. Hence we have to check any extrapolated point for feasibility before using
it as a starting point for the next minimization of ¢. If the extrapolated point is found
infeasible, it has to be rejected.

"The estimate obtained for X* can also be used as a starting point for the (k 4+ 1)st minimization of the ¢
function.
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7.16.2 Extrapolation of the Function f

As in the case of the design vector, it is possible to use extrapolation technique
to estimate the optimum value of the original objective function, f*. For this, let

fi5 5 ..., fiF be the values of the objective function corresponding to the vectors
X7, X3, ..., X}, Since the points X7, X3, ..., X} have been found to be the uncon-
strained minima of the ¢ function corresponding to ry,r, ..., rg, respectively, the

objective function, f*, can be assumed to be a function of r. By approximating f* by
a (k — 1)st-order polynomial in », we have

k—1
f ) = Zaj(r)j =ao+arr +ar’+-+ag_r*! (7.213)

j=0
where the k constants aj, j =0,1,2,...,k — 1 can be evaluated by substituting the

known conditions
f*(r:I"i):f‘i*:a0+a]ri+a2rl‘2+"'+ak*1rik_1’ i:l,Z,...,k (7214)

Since Eq. (7.213) is a good approximation for the true f™* in the interval (0, ry), we
can obtain an estimate for the constrained minimum of f as

f*~ 5 =0) = ap (7.215)

As a particular case, a linear approximation can be made for f* by using the last two
data points. Thus if f* , and f;* are the function values corresponding to r;_; and
Iy = cry_1, we have

3k
fie1 = ao +rr—1ap

(7.216)
fi=ao+cnia
These equations yield
kL ofk
a0 = % (7217)
—c
* £k
a = S — i (7.218)
ri—1(1 —¢)
* c * * _ *
f*(r) — fk fk*l + L%fkil fk (7219)
1—c¢ Fk—1 1—c¢
Equation (7.219) gives an estimate of f* as
* c *
F =0 =a = B0 . _J;"‘l (7.220)

The extrapolated value ag can be used to provide an additional convergence criterion
for terminating the interior penalty function method. The criterion is that whenever the
value of f;* obtained at the end of kth unconstrained minimization of ¢ is sufficiently
close to the extrapolated value ag, that is, when

fk* —dg
I

where ¢ is a specified small quantity, the process can be terminated.

<e (7.221)
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Example 7.10 Find the extrapolated values of X and f in Example 7.8 using the
results of minimization of ¢ (X, ) and ¢ (X, ).

SOLUTION From the results of Example 7.8, we have for r; = 1.0,

0.37898
Xt ={1.67965} ., fF =5.70766
2.34617

and for r, = 0.1,

0.10088
c=01, Xj=1]141945}, f;=273267
1.68302

By using Eq. (7.206) for approximating X*(r), the extrapolate